Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4RKG3_Stepper implementation << 27 // 26 // 28 // Created: J.Apostolakis, V.Grichine - 30.01. << 27 // $Id: G4RKG3_Stepper.cc 68055 2013-03-13 14:43:28Z gcosmo $ >> 28 // 29 // ------------------------------------------- 29 // ------------------------------------------------------------------- 30 30 31 #include "G4RKG3_Stepper.hh" 31 #include "G4RKG3_Stepper.hh" 32 #include "G4LineSection.hh" 32 #include "G4LineSection.hh" 33 #include "G4Mag_EqRhs.hh" 33 #include "G4Mag_EqRhs.hh" 34 34 35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs* Eq << 35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs *EqRhs) 36 : G4MagIntegratorStepper(EqRhs,6) << 36 : G4MagIntegratorStepper(EqRhs,6), hStep(0.) 37 { 37 { 38 } 38 } 39 39 40 G4RKG3_Stepper::~G4RKG3_Stepper() = default; << 40 G4RKG3_Stepper::~G4RKG3_Stepper() >> 41 { >> 42 } 41 43 42 void G4RKG3_Stepper::Stepper( const G4double y << 44 void G4RKG3_Stepper::Stepper( const G4double yInput[8], 43 const G4double d << 45 const G4double dydx[6], 44 G4double S << 46 G4double Step, 45 G4double y << 47 G4double yOut[8], 46 G4double y << 48 G4double yErr[]) 47 { 49 { 48 G4double B[3]; 50 G4double B[3]; 49 G4int nvar = 6 ; 51 G4int nvar = 6 ; >> 52 G4int i; 50 G4double by15 = 1. / 15. ; // was 0.06666 53 G4double by15 = 1. / 15. ; // was 0.066666666 ; 51 54 52 G4double yTemp[8], dydxTemp[6], yIn[8]; << 55 G4double yTemp[8], dydxTemp[6], yIn[8] ; 53 << 56 // Saving yInput because yInput and yOut can be aliases for same array 54 // Saving yInput because yInput and yOut ca << 57 for(i=0;i<nvar;i++) yIn[i]=yInput[i]; 55 // << 56 for(G4int i=0; i<nvar; ++i) << 57 { << 58 yIn[i]=yInput[i]; << 59 } << 60 yIn[6] = yInput[6]; 58 yIn[6] = yInput[6]; 61 yIn[7] = yInput[7]; 59 yIn[7] = yInput[7]; 62 G4double h = Step * 0.5; 60 G4double h = Step * 0.5; 63 hStep = Step; << 61 hStep=Step; 64 // Do two half steps << 62 // Do two half steps 65 63 66 StepNoErr(yIn, dydx,h, yTemp,B) ; 64 StepNoErr(yIn, dydx,h, yTemp,B) ; 67 65 68 // Store Bfld for DistChord Calculation << 66 //Store Bfld for DistChord Calculation 69 // << 67 for(i=0;i<3;i++)BfldIn[i]=B[i]; 70 for(auto i=0; i<3; ++i) << 68 71 { << 69 // RightHandSide(yTemp,dydxTemp) ; 72 BfldIn[i] = B[i]; << 73 } << 74 // RightHandSide(yTemp,dydxTemp) ; << 75 70 76 GetEquationOfMotion()->EvaluateRhsGivenB(yT 71 GetEquationOfMotion()->EvaluateRhsGivenB(yTemp,B,dydxTemp) ; 77 StepNoErr(yTemp,dydxTemp,h,yOut,B); 72 StepNoErr(yTemp,dydxTemp,h,yOut,B); 78 73 79 // Store midpoint, chord calculation 74 // Store midpoint, chord calculation 80 75 81 fyMidPoint = G4ThreeVector(yTemp[0], yTemp << 76 fyMidPoint = G4ThreeVector( yTemp[0], yTemp[1], yTemp[2]); 82 77 83 // Do a full Step 78 // Do a full Step 84 // << 79 85 h *= 2 ; 80 h *= 2 ; 86 StepNoErr(yIn,dydx,h,yTemp,B); 81 StepNoErr(yIn,dydx,h,yTemp,B); 87 for(G4int i=0; i<nvar; ++i) << 82 for(i=0;i<nvar;i++) 88 { 83 { 89 yErr[i] = yOut[i] - yTemp[i] ; 84 yErr[i] = yOut[i] - yTemp[i] ; 90 yOut[i] += yErr[i]*by15 ; // Pr 85 yOut[i] += yErr[i]*by15 ; // Provides 5th order of accuracy 91 } 86 } 92 87 93 // Store values for DistChord method << 88 //Store values for DistChord method 94 // << 89 95 fyInitial = G4ThreeVector( yIn[0], yIn[1] 90 fyInitial = G4ThreeVector( yIn[0], yIn[1], yIn[2]); 96 fpInitial = G4ThreeVector( yIn[3], yIn[4] 91 fpInitial = G4ThreeVector( yIn[3], yIn[4], yIn[5]); 97 fyFinal = G4ThreeVector( yOut[0], yOut[1 92 fyFinal = G4ThreeVector( yOut[0], yOut[1], yOut[2]); >> 93 >> 94 // NormaliseTangentVector( yOut ); // Deleted 98 } 95 } 99 96 100 // ------------------------------------------- 97 // --------------------------------------------------------------------------- 101 98 102 // Integrator for RK from G3 with evaluation o 99 // Integrator for RK from G3 with evaluation of error in solution and delta 103 // geometry based on naive similarity with the 100 // geometry based on naive similarity with the case of uniform magnetic field. 104 // B1[3] is input and is the first magnetic f 101 // B1[3] is input and is the first magnetic field values 105 // B2[3] is output and is the final magnetic f 102 // B2[3] is output and is the final magnetic field values. 106 // << 103 107 void G4RKG3_Stepper::StepWithEst( const G4doub 104 void G4RKG3_Stepper::StepWithEst( const G4double*, 108 const G4doub 105 const G4double*, 109 G4doub 106 G4double, 110 G4doub 107 G4double*, 111 G4doub 108 G4double&, 112 G4doub 109 G4double&, 113 const G4doub 110 const G4double*, 114 G4doub 111 G4double* ) 115 112 116 { 113 { 117 G4Exception("G4RKG3_Stepper::StepWithEst()", 114 G4Exception("G4RKG3_Stepper::StepWithEst()", "GeomField0001", 118 FatalException, "Method no longe 115 FatalException, "Method no longer used."); 119 } 116 } 120 117 121 // ------------------------------------------- 118 // ----------------------------------------------------------------- 122 119 >> 120 123 // Integrator RK Stepper from G3 with only two 121 // Integrator RK Stepper from G3 with only two field evaluation per Step. 124 // It is used in propagation initial Step by s 122 // It is used in propagation initial Step by small substeps after solution 125 // error and delta geometry considerations. B[ 123 // error and delta geometry considerations. B[3] is magnetic field which 126 // is passed from substep to substep. 124 // is passed from substep to substep. 127 // << 125 128 void G4RKG3_Stepper::StepNoErr(const G4double 126 void G4RKG3_Stepper::StepNoErr(const G4double tIn[8], 129 const G4double 127 const G4double dydx[6], 130 G4double 128 G4double Step, 131 G4double 129 G4double tOut[8], 132 G4double << 130 G4double B[3] ) // const 133 131 134 { 132 { 135 133 136 // Copy and edit the routine above, to dele << 134 // Copy and edit the routine above, to delete alpha2, beta2, ... 137 // << 135 G4double K1[7],K2[7],K3[7],K4[7] ; 138 G4double K1[7], K2[7], K3[7], K4[7]; << 136 G4double tTemp[8], yderiv[6] ; 139 G4double tTemp[8]={0.0}, yderiv[6]={0.0}; << 137 140 << 138 // Need Momentum value to give correct values to the coefficients in equation 141 // Need Momentum value to give correct valu << 139 // Integration on unit velocity, but tIn[3,4,5] is momentum 142 // equation. Integration on unit velocity, << 140 G4double mom,inverse_mom; 143 << 141 G4int i ; 144 G4double mom, inverse_mom; << 142 const G4double c1=0.5,c2=0.125,c3=1./6.; 145 const G4double c1=0.5, c2=0.125, c3=1./6.; << 146 143 >> 144 // GetEquationOfMotion()->EvaluateRhsReturnB(tIn,dydx,B1) ; 147 // Correction for momentum not a velocity 145 // Correction for momentum not a velocity 148 // Need the protection !!! must be not zero << 146 // Need the protection !!! must be not zero 149 // << 147 mom=std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4]+tIn[5]*tIn[5]); 150 mom = std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4] << 148 inverse_mom=1./mom; 151 inverse_mom = 1./mom; << 149 for(i=0;i<3;i++) 152 for(auto i=0; i<3; ++i) << 153 { 150 { 154 K1[i] = Step * dydx[i+3]*inverse_mom; 151 K1[i] = Step * dydx[i+3]*inverse_mom; 155 tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*in 152 tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*inverse_mom + c2*K1[i]) ; 156 tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ; 153 tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ; >> 154 157 } 155 } 158 156 159 GetEquationOfMotion()->EvaluateRhsReturnB(t 157 GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ; >> 158 160 159 161 for(auto i=0; i<3; ++i) << 160 for(i=0;i<3;i++) 162 { 161 { 163 K2[i] = Step * yderiv[i+3]*inverse_mom; 162 K2[i] = Step * yderiv[i+3]*inverse_mom; 164 tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ; 163 tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ; 165 } 164 } 166 165 167 // Given B, calculate yderiv ! << 166 // Given B, calculate yderiv ! 168 // << 169 GetEquationOfMotion()->EvaluateRhsGivenB(tT 167 GetEquationOfMotion()->EvaluateRhsGivenB(tTemp,B,yderiv) ; 170 168 171 for(auto i=0; i<3; ++i) << 169 for(i=0;i<3;i++) 172 { 170 { 173 K3[i] = Step * yderiv[i+3]*inverse_mom; 171 K3[i] = Step * yderiv[i+3]*inverse_mom; 174 tTemp[i] = tIn[i] + Step*(tIn[i+3]*inver 172 tTemp[i] = tIn[i] + Step*(tIn[i+3]*inverse_mom + c1*K3[i]) ; 175 tTemp[i+3] = tIn[i+3] + K3[i]*mom ; 173 tTemp[i+3] = tIn[i+3] + K3[i]*mom ; 176 } 174 } >> 175 177 176 178 // Calculates y-deriv(atives) & returns B t << 177 // Calculates y-deriv(atives) & returns B too! 179 // << 180 GetEquationOfMotion()->EvaluateRhsReturnB(t 178 GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ; >> 179 181 180 182 for(auto i=0; i<3; ++i) // Output tr << 181 for(i=0;i<3;i++) // Output trajectory vector 183 { 182 { 184 K4[i] = Step * yderiv[i+3]*inverse_mom; 183 K4[i] = Step * yderiv[i+3]*inverse_mom; 185 tOut[i] = tIn[i] + Step*(tIn[i+3]*invers << 184 tOut[i] = tIn[i] + Step*(tIn[i+3]*inverse_mom+ (K1[i] + K2[i] + K3[i])*c3) ; 186 tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2 185 tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2[i] + 2*K3[i] +K4[i])*c3 ; 187 } 186 } 188 tOut[6] = tIn[6]; 187 tOut[6] = tIn[6]; 189 tOut[7] = tIn[7]; 188 tOut[7] = tIn[7]; >> 189 // NormaliseTangentVector( tOut ); >> 190 >> 191 190 } 192 } 191 193 >> 194 192 // ------------------------------------------- 195 // --------------------------------------------------------------------------- 193 196 194 G4double G4RKG3_Stepper::DistChord() const << 197 G4double G4RKG3_Stepper::DistChord() const 195 { << 198 { 196 // Soon: must check whether h/R > 2 pi !! 199 // Soon: must check whether h/R > 2 pi !! 197 // Method below is good only for < 2 pi << 200 // Method below is good only for < 2 pi 198 << 199 G4double distChord,distLine; 201 G4double distChord,distLine; 200 202 201 if (fyInitial != fyFinal) << 203 if (fyInitial != fyFinal) { 202 { << 204 distLine= G4LineSection::Distline(fyMidPoint,fyInitial,fyFinal ); 203 distLine = G4LineSection::Distline(fyMid << 205 204 distChord = distLine; << 206 distChord = distLine; 205 } << 207 }else{ 206 else << 207 { << 208 distChord = (fyMidPoint-fyInitial).mag() 208 distChord = (fyMidPoint-fyInitial).mag(); 209 } 209 } 210 << 210 >> 211 211 return distChord; 212 return distChord; 212 } << 213 >> 214 } >> 215 213 216