Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4CashKarpRKF45 implementation << 23 // >> 24 // $Id: G4CashKarpRKF45.cc,v 1.13 2003/10/31 14:35:53 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-06-00-patch-01 $ 27 // 26 // 28 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 meth 27 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth 29 // order method (giving fifth-order accuracy) 28 // order method (giving fifth-order accuracy) for the solution of an ODE. 30 // Two different fourth order estimates are ca 29 // Two different fourth order estimates are calculated; their difference 31 // gives an error estimate. [ref. Numerical Re 30 // gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition] 32 // It is used to integrate the equations of th 31 // It is used to integrate the equations of the motion of a particle 33 // in a magnetic field. 32 // in a magnetic field. 34 // 33 // 35 // [ref. Numerical Recipes in C, 2nd Edition] << 34 // [ref. Numerical Recipes in C, 2nd Edition] 36 // 35 // 37 // Authors: J.Apostolakis, V.Grichine - 30.01. << 38 // ------------------------------------------- 36 // ------------------------------------------------------------------- 39 37 40 #include "G4CashKarpRKF45.hh" 38 #include "G4CashKarpRKF45.hh" 41 #include "G4LineSection.hh" 39 #include "G4LineSection.hh" 42 40 43 ////////////////////////////////////////////// 41 ///////////////////////////////////////////////////////////////////// 44 // 42 // 45 // Constructor 43 // Constructor 46 // << 44 47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfM << 45 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfMotion *EqRhs, G4int numberOfVariables, G4bool primary) 48 G4int noInteg << 46 : G4MagIntegratorStepper(EqRhs, numberOfVariables) 49 G4bool primar << 50 : G4MagIntegratorStepper(EqRhs, noIntegratio << 51 { 47 { 52 const G4int numberOfVariables = << 48 fNumberOfVariables = numberOfVariables ; 53 std::max( noIntegrationVariables, << 49 54 ( ( (noIntegrationVariables-1)/ << 50 ak2 = new G4double[fNumberOfVariables] ; 55 // For better alignment with cache-line << 51 ak3 = new G4double[fNumberOfVariables] ; 56 << 52 ak4 = new G4double[fNumberOfVariables] ; 57 ak2 = new G4double[numberOfVariables] ; << 53 ak5 = new G4double[fNumberOfVariables] ; 58 ak3 = new G4double[numberOfVariables] ; << 54 ak6 = new G4double[fNumberOfVariables] ; 59 ak4 = new G4double[numberOfVariables] ; << 55 ak7 = 0; 60 ak5 = new G4double[numberOfVariables] ; << 56 yTemp = new G4double[fNumberOfVariables] ; 61 ak6 = new G4double[numberOfVariables] ; << 57 yIn = new G4double[fNumberOfVariables] ; 62 // ak7 = 0; << 58 63 << 59 fLastInitialVector = new G4double[fNumberOfVariables] ; 64 // Must ensure space extra 'state' variables << 60 fLastFinalVector = new G4double[fNumberOfVariables] ; 65 const G4int numStateMax = std::max(GetNumbe << 61 fLastDyDx = new G4double[fNumberOfVariables]; 66 const G4int numStateVars = std::max(noIntegr << 62 67 numState << 63 fMidVector = new G4double[fNumberOfVariables]; 68 // GetNumbe << 64 fMidError = new G4double[fNumberOfVariables]; 69 << 65 fAuxStepper = 0; 70 yTemp = new G4double[numStateVars] ; << 66 if( primary ) 71 yIn = new G4double[numStateVars] ; << 67 fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary); 72 << 68 73 fLastInitialVector = new G4double[numStateVa << 74 fLastFinalVector = new G4double[numStateVars << 75 fLastDyDx = new G4double[numberOfVariables]; << 76 << 77 fMidVector = new G4double[numStateVars]; << 78 fMidError = new G4double[numStateVars]; << 79 if( primary ) << 80 { << 81 fAuxStepper = new G4CashKarpRKF45(EqRhs, n << 82 } << 83 } 69 } 84 70 85 ////////////////////////////////////////////// 71 ///////////////////////////////////////////////////////////////////// 86 // 72 // 87 // Destructor 73 // Destructor 88 // << 74 89 G4CashKarpRKF45::~G4CashKarpRKF45() 75 G4CashKarpRKF45::~G4CashKarpRKF45() 90 { 76 { 91 delete [] ak2; << 77 delete[] ak2; 92 delete [] ak3; << 78 delete[] ak3; 93 delete [] ak4; << 79 delete[] ak4; 94 delete [] ak5; << 80 delete[] ak5; 95 delete [] ak6; << 81 delete[] ak6; 96 // delete [] ak7; << 82 // delete[] ak7; 97 delete [] yTemp; << 83 delete[] yTemp; 98 delete [] yIn; << 84 delete[] yIn; 99 << 85 100 delete [] fLastInitialVector; << 86 delete[] fLastInitialVector; 101 delete [] fLastFinalVector; << 87 delete[] fLastFinalVector; 102 delete [] fLastDyDx; << 88 delete[] fLastDyDx; 103 delete [] fMidVector; << 89 delete[] fMidVector; 104 delete [] fMidError; << 90 delete[] fMidError; 105 91 106 delete fAuxStepper; 92 delete fAuxStepper; 107 } 93 } 108 94 109 ////////////////////////////////////////////// 95 ////////////////////////////////////////////////////////////////////// 110 // 96 // 111 // Given values for n = 6 variables yIn[0,..., 97 // Given values for n = 6 variables yIn[0,...,n-1] 112 // known at x, use the fifth-order Cash-Karp 98 // known at x, use the fifth-order Cash-Karp Runge- 113 // Kutta-Fehlberg-4-5 method to advance the so 99 // Kutta-Fehlberg-4-5 method to advance the solution over an interval 114 // Step and return the incremented variables a 100 // Step and return the incremented variables as yOut[0,...,n-1]. Also 115 // return an estimate of the local truncation 101 // return an estimate of the local truncation error yErr[] using the 116 // embedded 4th-order method. The user supplie 102 // embedded 4th-order method. The user supplies routine 117 // RightHandSide(y,dydx), which returns deriva 103 // RightHandSide(y,dydx), which returns derivatives dydx for y . 118 // << 104 119 void 105 void 120 G4CashKarpRKF45::Stepper(const G4double yInput 106 G4CashKarpRKF45::Stepper(const G4double yInput[], 121 const G4double dydx[] 107 const G4double dydx[], 122 G4double Step, 108 G4double Step, 123 G4double yOut[] 109 G4double yOut[], 124 G4double yErr[] 110 G4double yErr[]) 125 { 111 { 126 // const G4int nvar = 6 ; 112 // const G4int nvar = 6 ; 127 // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 113 // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875; 128 G4int i; << 114 G4int i; 129 115 130 const G4double b21 = 0.2 , << 116 const G4double b21 = 0.2 , 131 b31 = 3.0/40.0 , b32 = 9.0/4 << 117 b31 = 3.0/40.0 , b32 = 9.0/40.0 , 132 b41 = 0.3 , b42 = -0.9 , b43 << 118 b41 = 0.3 , b42 = -0.9 , b43 = 1.2 , 133 119 134 b51 = -11.0/54.0 , b52 = 2.5 << 120 b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 , 135 b54 = 35.0/27.0 , << 121 b54 = 35.0/27.0 , 136 122 137 b61 = 1631.0/55296.0 , b62 = << 123 b61 = 1631.0/55296.0 , b62 = 175.0/512.0 , 138 b63 = 575.0/13824.0 , b64 = << 124 b63 = 575.0/13824.0 , b64 = 44275.0/110592.0 , 139 b65 = 253.0/4096.0 , << 125 b65 = 253.0/4096.0 , 140 126 141 c1 = 37.0/378.0 , c3 = 250.0 << 127 c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 , 142 c6 = 512.0/1771.0 , dc5 = -2 << 128 c6 = 512.0/1771.0 , >> 129 dc5 = -277.0/14336.0 ; 143 130 144 const G4double dc1 = c1 - 2825.0/27648.0 , << 131 const G4double dc1 = c1 - 2825.0/27648.0 , dc3 = c3 - 18575.0/48384.0 , 145 dc4 = c4 - 13525.0/55296.0 , << 132 dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ; 146 133 147 // Initialise time to t0, needed when it is << 148 // [ Note: Only for time dependent fi << 149 // is it neccessary to inte << 150 yOut[7] = yTemp[7] = yIn[7] = yInput[7]; << 151 134 152 const G4int numberOfVariables= this->GetNumb << 135 // Saving yInput because yInput and yOut can be aliases for same array 153 // The number of variables to be integrate << 154 136 155 // Saving yInput because yInput and yOut ca << 137 for(i=0;i<fNumberOfVariables;i++) >> 138 { >> 139 yIn[i]=yInput[i]; >> 140 } >> 141 // RightHandSide(yIn, dydx) ; // 1st Step 156 142 157 for(i=0; i<numberOfVariables; ++i) << 143 for(i=0;i<fNumberOfVariables;i++) 158 { << 144 { 159 yIn[i]=yInput[i]; << 145 yTemp[i] = yIn[i] + b21*Step*dydx[i] ; 160 } << 146 } 161 // RightHandSide(yIn, dydx) ; // << 147 RightHandSide(yTemp, ak2) ; // 2nd Step 162 << 163 for(i=0; i<numberOfVariables; ++i) << 164 { << 165 yTemp[i] = yIn[i] + b21*Step*dydx[i] ; << 166 } << 167 RightHandSide(yTemp, ak2) ; // << 168 148 169 for(i=0; i<numberOfVariables; ++i) << 149 for(i=0;i<fNumberOfVariables;i++) 170 { << 150 { 171 yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b3 151 yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ; 172 } << 152 } 173 RightHandSide(yTemp, ak3) ; // << 153 RightHandSide(yTemp, ak3) ; // 3rd Step 174 154 175 for(i=0; i<numberOfVariables; ++i) << 155 for(i=0;i<fNumberOfVariables;i++) 176 { << 156 { 177 yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b4 157 yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ; 178 } << 158 } 179 RightHandSide(yTemp, ak4) ; // << 159 RightHandSide(yTemp, ak4) ; // 4th Step 180 160 181 for(i=0; i<numberOfVariables; ++i) << 161 for(i=0;i<fNumberOfVariables;i++) 182 { << 162 { 183 yTemp[i] = yIn[i] + Step*(b51*dydx[i] << 163 yTemp[i] = yIn[i] + Step*(b51*dydx[i] + b52*ak2[i] + b53*ak3[i] + 184 + b52*ak2[i] + b53*ak3[i << 164 b54*ak4[i]) ; 185 } << 165 } 186 RightHandSide(yTemp, ak5) ; // << 166 RightHandSide(yTemp, ak5) ; // 5th Step 187 << 167 188 for(i=0; i<numberOfVariables; ++i) << 168 for(i=0;i<fNumberOfVariables;i++) 189 { << 169 { 190 yTemp[i] = yIn[i] + Step*(b61*dydx[i] << 170 yTemp[i] = yIn[i] + Step*(b61*dydx[i] + b62*ak2[i] + b63*ak3[i] + 191 + b62*ak2[i] + b63*ak3[i << 171 b64*ak4[i] + b65*ak5[i]) ; 192 } << 172 } 193 RightHandSide(yTemp, ak6) ; // << 173 RightHandSide(yTemp, ak6) ; // 6th Step 194 174 195 for(i=0; i<numberOfVariables; ++i) << 175 for(i=0;i<fNumberOfVariables;i++) 196 { << 176 { 197 // Accumulate increments with proper weigh 177 // Accumulate increments with proper weights 198 // << 178 199 yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*a 179 yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ; 200 180 201 // Estimate error as difference between 4t << 181 // Estimate error as difference between 4th and 202 // << 182 // 5th order methods 203 yErr[i] = Step*(dc1*dydx[i] << 183 204 + dc3*ak3[i] + dc4*ak4[i] + dc5*ak << 184 yErr[i] = Step*(dc1*dydx[i] + dc3*ak3[i] + dc4*ak4[i] + >> 185 dc5*ak5[i] + dc6*ak6[i]) ; 205 186 206 // Store Input and Final values, for possi 187 // Store Input and Final values, for possible use in calculating chord 207 // << 208 fLastInitialVector[i] = yIn[i] ; 188 fLastInitialVector[i] = yIn[i] ; 209 fLastFinalVector[i] = yOut[i]; 189 fLastFinalVector[i] = yOut[i]; 210 fLastDyDx[i] = dydx[i]; 190 fLastDyDx[i] = dydx[i]; 211 } << 191 } 212 // NormaliseTangentVector( yOut ); // Not wa << 192 // NormaliseTangentVector( yOut ); // Not wanted 213 193 214 fLastStepLength = Step; << 194 fLastStepLength =Step; 215 195 216 return; << 196 return ; 217 } 197 } 218 198 219 ////////////////////////////////////////////// 199 /////////////////////////////////////////////////////////////////////////////// 220 // << 200 221 void 201 void 222 G4CashKarpRKF45::StepWithEst( const G4double*, 202 G4CashKarpRKF45::StepWithEst( const G4double*, 223 const G4double*, 203 const G4double*, 224 G4double, 204 G4double, 225 G4double*, 205 G4double*, 226 G4double&, 206 G4double&, 227 G4double&, 207 G4double&, 228 const G4double*, 208 const G4double*, 229 G4double* 209 G4double* ) 230 { 210 { 231 G4Exception("G4CashKarpRKF45::StepWithEst()" << 211 G4Exception("G4CashKarpRKF45::StepWithEst()", "ObsoleteMethod", 232 FatalException, "Method no longe 212 FatalException, "Method no longer used."); 233 return ; 213 return ; 234 } 214 } 235 215 236 ////////////////////////////////////////////// 216 ///////////////////////////////////////////////////////////////// 237 // << 217 238 G4double G4CashKarpRKF45::DistChord() const 218 G4double G4CashKarpRKF45::DistChord() const 239 { 219 { 240 G4double distLine, distChord; 220 G4double distLine, distChord; 241 G4ThreeVector initialPoint, finalPoint, midP 221 G4ThreeVector initialPoint, finalPoint, midPoint; 242 222 243 // Store last initial and final points << 223 // Store last initial and final points (they will be overwritten in self-Stepper call!) 244 // (they will be overwritten in self-Stepper << 245 // << 246 initialPoint = G4ThreeVector( fLastInitialVe 224 initialPoint = G4ThreeVector( fLastInitialVector[0], 247 fLastInitialVe 225 fLastInitialVector[1], fLastInitialVector[2]); 248 finalPoint = G4ThreeVector( fLastFinalVect 226 finalPoint = G4ThreeVector( fLastFinalVector[0], 249 fLastFinalVect 227 fLastFinalVector[1], fLastFinalVector[2]); 250 228 251 // Do half a step using StepNoErr 229 // Do half a step using StepNoErr 252 // << 230 253 fAuxStepper->Stepper( fLastInitialVector, fL << 231 fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength, 254 0.5 * fLastStepLength, << 232 fMidVector, fMidError ); 255 233 256 midPoint = G4ThreeVector( fMidVector[0], fMi 234 midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]); 257 235 258 // Use stored values of Initial and Endpoint 236 // Use stored values of Initial and Endpoint + new Midpoint to evaluate 259 // distance of Chord << 237 // distance of Chord 260 // << 238 >> 239 261 if (initialPoint != finalPoint) 240 if (initialPoint != finalPoint) 262 { 241 { 263 distLine = G4LineSection::Distline( midP 242 distLine = G4LineSection::Distline( midPoint, initialPoint, finalPoint ); 264 distChord = distLine; 243 distChord = distLine; 265 } 244 } 266 else 245 else 267 { 246 { 268 distChord = (midPoint-initialPoint).mag() 247 distChord = (midPoint-initialPoint).mag(); 269 } 248 } 270 return distChord; 249 return distChord; 271 } 250 } >> 251 >> 252 272 253