Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4CashKarpRKF45 implementation << 26 // >> 27 // $Id: G4CashKarpRKF45.cc,v 1.14 2006/06/29 18:23:29 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-02 $ 27 // 29 // 28 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 meth 30 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth 29 // order method (giving fifth-order accuracy) 31 // order method (giving fifth-order accuracy) for the solution of an ODE. 30 // Two different fourth order estimates are ca 32 // Two different fourth order estimates are calculated; their difference 31 // gives an error estimate. [ref. Numerical Re 33 // gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition] 32 // It is used to integrate the equations of th 34 // It is used to integrate the equations of the motion of a particle 33 // in a magnetic field. 35 // in a magnetic field. 34 // 36 // 35 // [ref. Numerical Recipes in C, 2nd Edition] << 37 // [ref. Numerical Recipes in C, 2nd Edition] 36 // 38 // 37 // Authors: J.Apostolakis, V.Grichine - 30.01. << 38 // ------------------------------------------- 39 // ------------------------------------------------------------------- 39 40 40 #include "G4CashKarpRKF45.hh" 41 #include "G4CashKarpRKF45.hh" 41 #include "G4LineSection.hh" 42 #include "G4LineSection.hh" 42 43 43 ////////////////////////////////////////////// 44 ///////////////////////////////////////////////////////////////////// 44 // 45 // 45 // Constructor 46 // Constructor 46 // << 47 47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfM << 48 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfMotion *EqRhs, G4int numberOfVariables, G4bool primary) 48 G4int noInteg << 49 : G4MagIntegratorStepper(EqRhs, numberOfVariables) 49 G4bool primar << 50 : G4MagIntegratorStepper(EqRhs, noIntegratio << 51 { 50 { 52 const G4int numberOfVariables = << 51 fNumberOfVariables = numberOfVariables ; 53 std::max( noIntegrationVariables, << 52 54 ( ( (noIntegrationVariables-1)/ << 53 ak2 = new G4double[fNumberOfVariables] ; 55 // For better alignment with cache-line << 54 ak3 = new G4double[fNumberOfVariables] ; 56 << 55 ak4 = new G4double[fNumberOfVariables] ; 57 ak2 = new G4double[numberOfVariables] ; << 56 ak5 = new G4double[fNumberOfVariables] ; 58 ak3 = new G4double[numberOfVariables] ; << 57 ak6 = new G4double[fNumberOfVariables] ; 59 ak4 = new G4double[numberOfVariables] ; << 58 ak7 = 0; 60 ak5 = new G4double[numberOfVariables] ; << 59 yTemp = new G4double[fNumberOfVariables] ; 61 ak6 = new G4double[numberOfVariables] ; << 60 yIn = new G4double[fNumberOfVariables] ; 62 // ak7 = 0; << 61 63 << 62 fLastInitialVector = new G4double[fNumberOfVariables] ; 64 // Must ensure space extra 'state' variables << 63 fLastFinalVector = new G4double[fNumberOfVariables] ; 65 const G4int numStateMax = std::max(GetNumbe << 64 fLastDyDx = new G4double[fNumberOfVariables]; 66 const G4int numStateVars = std::max(noIntegr << 65 67 numState << 66 fMidVector = new G4double[fNumberOfVariables]; 68 // GetNumbe << 67 fMidError = new G4double[fNumberOfVariables]; 69 << 68 fAuxStepper = 0; 70 yTemp = new G4double[numStateVars] ; << 69 if( primary ) 71 yIn = new G4double[numStateVars] ; << 70 fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary); 72 << 71 73 fLastInitialVector = new G4double[numStateVa << 74 fLastFinalVector = new G4double[numStateVars << 75 fLastDyDx = new G4double[numberOfVariables]; << 76 << 77 fMidVector = new G4double[numStateVars]; << 78 fMidError = new G4double[numStateVars]; << 79 if( primary ) << 80 { << 81 fAuxStepper = new G4CashKarpRKF45(EqRhs, n << 82 } << 83 } 72 } 84 73 85 ////////////////////////////////////////////// 74 ///////////////////////////////////////////////////////////////////// 86 // 75 // 87 // Destructor 76 // Destructor 88 // << 77 89 G4CashKarpRKF45::~G4CashKarpRKF45() 78 G4CashKarpRKF45::~G4CashKarpRKF45() 90 { 79 { 91 delete [] ak2; << 80 delete[] ak2; 92 delete [] ak3; << 81 delete[] ak3; 93 delete [] ak4; << 82 delete[] ak4; 94 delete [] ak5; << 83 delete[] ak5; 95 delete [] ak6; << 84 delete[] ak6; 96 // delete [] ak7; << 85 // delete[] ak7; 97 delete [] yTemp; << 86 delete[] yTemp; 98 delete [] yIn; << 87 delete[] yIn; 99 << 88 100 delete [] fLastInitialVector; << 89 delete[] fLastInitialVector; 101 delete [] fLastFinalVector; << 90 delete[] fLastFinalVector; 102 delete [] fLastDyDx; << 91 delete[] fLastDyDx; 103 delete [] fMidVector; << 92 delete[] fMidVector; 104 delete [] fMidError; << 93 delete[] fMidError; 105 94 106 delete fAuxStepper; 95 delete fAuxStepper; 107 } 96 } 108 97 109 ////////////////////////////////////////////// 98 ////////////////////////////////////////////////////////////////////// 110 // 99 // 111 // Given values for n = 6 variables yIn[0,..., 100 // Given values for n = 6 variables yIn[0,...,n-1] 112 // known at x, use the fifth-order Cash-Karp 101 // known at x, use the fifth-order Cash-Karp Runge- 113 // Kutta-Fehlberg-4-5 method to advance the so 102 // Kutta-Fehlberg-4-5 method to advance the solution over an interval 114 // Step and return the incremented variables a 103 // Step and return the incremented variables as yOut[0,...,n-1]. Also 115 // return an estimate of the local truncation 104 // return an estimate of the local truncation error yErr[] using the 116 // embedded 4th-order method. The user supplie 105 // embedded 4th-order method. The user supplies routine 117 // RightHandSide(y,dydx), which returns deriva 106 // RightHandSide(y,dydx), which returns derivatives dydx for y . 118 // << 107 119 void 108 void 120 G4CashKarpRKF45::Stepper(const G4double yInput 109 G4CashKarpRKF45::Stepper(const G4double yInput[], 121 const G4double dydx[] 110 const G4double dydx[], 122 G4double Step, 111 G4double Step, 123 G4double yOut[] 112 G4double yOut[], 124 G4double yErr[] 113 G4double yErr[]) 125 { 114 { 126 // const G4int nvar = 6 ; 115 // const G4int nvar = 6 ; 127 // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 116 // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875; 128 G4int i; << 117 G4int i; 129 118 130 const G4double b21 = 0.2 , << 119 const G4double b21 = 0.2 , 131 b31 = 3.0/40.0 , b32 = 9.0/4 << 120 b31 = 3.0/40.0 , b32 = 9.0/40.0 , 132 b41 = 0.3 , b42 = -0.9 , b43 << 121 b41 = 0.3 , b42 = -0.9 , b43 = 1.2 , 133 122 134 b51 = -11.0/54.0 , b52 = 2.5 << 123 b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 , 135 b54 = 35.0/27.0 , << 124 b54 = 35.0/27.0 , 136 125 137 b61 = 1631.0/55296.0 , b62 = << 126 b61 = 1631.0/55296.0 , b62 = 175.0/512.0 , 138 b63 = 575.0/13824.0 , b64 = << 127 b63 = 575.0/13824.0 , b64 = 44275.0/110592.0 , 139 b65 = 253.0/4096.0 , << 128 b65 = 253.0/4096.0 , 140 129 141 c1 = 37.0/378.0 , c3 = 250.0 << 130 c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 , 142 c6 = 512.0/1771.0 , dc5 = -2 << 131 c6 = 512.0/1771.0 , >> 132 dc5 = -277.0/14336.0 ; 143 133 144 const G4double dc1 = c1 - 2825.0/27648.0 , << 134 const G4double dc1 = c1 - 2825.0/27648.0 , dc3 = c3 - 18575.0/48384.0 , 145 dc4 = c4 - 13525.0/55296.0 , << 135 dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ; 146 136 147 // Initialise time to t0, needed when it is << 148 // [ Note: Only for time dependent fi << 149 // is it neccessary to inte << 150 yOut[7] = yTemp[7] = yIn[7] = yInput[7]; << 151 137 152 const G4int numberOfVariables= this->GetNumb << 138 // Saving yInput because yInput and yOut can be aliases for same array 153 // The number of variables to be integrate << 154 139 155 // Saving yInput because yInput and yOut ca << 140 for(i=0;i<fNumberOfVariables;i++) >> 141 { >> 142 yIn[i]=yInput[i]; >> 143 } >> 144 // RightHandSide(yIn, dydx) ; // 1st Step 156 145 157 for(i=0; i<numberOfVariables; ++i) << 146 for(i=0;i<fNumberOfVariables;i++) 158 { << 147 { 159 yIn[i]=yInput[i]; << 148 yTemp[i] = yIn[i] + b21*Step*dydx[i] ; 160 } << 149 } 161 // RightHandSide(yIn, dydx) ; // << 150 RightHandSide(yTemp, ak2) ; // 2nd Step 162 << 163 for(i=0; i<numberOfVariables; ++i) << 164 { << 165 yTemp[i] = yIn[i] + b21*Step*dydx[i] ; << 166 } << 167 RightHandSide(yTemp, ak2) ; // << 168 151 169 for(i=0; i<numberOfVariables; ++i) << 152 for(i=0;i<fNumberOfVariables;i++) 170 { << 153 { 171 yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b3 154 yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ; 172 } << 155 } 173 RightHandSide(yTemp, ak3) ; // << 156 RightHandSide(yTemp, ak3) ; // 3rd Step 174 157 175 for(i=0; i<numberOfVariables; ++i) << 158 for(i=0;i<fNumberOfVariables;i++) 176 { << 159 { 177 yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b4 160 yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ; 178 } << 161 } 179 RightHandSide(yTemp, ak4) ; // << 162 RightHandSide(yTemp, ak4) ; // 4th Step 180 163 181 for(i=0; i<numberOfVariables; ++i) << 164 for(i=0;i<fNumberOfVariables;i++) 182 { << 165 { 183 yTemp[i] = yIn[i] + Step*(b51*dydx[i] << 166 yTemp[i] = yIn[i] + Step*(b51*dydx[i] + b52*ak2[i] + b53*ak3[i] + 184 + b52*ak2[i] + b53*ak3[i << 167 b54*ak4[i]) ; 185 } << 168 } 186 RightHandSide(yTemp, ak5) ; // << 169 RightHandSide(yTemp, ak5) ; // 5th Step 187 << 170 188 for(i=0; i<numberOfVariables; ++i) << 171 for(i=0;i<fNumberOfVariables;i++) 189 { << 172 { 190 yTemp[i] = yIn[i] + Step*(b61*dydx[i] << 173 yTemp[i] = yIn[i] + Step*(b61*dydx[i] + b62*ak2[i] + b63*ak3[i] + 191 + b62*ak2[i] + b63*ak3[i << 174 b64*ak4[i] + b65*ak5[i]) ; 192 } << 175 } 193 RightHandSide(yTemp, ak6) ; // << 176 RightHandSide(yTemp, ak6) ; // 6th Step 194 177 195 for(i=0; i<numberOfVariables; ++i) << 178 for(i=0;i<fNumberOfVariables;i++) 196 { << 179 { 197 // Accumulate increments with proper weigh 180 // Accumulate increments with proper weights 198 // << 181 199 yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*a 182 yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ; 200 183 201 // Estimate error as difference between 4t << 184 // Estimate error as difference between 4th and 202 // << 185 // 5th order methods 203 yErr[i] = Step*(dc1*dydx[i] << 186 204 + dc3*ak3[i] + dc4*ak4[i] + dc5*ak << 187 yErr[i] = Step*(dc1*dydx[i] + dc3*ak3[i] + dc4*ak4[i] + >> 188 dc5*ak5[i] + dc6*ak6[i]) ; 205 189 206 // Store Input and Final values, for possi 190 // Store Input and Final values, for possible use in calculating chord 207 // << 208 fLastInitialVector[i] = yIn[i] ; 191 fLastInitialVector[i] = yIn[i] ; 209 fLastFinalVector[i] = yOut[i]; 192 fLastFinalVector[i] = yOut[i]; 210 fLastDyDx[i] = dydx[i]; 193 fLastDyDx[i] = dydx[i]; 211 } << 194 } 212 // NormaliseTangentVector( yOut ); // Not wa << 195 // NormaliseTangentVector( yOut ); // Not wanted 213 196 214 fLastStepLength = Step; << 197 fLastStepLength =Step; 215 198 216 return; << 199 return ; 217 } 200 } 218 201 219 ////////////////////////////////////////////// 202 /////////////////////////////////////////////////////////////////////////////// 220 // << 203 221 void 204 void 222 G4CashKarpRKF45::StepWithEst( const G4double*, 205 G4CashKarpRKF45::StepWithEst( const G4double*, 223 const G4double*, 206 const G4double*, 224 G4double, 207 G4double, 225 G4double*, 208 G4double*, 226 G4double&, 209 G4double&, 227 G4double&, 210 G4double&, 228 const G4double*, 211 const G4double*, 229 G4double* 212 G4double* ) 230 { 213 { 231 G4Exception("G4CashKarpRKF45::StepWithEst()" << 214 G4Exception("G4CashKarpRKF45::StepWithEst()", "ObsoleteMethod", 232 FatalException, "Method no longe 215 FatalException, "Method no longer used."); 233 return ; 216 return ; 234 } 217 } 235 218 236 ////////////////////////////////////////////// 219 ///////////////////////////////////////////////////////////////// 237 // << 220 238 G4double G4CashKarpRKF45::DistChord() const 221 G4double G4CashKarpRKF45::DistChord() const 239 { 222 { 240 G4double distLine, distChord; 223 G4double distLine, distChord; 241 G4ThreeVector initialPoint, finalPoint, midP 224 G4ThreeVector initialPoint, finalPoint, midPoint; 242 225 243 // Store last initial and final points << 226 // Store last initial and final points (they will be overwritten in self-Stepper call!) 244 // (they will be overwritten in self-Stepper << 245 // << 246 initialPoint = G4ThreeVector( fLastInitialVe 227 initialPoint = G4ThreeVector( fLastInitialVector[0], 247 fLastInitialVe 228 fLastInitialVector[1], fLastInitialVector[2]); 248 finalPoint = G4ThreeVector( fLastFinalVect 229 finalPoint = G4ThreeVector( fLastFinalVector[0], 249 fLastFinalVect 230 fLastFinalVector[1], fLastFinalVector[2]); 250 231 251 // Do half a step using StepNoErr 232 // Do half a step using StepNoErr 252 // << 233 253 fAuxStepper->Stepper( fLastInitialVector, fL << 234 fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength, 254 0.5 * fLastStepLength, << 235 fMidVector, fMidError ); 255 236 256 midPoint = G4ThreeVector( fMidVector[0], fMi 237 midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]); 257 238 258 // Use stored values of Initial and Endpoint 239 // Use stored values of Initial and Endpoint + new Midpoint to evaluate 259 // distance of Chord << 240 // distance of Chord 260 // << 241 >> 242 261 if (initialPoint != finalPoint) 243 if (initialPoint != finalPoint) 262 { 244 { 263 distLine = G4LineSection::Distline( midP 245 distLine = G4LineSection::Distline( midPoint, initialPoint, finalPoint ); 264 distChord = distLine; 246 distChord = distLine; 265 } 247 } 266 else 248 else 267 { 249 { 268 distChord = (midPoint-initialPoint).mag() 250 distChord = (midPoint-initialPoint).mag(); 269 } 251 } 270 return distChord; 252 return distChord; 271 } 253 } >> 254 >> 255 272 256