Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixExplicitEuler.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4HelixExplicitEuler.cc (Version 11.3.0) and /geometry/magneticfield/src/G4HelixExplicitEuler.cc (Version 9.1.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4HelixExplicitEuler implementation         <<  26 //
                                                   >>  27 // $Id: G4HelixExplicitEuler.cc,v 1.8 2007/12/10 16:29:49 gunter Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-01-patch-01 $
                                                   >>  29 //
 27 //                                                 30 //
 28 //  Helix Explicit Euler: x_1 = x_0 + helix(h)     31 //  Helix Explicit Euler: x_1 = x_0 + helix(h)
 29 //  with helix(h) being a helix piece of lengt <<  32 //  with helix(h) being a helix piece of length h
 30 //  Most simple approach for solving linear di <<  33 //  most simple approach for solving linear differential equations.
 31 //  Take the current derivative and add it to      34 //  Take the current derivative and add it to the current position.
 32 //                                                 35 //
 33 // Author: W.Wander <wwc@mit.edu>, 12.09.1997  <<  36 //  W.Wander <wwc@mit.edu> 12/09/97 
 34 // -------------------------------------------     37 // -------------------------------------------------------------------
 35                                                    38 
 36 #include "G4HelixExplicitEuler.hh"                 39 #include "G4HelixExplicitEuler.hh"
 37 #include "G4PhysicalConstants.hh"              << 
 38 #include "G4ThreeVector.hh"                        40 #include "G4ThreeVector.hh"
 39                                                    41 
 40 G4HelixExplicitEuler::G4HelixExplicitEuler(G4M << 
 41   : G4MagHelicalStepper(EqRhs)                 << 
 42 {                                              << 
 43 }                                              << 
 44                                                << 
 45 G4HelixExplicitEuler::~G4HelixExplicitEuler()  << 
 46                                                    42 
 47 void G4HelixExplicitEuler::Stepper( const G4do <<  43 void G4HelixExplicitEuler::Stepper(  const G4double  yInput[7],
 48                                     const G4do <<  44                                const G4double*,
 49                                           G4do <<  45                                      G4double Step,
 50                                           G4do <<  46                                      G4double yOut[7],
 51                                           G4do <<  47                                      G4double yErr[])
                                                   >>  48 
 52 {                                                  49 {
 53   // Estimation of the Stepping Angle          <<  50 
 54   //                                           <<  51  //Estimation of the Stepping Angle
                                                   >>  52 
 55   G4ThreeVector Bfld;                              53   G4ThreeVector Bfld;
 56   MagFieldEvaluate(yInput, Bfld);                  54   MagFieldEvaluate(yInput, Bfld); 
 57                                                    55   
 58   const G4int nvar = 6 ;                           56   const G4int nvar = 6 ;
 59   G4double yTemp[8], yIn[8] ;                  <<  57   G4int i;
                                                   >>  58   G4double      yTemp[7], yIn[7] ;
 60   G4ThreeVector  Bfld_midpoint;                    59   G4ThreeVector  Bfld_midpoint;
 61                                                <<  60   //  Saving yInput because yInput and yOut can be aliases for same array
 62   // Saving yInput because yInput and yOut can <<  61         for(i=0;i<nvar;i++) yIn[i]=yInput[i];
 63   //                                           << 
 64   for(G4int i=0; i<nvar; ++i)                  << 
 65   {                                            << 
 66     yIn[i] = yInput[i];                        << 
 67   }                                            << 
 68                                                    62      
 69   G4double h = Step * 0.5;                     <<  63         G4double h = Step * 0.5;
 70                                                    64  
 71   // Do full step and two half steps           <<  65      // Do full step and two half steps
 72   //                                           <<  66         G4double yTemp2[7];
 73   G4double yTemp2[7];                          <<  67         AdvanceHelix(yIn,   Bfld,  h, yTemp2,yTemp);
 74   AdvanceHelix(yIn, Bfld, h, yTemp2,yTemp);    <<  68         MagFieldEvaluate(yTemp2, Bfld_midpoint) ;     
 75   MagFieldEvaluate(yTemp2, Bfld_midpoint) ;    <<  69         AdvanceHelix(yTemp2, Bfld_midpoint, h, yOut);
 76   AdvanceHelix(yTemp2, Bfld_midpoint, h, yOut) <<  70     
 77   SetAngCurve(GetAngCurve() * 2);              <<  71      // Error estimation
                                                   >>  72         for(i=0;i<nvar;i++) {
                                                   >>  73          yErr[i] = yOut[i] - yTemp[i] ;
                                                   >>  74        }
 78                                                    75     
 79   // Error estimation                          << 
 80   //                                           << 
 81   for(G4int i=0; i<nvar; ++i)                  << 
 82   {                                            << 
 83     yErr[i] = yOut[i] - yTemp[i];              << 
 84   }                                            << 
 85 }                                                  76 }
 86                                                    77 
 87 G4double G4HelixExplicitEuler::DistChord()   c     78 G4double G4HelixExplicitEuler::DistChord()   const 
 88 {                                                  79 {
 89   // Implementation : must check whether h/R >     80   // Implementation : must check whether h/R > 2 pi  !!
 90   //   If( h/R <  pi) use G4LineSection::DistL     81   //   If( h/R <  pi) use G4LineSection::DistLine
 91   //   Else           DistChord=R_helix            82   //   Else           DistChord=R_helix
 92   //                                               83   //
 93   G4double distChord;                              84   G4double distChord;
 94   G4double Ang_curve=GetAngCurve();                85   G4double Ang_curve=GetAngCurve();
 95                                                    86 
 96                                                <<  87       
 97   if(Ang_curve<=pi)                            <<  88    if(Ang_curve<=pi){
 98   {                                            <<  89      distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
 99     distChord=GetRadHelix()*(1-std::cos(0.5*An <<  90    }
100   }                                            <<  91          else 
101   else if(Ang_curve<twopi)                     <<  92          if(Ang_curve<twopi){
102   {                                            <<  93            distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
103     distChord=GetRadHelix()*(1+std::cos(0.5*(t <<  94          }
104   }                                            <<  95          else{
105   else                                         <<  96           distChord=2.*GetRadHelix();  
106   {                                            <<  97          }
107     distChord=2.*GetRadHelix();                << 
108   }                                            << 
109                                                    98 
110   return distChord;                                99   return distChord;
                                                   >> 100   
111 }                                                 101 }
112                                                << 102 void
113 void G4HelixExplicitEuler::DumbStepper( const  << 103 G4HelixExplicitEuler::DumbStepper( const G4double  yIn[],
114                                                << 104            G4ThreeVector   Bfld,
115                                                << 105            G4double        h,
116                                                << 106            G4double        yOut[])
117 {                                                 107 {
118    AdvanceHelix(yIn, Bfld, h, yOut);           << 108     
                                                   >> 109        AdvanceHelix(yIn, Bfld, h, yOut);
                                                   >> 110                
119 }                                                 111 }  
120                                                   112