Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixExplicitEuler.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4HelixExplicitEuler.cc (Version 11.3.0) and /geometry/magneticfield/src/G4HelixExplicitEuler.cc (Version 1.0)


                                                   >>   1 // This code implementation is the intellectual property of
                                                   >>   2 // the GEANT4 collaboration.
  1 //                                                  3 //
  2 // ******************************************* <<   4 // By copying, distributing or modifying the Program (or any work
  3 // * License and Disclaimer                    <<   5 // based on the Program) you indicate your acceptance of this statement,
  4 // *                                           <<   6 // and all its terms.
  5 // * The  Geant4 software  is  copyright of th << 
  6 // * the Geant4 Collaboration.  It is provided << 
  7 // * conditions of the Geant4 Software License << 
  8 // * LICENSE and available at  http://cern.ch/ << 
  9 // * include a list of copyright holders.      << 
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                                  7 //
 26 // G4HelixExplicitEuler implementation         <<   8 // $Id: G4HelixExplicitEuler.cc,v 1.1.10.1 1999/12/07 20:48:04 gunter Exp $
                                                   >>   9 // GEANT4 tag $Name: geant4-01-00 $
 27 //                                                 10 //
 28 //  Helix Explicit Euler: x_1 = x_0 + helix(h) << 
 29 //  with helix(h) being a helix piece of lengt << 
 30 //  Most simple approach for solving linear di << 
 31 //  Take the current derivative and add it to  << 
 32 //                                             << 
 33 // Author: W.Wander <wwc@mit.edu>, 12.09.1997  << 
 34 // ------------------------------------------- << 
 35                                                << 
 36 #include "G4HelixExplicitEuler.hh"                 11 #include "G4HelixExplicitEuler.hh"
 37 #include "G4PhysicalConstants.hh"              << 
 38 #include "G4ThreeVector.hh"                        12 #include "G4ThreeVector.hh"
 39                                                    13 
 40 G4HelixExplicitEuler::G4HelixExplicitEuler(G4M <<  14 //
 41   : G4MagHelicalStepper(EqRhs)                 <<  15 //  Helix Explicit Euler: x_1 = x_0 + helix(h)
 42 {                                              <<  16 //  with helix(h) being a helix piece of length h
 43 }                                              <<  17 //  W.Wander <wwc@mit.edu> 12/09/97 
 44                                                <<  18 //
 45 G4HelixExplicitEuler::~G4HelixExplicitEuler()  << 
 46                                                    19 
 47 void G4HelixExplicitEuler::Stepper( const G4do <<  20 // -------------------------------------------------------------------------
 48                                     const G4do << 
 49                                           G4do << 
 50                                           G4do << 
 51                                           G4do << 
 52 {                                              << 
 53   // Estimation of the Stepping Angle          << 
 54   //                                           << 
 55   G4ThreeVector Bfld;                          << 
 56   MagFieldEvaluate(yInput, Bfld);              << 
 57                                                << 
 58   const G4int nvar = 6 ;                       << 
 59   G4double yTemp[8], yIn[8] ;                  << 
 60   G4ThreeVector  Bfld_midpoint;                << 
 61                                                    21 
 62   // Saving yInput because yInput and yOut can <<  22 // most simple approach for solving linear differential equations.
 63   //                                           <<  23 // Take the current derivative and add it to the current position.
 64   for(G4int i=0; i<nvar; ++i)                  <<  24 //
 65   {                                            << 
 66     yIn[i] = yInput[i];                        << 
 67   }                                            << 
 68                                                << 
 69   G4double h = Step * 0.5;                     << 
 70                                                << 
 71   // Do full step and two half steps           << 
 72   //                                           << 
 73   G4double yTemp2[7];                          << 
 74   AdvanceHelix(yIn, Bfld, h, yTemp2,yTemp);    << 
 75   MagFieldEvaluate(yTemp2, Bfld_midpoint) ;    << 
 76   AdvanceHelix(yTemp2, Bfld_midpoint, h, yOut) << 
 77   SetAngCurve(GetAngCurve() * 2);              << 
 78                                                << 
 79   // Error estimation                          << 
 80   //                                           << 
 81   for(G4int i=0; i<nvar; ++i)                  << 
 82   {                                            << 
 83     yErr[i] = yOut[i] - yTemp[i];              << 
 84   }                                            << 
 85 }                                              << 
 86                                                    25 
 87 G4double G4HelixExplicitEuler::DistChord()   c <<  26 void
                                                   >>  27 G4HelixExplicitEuler::DumbStepper( const G4double  yIn[],
                                                   >>  28             const G4double  dydx[],
                                                   >>  29             const G4double  h,
                                                   >>  30             G4double  yOut[])
 88 {                                                  31 {
 89   // Implementation : must check whether h/R > <<  32   AdvanceHelix(yIn, dydx, h, yOut);
 90   //   If( h/R <  pi) use G4LineSection::DistL << 
 91   //   Else           DistChord=R_helix        << 
 92   //                                           << 
 93   G4double distChord;                          << 
 94   G4double Ang_curve=GetAngCurve();            << 
 95                                                << 
 96                                                    33 
 97   if(Ang_curve<=pi)                            <<  34   // NormaliseTangentVector( yOut );  // this could harm more than it helps 
 98   {                                            <<  35   return ;
 99     distChord=GetRadHelix()*(1-std::cos(0.5*An << 
100   }                                            << 
101   else if(Ang_curve<twopi)                     << 
102   {                                            << 
103     distChord=GetRadHelix()*(1+std::cos(0.5*(t << 
104   }                                            << 
105   else                                         << 
106   {                                            << 
107     distChord=2.*GetRadHelix();                << 
108   }                                            << 
109                                                << 
110   return distChord;                            << 
111 }                                              << 
112                                                << 
113 void G4HelixExplicitEuler::DumbStepper( const  << 
114                                                << 
115                                                << 
116                                                << 
117 {                                              << 
118    AdvanceHelix(yIn, Bfld, h, yOut);           << 
119 }                                                  36 }  
120                                                    37