Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixExplicitEuler.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4HelixExplicitEuler.cc (Version 11.3.0) and /geometry/magneticfield/src/G4HelixExplicitEuler.cc (Version 10.7.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4HelixExplicitEuler implementation             26 // G4HelixExplicitEuler implementation
 27 //                                                 27 //
 28 //  Helix Explicit Euler: x_1 = x_0 + helix(h)     28 //  Helix Explicit Euler: x_1 = x_0 + helix(h)
 29 //  with helix(h) being a helix piece of lengt     29 //  with helix(h) being a helix piece of length h.
 30 //  Most simple approach for solving linear di     30 //  Most simple approach for solving linear differential equations.
 31 //  Take the current derivative and add it to      31 //  Take the current derivative and add it to the current position.
 32 //                                                 32 //
 33 // Author: W.Wander <wwc@mit.edu>, 12.09.1997      33 // Author: W.Wander <wwc@mit.edu>, 12.09.1997
 34 // -------------------------------------------     34 // -------------------------------------------------------------------
 35                                                    35 
 36 #include "G4HelixExplicitEuler.hh"                 36 #include "G4HelixExplicitEuler.hh"
 37 #include "G4PhysicalConstants.hh"                  37 #include "G4PhysicalConstants.hh"
 38 #include "G4ThreeVector.hh"                        38 #include "G4ThreeVector.hh"
 39                                                    39 
 40 G4HelixExplicitEuler::G4HelixExplicitEuler(G4M     40 G4HelixExplicitEuler::G4HelixExplicitEuler(G4Mag_EqRhs* EqRhs)
 41   : G4MagHelicalStepper(EqRhs)                     41   : G4MagHelicalStepper(EqRhs)
 42 {                                                  42 {
 43 }                                                  43 }
 44                                                    44  
 45 G4HelixExplicitEuler::~G4HelixExplicitEuler()  <<  45 G4HelixExplicitEuler::~G4HelixExplicitEuler()
                                                   >>  46 {
                                                   >>  47 }
 46                                                    48 
 47 void G4HelixExplicitEuler::Stepper( const G4do <<  49 void G4HelixExplicitEuler::Stepper( const G4double  yInput[7],
 48                                     const G4do     50                                     const G4double*,
 49                                           G4do     51                                           G4double Step,
 50                                           G4do <<  52                                           G4double yOut[7],
 51                                           G4do     53                                           G4double yErr[] )
 52 {                                                  54 {
 53   // Estimation of the Stepping Angle              55   // Estimation of the Stepping Angle
 54   //                                               56   //
 55   G4ThreeVector Bfld;                              57   G4ThreeVector Bfld;
 56   MagFieldEvaluate(yInput, Bfld);                  58   MagFieldEvaluate(yInput, Bfld); 
 57                                                    59   
 58   const G4int nvar = 6 ;                           60   const G4int nvar = 6 ;
 59   G4double yTemp[8], yIn[8] ;                      61   G4double yTemp[8], yIn[8] ;
 60   G4ThreeVector  Bfld_midpoint;                    62   G4ThreeVector  Bfld_midpoint;
 61                                                    63 
 62   // Saving yInput because yInput and yOut can     64   // Saving yInput because yInput and yOut can be aliases for same array
 63   //                                               65   //
 64   for(G4int i=0; i<nvar; ++i)                      66   for(G4int i=0; i<nvar; ++i)
 65   {                                                67   {
 66     yIn[i] = yInput[i];                            68     yIn[i] = yInput[i];
 67   }                                                69   }
 68                                                    70      
 69   G4double h = Step * 0.5;                         71   G4double h = Step * 0.5;
 70                                                    72  
 71   // Do full step and two half steps               73   // Do full step and two half steps
 72   //                                               74   //
 73   G4double yTemp2[7];                              75   G4double yTemp2[7];
 74   AdvanceHelix(yIn, Bfld, h, yTemp2,yTemp);        76   AdvanceHelix(yIn, Bfld, h, yTemp2,yTemp);
 75   MagFieldEvaluate(yTemp2, Bfld_midpoint) ;        77   MagFieldEvaluate(yTemp2, Bfld_midpoint) ;     
 76   AdvanceHelix(yTemp2, Bfld_midpoint, h, yOut)     78   AdvanceHelix(yTemp2, Bfld_midpoint, h, yOut);
 77   SetAngCurve(GetAngCurve() * 2);                  79   SetAngCurve(GetAngCurve() * 2);
 78                                                    80     
 79   // Error estimation                              81   // Error estimation
 80   //                                               82   //
 81   for(G4int i=0; i<nvar; ++i)                      83   for(G4int i=0; i<nvar; ++i)
 82   {                                                84   {
 83     yErr[i] = yOut[i] - yTemp[i];                  85     yErr[i] = yOut[i] - yTemp[i];
 84   }                                                86   }
 85 }                                                  87 }
 86                                                    88 
 87 G4double G4HelixExplicitEuler::DistChord()   c     89 G4double G4HelixExplicitEuler::DistChord()   const 
 88 {                                                  90 {
 89   // Implementation : must check whether h/R >     91   // Implementation : must check whether h/R > 2 pi  !!
 90   //   If( h/R <  pi) use G4LineSection::DistL     92   //   If( h/R <  pi) use G4LineSection::DistLine
 91   //   Else           DistChord=R_helix            93   //   Else           DistChord=R_helix
 92   //                                               94   //
 93   G4double distChord;                              95   G4double distChord;
 94   G4double Ang_curve=GetAngCurve();                96   G4double Ang_curve=GetAngCurve();
 95                                                    97 
 96                                                    98 
 97   if(Ang_curve<=pi)                                99   if(Ang_curve<=pi)
 98   {                                               100   {
 99     distChord=GetRadHelix()*(1-std::cos(0.5*An    101     distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
100   }                                               102   }
101   else if(Ang_curve<twopi)                        103   else if(Ang_curve<twopi)
102   {                                               104   {
103     distChord=GetRadHelix()*(1+std::cos(0.5*(t    105     distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
104   }                                               106   }
105   else                                            107   else
106   {                                               108   {
107     distChord=2.*GetRadHelix();                   109     distChord=2.*GetRadHelix();  
108   }                                               110   }
109                                                   111 
110   return distChord;                               112   return distChord;
111 }                                                 113 }
112                                                   114 
113 void G4HelixExplicitEuler::DumbStepper( const     115 void G4HelixExplicitEuler::DumbStepper( const G4double      yIn[],
114                                                   116                                               G4ThreeVector Bfld,
115                                                   117                                               G4double      h,
116                                                   118                                               G4double      yOut[] )
117 {                                                 119 {
118    AdvanceHelix(yIn, Bfld, h, yOut);              120    AdvanceHelix(yIn, Bfld, h, yOut);
119 }                                                 121 }  
120                                                   122