Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4CashKarpRKF45.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4CashKarpRKF45.cc (Version 11.3.0) and /geometry/magneticfield/src/G4CashKarpRKF45.cc (Version 10.3.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4CashKarpRKF45 implementation              <<  26 //
                                                   >>  27 // $Id: G4CashKarpRKF45.cc 97598 2016-06-06 07:19:46Z gcosmo $
 27 //                                                 28 //
 28 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 meth     29 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth
 29 // order method (giving fifth-order accuracy)      30 // order method (giving fifth-order accuracy) for the solution of an ODE.
 30 // Two different fourth order estimates are ca     31 // Two different fourth order estimates are calculated; their difference
 31 // gives an error estimate. [ref. Numerical Re     32 // gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition]
 32 // It is used to integrate the equations of th     33 // It is used to integrate the equations of the motion of a particle 
 33 // in a magnetic field.                            34 // in a magnetic field.
 34 //                                                 35 //
 35 // [ref. Numerical Recipes in C, 2nd Edition]  <<  36 //  [ref. Numerical Recipes in C, 2nd Edition]
 36 //                                                 37 //
 37 // Authors: J.Apostolakis, V.Grichine - 30.01. << 
 38 // -------------------------------------------     38 // -------------------------------------------------------------------
 39                                                    39 
 40 #include "G4CashKarpRKF45.hh"                      40 #include "G4CashKarpRKF45.hh"
 41 #include "G4LineSection.hh"                        41 #include "G4LineSection.hh"
 42                                                    42 
 43 //////////////////////////////////////////////     43 /////////////////////////////////////////////////////////////////////
 44 //                                                 44 //
 45 // Constructor                                     45 // Constructor
 46 //                                             <<  46 
 47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfM     47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfMotion *EqRhs, 
 48                                  G4int noInteg <<  48          G4int noIntegrationVariables, 
 49                                  G4bool primar <<  49          G4bool primary)
 50   : G4MagIntegratorStepper(EqRhs, noIntegratio <<  50   : G4MagIntegratorStepper(EqRhs, noIntegrationVariables),
                                                   >>  51     fLastStepLength(0.), fAuxStepper(0)
 51 {                                                  52 {
 52   const G4int numberOfVariables =                  53   const G4int numberOfVariables =
 53       std::max( noIntegrationVariables,            54       std::max( noIntegrationVariables,
 54                ( ( (noIntegrationVariables-1)/     55                ( ( (noIntegrationVariables-1)/4 + 1 ) * 4 ) );
 55   // For better alignment with cache-line          56   // For better alignment with cache-line
 56                                                    57   
 57   ak2 = new G4double[numberOfVariables] ;          58   ak2 = new G4double[numberOfVariables] ;
 58   ak3 = new G4double[numberOfVariables] ;          59   ak3 = new G4double[numberOfVariables] ;
 59   ak4 = new G4double[numberOfVariables] ;          60   ak4 = new G4double[numberOfVariables] ;
 60   ak5 = new G4double[numberOfVariables] ;          61   ak5 = new G4double[numberOfVariables] ;
 61   ak6 = new G4double[numberOfVariables] ;          62   ak6 = new G4double[numberOfVariables] ;
 62   // ak7 = 0;                                      63   // ak7 = 0;
 63                                                    64 
 64   // Must ensure space extra 'state' variables     65   // Must ensure space extra 'state' variables exists - i.e. yIn[7]
 65   const G4int numStateMax  = std::max(GetNumbe     66   const G4int numStateMax  = std::max(GetNumberOfStateVariables(), 8);  
 66   const G4int numStateVars = std::max(noIntegr     67   const G4int numStateVars = std::max(noIntegrationVariables,
 67                                       numState     68                                       numStateMax );
 68                                    // GetNumbe     69                                    // GetNumberOfStateVariables() ); 
 69                                                    70                                       
 70   yTemp = new G4double[numStateVars] ;             71   yTemp = new G4double[numStateVars] ;
 71   yIn = new G4double[numStateVars] ;               72   yIn = new G4double[numStateVars] ;
 72                                                    73 
 73   fLastInitialVector = new G4double[numStateVa     74   fLastInitialVector = new G4double[numStateVars] ;
 74   fLastFinalVector = new G4double[numStateVars     75   fLastFinalVector = new G4double[numStateVars] ;
 75   fLastDyDx = new G4double[numberOfVariables];     76   fLastDyDx = new G4double[numberOfVariables];
 76                                                    77 
 77   fMidVector = new G4double[numStateVars];         78   fMidVector = new G4double[numStateVars];
 78   fMidError =  new G4double[numStateVars];         79   fMidError =  new G4double[numStateVars];
 79   if( primary )                                    80   if( primary )
 80   {                                                81   { 
 81     fAuxStepper = new G4CashKarpRKF45(EqRhs, n     82     fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary);
 82   }                                                83   }
 83 }                                                  84 }
 84                                                    85 
 85 //////////////////////////////////////////////     86 /////////////////////////////////////////////////////////////////////
 86 //                                                 87 //
 87 // Destructor                                      88 // Destructor
 88 //                                             <<  89 
 89 G4CashKarpRKF45::~G4CashKarpRKF45()                90 G4CashKarpRKF45::~G4CashKarpRKF45()
 90 {                                                  91 {
 91   delete [] ak2;                               <<  92   delete[] ak2;
 92   delete [] ak3;                               <<  93   delete[] ak3;
 93   delete [] ak4;                               <<  94   delete[] ak4;
 94   delete [] ak5;                               <<  95   delete[] ak5;
 95   delete [] ak6;                               <<  96   delete[] ak6;
 96   // delete [] ak7;                            <<  97   // delete[] ak7;
 97   delete [] yTemp;                             <<  98   delete[] yTemp;
 98   delete [] yIn;                               <<  99   delete[] yIn;
 99                                                << 100 
100   delete [] fLastInitialVector;                << 101   delete[] fLastInitialVector;
101   delete [] fLastFinalVector;                  << 102   delete[] fLastFinalVector;
102   delete [] fLastDyDx;                         << 103   delete[] fLastDyDx;
103   delete [] fMidVector;                        << 104   delete[] fMidVector;
104   delete [] fMidError;                         << 105   delete[] fMidError; 
105                                                   106 
106   delete fAuxStepper;                             107   delete fAuxStepper;
107 }                                                 108 }
108                                                   109 
109 //////////////////////////////////////////////    110 //////////////////////////////////////////////////////////////////////
110 //                                                111 //
111 // Given values for n = 6 variables yIn[0,...,    112 // Given values for n = 6 variables yIn[0,...,n-1] 
112 // known  at x, use the fifth-order Cash-Karp     113 // known  at x, use the fifth-order Cash-Karp Runge-
113 // Kutta-Fehlberg-4-5 method to advance the so    114 // Kutta-Fehlberg-4-5 method to advance the solution over an interval
114 // Step and return the incremented variables a    115 // Step and return the incremented variables as yOut[0,...,n-1]. Also
115 // return an estimate of the local truncation     116 // return an estimate of the local truncation error yErr[] using the
116 // embedded 4th-order method. The user supplie    117 // embedded 4th-order method. The user supplies routine
117 // RightHandSide(y,dydx), which returns deriva    118 // RightHandSide(y,dydx), which returns derivatives dydx for y .
118 //                                             << 119 
119 void                                              120 void
120 G4CashKarpRKF45::Stepper(const G4double yInput    121 G4CashKarpRKF45::Stepper(const G4double yInput[],
121                          const G4double dydx[]    122                          const G4double dydx[],
122                                G4double Step,     123                                G4double Step,
123                                G4double yOut[]    124                                G4double yOut[],
124                                G4double yErr[]    125                                G4double yErr[])
125 {                                                 126 {
126   // const G4int nvar = 6 ;                       127   // const G4int nvar = 6 ;
127   // const G4double a2 = 0.2 , a3 = 0.3 , a4 =    128   // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875;
128   G4int i;                                     << 129  G4int i;
129                                                << 
130   const G4double  b21 = 0.2 ,                  << 
131                   b31 = 3.0/40.0 , b32 = 9.0/4 << 
132                   b41 = 0.3 , b42 = -0.9 , b43 << 
133                                                << 
134                   b51 = -11.0/54.0 , b52 = 2.5 << 
135                   b54 = 35.0/27.0 ,            << 
136                                                << 
137                   b61 = 1631.0/55296.0 , b62 = << 
138                   b63 =  575.0/13824.0 , b64 = << 
139                   b65 =  253.0/4096.0 ,        << 
140                                                << 
141                   c1 = 37.0/378.0 , c3 = 250.0 << 
142                   c6 = 512.0/1771.0 , dc5 = -2 << 
143                                                   130 
144   const G4double dc1 = c1 - 2825.0/27648.0 ,   << 131  const G4double  b21 = 0.2 ,
145                  dc4 = c4 - 13525.0/55296.0 ,  << 132                  b31 = 3.0/40.0 , b32 = 9.0/40.0 ,
                                                   >> 133                  b41 = 0.3 , b42 = -0.9 , b43 = 1.2 ,
                                                   >> 134 
                                                   >> 135                  b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 ,
                                                   >> 136                  b54 = 35.0/27.0 ,
                                                   >> 137 
                                                   >> 138                  b61 = 1631.0/55296.0 , b62 =   175.0/512.0 ,
                                                   >> 139                  b63 =  575.0/13824.0 , b64 = 44275.0/110592.0 ,
                                                   >> 140                  b65 =  253.0/4096.0 ,
                                                   >> 141 
                                                   >> 142                  c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 ,
                                                   >> 143                  c6 = 512.0/1771.0 ,
                                                   >> 144                                           dc5 = -277.0/14336.0 ;
                                                   >> 145 
                                                   >> 146  const G4double dc1 = c1 - 2825.0/27648.0 ,  dc3 = c3 - 18575.0/48384.0 ,
                                                   >> 147     dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ;
                                                   >> 148 
                                                   >> 149  // Initialise time to t0, needed when it is not updated by the integration.
                                                   >> 150  //        [ Note: Only for time dependent fields (usually electric) 
                                                   >> 151  //                  is it neccessary to integrate the time.] 
                                                   >> 152  yOut[7] = yTemp[7]   = yIn[7]; 
                                                   >> 153 
                                                   >> 154  const G4int numberOfVariables= this->GetNumberOfVariables(); 
                                                   >> 155  // The number of variables to be integrated over
                                                   >> 156 
                                                   >> 157    //  Saving yInput because yInput and yOut can be aliases for same array
                                                   >> 158 
                                                   >> 159    for(i=0;i<numberOfVariables;i++) 
                                                   >> 160    {
                                                   >> 161      yIn[i]=yInput[i];
                                                   >> 162    }
                                                   >> 163  // RightHandSide(yIn, dydx) ;              // 1st Step
                                                   >> 164 
                                                   >> 165  for(i=0;i<numberOfVariables;i++) 
                                                   >> 166  {
                                                   >> 167    yTemp[i] = yIn[i] + b21*Step*dydx[i] ;
                                                   >> 168  }
                                                   >> 169  RightHandSide(yTemp, ak2) ;              // 2nd Step
146                                                   170 
147   // Initialise time to t0, needed when it is  << 171  for(i=0;i<numberOfVariables;i++)
148   //        [ Note: Only for time dependent fi << 172  {
149   //                  is it neccessary to inte << 
150   yOut[7] = yTemp[7] = yIn[7] = yInput[7];     << 
151                                                << 
152   const G4int numberOfVariables= this->GetNumb << 
153     // The number of variables to be integrate << 
154                                                << 
155   //  Saving yInput because yInput and yOut ca << 
156                                                << 
157   for(i=0; i<numberOfVariables; ++i)           << 
158   {                                            << 
159     yIn[i]=yInput[i];                          << 
160   }                                            << 
161   // RightHandSide(yIn, dydx) ;            //  << 
162                                                << 
163   for(i=0; i<numberOfVariables; ++i)           << 
164   {                                            << 
165     yTemp[i] = yIn[i] + b21*Step*dydx[i] ;     << 
166   }                                            << 
167   RightHandSide(yTemp, ak2) ;              //  << 
168                                                << 
169   for(i=0; i<numberOfVariables; ++i)           << 
170   {                                            << 
171     yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b3    173     yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ;
172   }                                            << 174  }
173   RightHandSide(yTemp, ak3) ;              //  << 175  RightHandSide(yTemp, ak3) ;              // 3rd Step
174                                                   176 
175   for(i=0; i<numberOfVariables; ++i)           << 177  for(i=0;i<numberOfVariables;i++)
176   {                                            << 178  {
177     yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b4    179     yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ;
178   }                                            << 180  }
179   RightHandSide(yTemp, ak4) ;              //  << 181  RightHandSide(yTemp, ak4) ;              // 4th Step
180                                                   182 
181   for(i=0; i<numberOfVariables; ++i)           << 183  for(i=0;i<numberOfVariables;i++)
182   {                                            << 184  {
183     yTemp[i] = yIn[i] + Step*(b51*dydx[i]      << 185     yTemp[i] = yIn[i] + Step*(b51*dydx[i] + b52*ak2[i] + b53*ak3[i] +
184                       + b52*ak2[i] + b53*ak3[i << 186                       b54*ak4[i]) ;
185   }                                            << 187  }
186   RightHandSide(yTemp, ak5) ;              //  << 188  RightHandSide(yTemp, ak5) ;              // 5th Step
                                                   >> 189 
                                                   >> 190  for(i=0;i<numberOfVariables;i++)
                                                   >> 191  {
                                                   >> 192     yTemp[i] = yIn[i] + Step*(b61*dydx[i] + b62*ak2[i] + b63*ak3[i] +
                                                   >> 193                       b64*ak4[i] + b65*ak5[i]) ;
                                                   >> 194  }
                                                   >> 195  RightHandSide(yTemp, ak6) ;              // 6th Step
187                                                   196 
188   for(i=0; i<numberOfVariables; ++i)           << 197  for(i=0;i<numberOfVariables;i++)
189   {                                            << 198  {
190     yTemp[i] = yIn[i] + Step*(b61*dydx[i]      << 
191                       + b62*ak2[i] + b63*ak3[i << 
192   }                                            << 
193   RightHandSide(yTemp, ak6) ;              //  << 
194                                                << 
195   for(i=0; i<numberOfVariables; ++i)           << 
196   {                                            << 
197     // Accumulate increments with proper weigh    199     // Accumulate increments with proper weights
198     //                                         << 200 
199     yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*a    201     yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ;
200                                                   202 
201     // Estimate error as difference between 4t << 203     // Estimate error as difference between 4th and
202     //                                         << 204     // 5th order methods
203     yErr[i] = Step*(dc1*dydx[i]                << 205 
204             + dc3*ak3[i] + dc4*ak4[i] + dc5*ak << 206     yErr[i] = Step*(dc1*dydx[i] + dc3*ak3[i] + dc4*ak4[i] +
                                                   >> 207               dc5*ak5[i] + dc6*ak6[i]) ;
205                                                   208 
206     // Store Input and Final values, for possi    209     // Store Input and Final values, for possible use in calculating chord
207     //                                         << 
208     fLastInitialVector[i] = yIn[i] ;              210     fLastInitialVector[i] = yIn[i] ;
209     fLastFinalVector[i]   = yOut[i];              211     fLastFinalVector[i]   = yOut[i];
210     fLastDyDx[i]          = dydx[i];              212     fLastDyDx[i]          = dydx[i];
211   }                                            << 213  }
212   // NormaliseTangentVector( yOut ); // Not wa << 214  // NormaliseTangentVector( yOut ); // Not wanted
213                                                   215 
214   fLastStepLength = Step;                      << 216  fLastStepLength =Step;
215                                                   217 
216   return;                                      << 218  return ;
217 }                                                 219 } 
218                                                   220 
219 //////////////////////////////////////////////    221 ///////////////////////////////////////////////////////////////////////////////
220 //                                             << 222 
221 void                                              223 void
222 G4CashKarpRKF45::StepWithEst( const G4double*,    224 G4CashKarpRKF45::StepWithEst( const G4double*,
223                               const G4double*,    225                               const G4double*,
224                                     G4double,     226                                     G4double,
225                                     G4double*,    227                                     G4double*,
226                                     G4double&,    228                                     G4double&,
227                                     G4double&,    229                                     G4double&,
228                               const G4double*,    230                               const G4double*,
229                                     G4double*     231                                     G4double*  )    
230 {                                                 232 {
231   G4Exception("G4CashKarpRKF45::StepWithEst()"    233   G4Exception("G4CashKarpRKF45::StepWithEst()", "GeomField0001",
232               FatalException, "Method no longe    234               FatalException, "Method no longer used.");
233   return ;                                        235   return ;
234 }                                                 236 }
235                                                   237 
236 //////////////////////////////////////////////    238 /////////////////////////////////////////////////////////////////
237 //                                             << 239 
238 G4double  G4CashKarpRKF45::DistChord() const      240 G4double  G4CashKarpRKF45::DistChord() const
239 {                                                 241 {
240   G4double distLine, distChord;                   242   G4double distLine, distChord; 
241   G4ThreeVector initialPoint, finalPoint, midP    243   G4ThreeVector initialPoint, finalPoint, midPoint;
242                                                   244 
243   // Store last initial and final points       << 245   // Store last initial and final points (they will be overwritten in self-Stepper call!)
244   // (they will be overwritten in self-Stepper << 
245   //                                           << 
246   initialPoint = G4ThreeVector( fLastInitialVe    246   initialPoint = G4ThreeVector( fLastInitialVector[0], 
247                                 fLastInitialVe    247                                 fLastInitialVector[1], fLastInitialVector[2]); 
248   finalPoint   = G4ThreeVector( fLastFinalVect    248   finalPoint   = G4ThreeVector( fLastFinalVector[0],  
249                                 fLastFinalVect    249                                 fLastFinalVector[1],  fLastFinalVector[2]); 
250                                                   250 
251   // Do half a step using StepNoErr               251   // Do half a step using StepNoErr
252   //                                           << 252 
253   fAuxStepper->Stepper( fLastInitialVector, fL << 253   fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength, 
254                         0.5 * fLastStepLength, << 254            fMidVector,   fMidError );
255                                                   255 
256   midPoint = G4ThreeVector( fMidVector[0], fMi    256   midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);       
257                                                   257 
258   // Use stored values of Initial and Endpoint    258   // Use stored values of Initial and Endpoint + new Midpoint to evaluate
259   // distance of Chord                         << 259   //  distance of Chord
260   //                                           << 260 
                                                   >> 261 
261   if (initialPoint != finalPoint)                 262   if (initialPoint != finalPoint) 
262   {                                               263   {
263      distLine  = G4LineSection::Distline( midP    264      distLine  = G4LineSection::Distline( midPoint, initialPoint, finalPoint );
264      distChord = distLine;                        265      distChord = distLine;
265   }                                               266   }
266   else                                            267   else
267   {                                               268   {
268      distChord = (midPoint-initialPoint).mag()    269      distChord = (midPoint-initialPoint).mag();
269   }                                               270   }
270   return distChord;                               271   return distChord;
271 }                                                 272 }
                                                   >> 273 
                                                   >> 274 
272                                                   275