Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4MagErrorStepper implementation << 27 // 26 // 28 // Author: W.Wander <wwc@mit.edu>, 09.12.1997 << 27 // $Id: G4MagErrorStepper.cc,v 1.13 2006-06-29 18:24:18 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-09-04-patch-01 $ >> 29 // 29 // ------------------------------------------- 30 // -------------------------------------------------------------------- 30 31 31 #include "G4MagErrorStepper.hh" 32 #include "G4MagErrorStepper.hh" 32 #include "G4LineSection.hh" 33 #include "G4LineSection.hh" 33 34 34 G4MagErrorStepper::~G4MagErrorStepper() 35 G4MagErrorStepper::~G4MagErrorStepper() 35 { 36 { 36 delete [] yMiddle; << 37 delete[] yMiddle; 37 delete [] dydxMid; << 38 delete[] dydxMid; 38 delete [] yInitial; << 39 delete[] yInitial; 39 delete [] yOneStep; << 40 delete[] yOneStep; 40 } 41 } 41 42 42 void G4MagErrorStepper::Stepper( const G4doubl << 43 void 43 const G4doubl << 44 G4MagErrorStepper::Stepper( const G4double yInput[], 44 G4doubl << 45 const G4double dydx[], 45 G4doubl << 46 G4double hstep, 46 G4doubl << 47 G4double yOutput[], >> 48 G4double yError [] ) 47 { 49 { 48 const G4int nvar = GetNumberOfVariables(); << 50 const G4int nvar = this->GetNumberOfVariables() ; 49 const G4int maxvar = GetNumberOfStateVariab << 51 const G4int maxvar= GetNumberOfStateVariables(); 50 52 >> 53 G4int i; 51 // correction for Richardson Extrapolation. 54 // correction for Richardson Extrapolation. 52 // << 53 G4double correction = 1. / ( (1 << Integra 55 G4double correction = 1. / ( (1 << IntegratorOrder()) -1 ); 54 56 55 // Saving yInput because yInput and yOutpu 57 // Saving yInput because yInput and yOutput can be aliases for same array 56 // << 58 57 for(G4int i=0; i<nvar; ++i) << 59 for(i=0;i<nvar;i++) yInitial[i]=yInput[i]; 58 { << 60 yInitial[7]= yInput[7]; // Copy the time in case ... even if not really needed 59 yInitial[i]=yInput[i]; << 60 } << 61 yInitial[7] = yInput[7]; // Copy the time i << 62 yMiddle[7] = yInput[7]; // Copy the time f 61 yMiddle[7] = yInput[7]; // Copy the time from initial value 63 yOneStep[7] = yInput[7]; // As it contribut 62 yOneStep[7] = yInput[7]; // As it contributes to final value of yOutput ? 64 // yOutput[7] = yInput[7]; // -> dumb step 63 // yOutput[7] = yInput[7]; // -> dumb stepper does it too for RK4 65 << 64 for(i=nvar;i<maxvar;i++) yOutput[i]=yInput[i]; 66 for(G4int i=nvar; i<maxvar; ++i) << 67 { << 68 yOutput[i]=yInput[i]; << 69 } << 70 // yError[7] = 0.0; 65 // yError[7] = 0.0; 71 66 72 G4double halfStep = hstep * 0.5; 67 G4double halfStep = hstep * 0.5; 73 68 74 // Do two half steps 69 // Do two half steps 75 // << 70 76 DumbStepper (yInitial, dydx, halfStep, 71 DumbStepper (yInitial, dydx, halfStep, yMiddle); 77 RightHandSide(yMiddle, dydxMid); 72 RightHandSide(yMiddle, dydxMid); 78 DumbStepper (yMiddle, dydxMid, halfStep, y 73 DumbStepper (yMiddle, dydxMid, halfStep, yOutput); 79 74 80 // Store midpoint, chord calculation 75 // Store midpoint, chord calculation 81 // << 76 82 fMidPoint = G4ThreeVector( yMiddle[0], yMi 77 fMidPoint = G4ThreeVector( yMiddle[0], yMiddle[1], yMiddle[2]); 83 78 84 // Do a full Step 79 // Do a full Step 85 // << 86 DumbStepper(yInitial, dydx, hstep, yOneStep 80 DumbStepper(yInitial, dydx, hstep, yOneStep); 87 for(G4int i=0; i<nvar; ++i) << 81 for(i=0;i<nvar;i++) { 88 { << 89 yError [i] = yOutput[i] - yOneStep[i] ; 82 yError [i] = yOutput[i] - yOneStep[i] ; 90 yOutput[i] += yError[i]*correction ; << 83 yOutput[i] += yError[i]*correction ; // Provides accuracy increased 91 // Provides accuracy increased by 1 or << 84 // by 1 order via the >> 85 // Richardson Extrapolation 92 } 86 } 93 87 94 fInitialPoint = G4ThreeVector( yInitial[0], 88 fInitialPoint = G4ThreeVector( yInitial[0], yInitial[1], yInitial[2]); 95 fFinalPoint = G4ThreeVector( yOutput[0], 89 fFinalPoint = G4ThreeVector( yOutput[0], yOutput[1], yOutput[2]); 96 90 97 return; << 91 return ; 98 } 92 } 99 93 100 G4double G4MagErrorStepper::DistChord() const << 94 >> 95 >> 96 G4double >> 97 G4MagErrorStepper::DistChord() const 101 { 98 { 102 // Estimate the maximum distance from the cu 99 // Estimate the maximum distance from the curve to the chord 103 // 100 // 104 // We estimate this using the distance of th << 101 // We estimate this using the distance of the midpoint to 105 // chord (the line between << 102 // chord (the line between 106 // 103 // 107 // Method below is good only for angle devia << 104 // Method below is good only for angle deviations < 2 pi, 108 // This restriction should not a problem for << 105 // This restriction should not a problem for the Runge cutta methods, 109 // which generally cannot integrate accurate << 106 // which generally cannot integrate accurately for large angle deviations. 110 << 111 G4double distLine, distChord; 107 G4double distLine, distChord; 112 108 113 if (fInitialPoint != fFinalPoint) << 109 if (fInitialPoint != fFinalPoint) { 114 { << 110 distLine= G4LineSection::Distline( fMidPoint, fInitialPoint, fFinalPoint ); 115 distLine = G4LineSection::Distline(fMidPo << 111 // This is a class method that gives distance of Mid 116 // This is a class method that gives di << 112 // from the Chord between the Initial and Final points. 117 // from the Chord between the Initial a << 118 113 119 distChord = distLine; 114 distChord = distLine; 120 } << 115 }else{ 121 else << 122 { << 123 distChord = (fMidPoint-fInitialPoint).mag 116 distChord = (fMidPoint-fInitialPoint).mag(); 124 } 117 } 125 118 126 return distChord; 119 return distChord; 127 } 120 } >> 121 128 122