Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4CashKarpRKF45.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4CashKarpRKF45.cc (Version 11.3.0) and /geometry/magneticfield/src/G4CashKarpRKF45.cc (Version 10.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4CashKarpRKF45 implementation              <<  26 //
                                                   >>  27 // $Id: G4CashKarpRKF45.cc 66356 2012-12-18 09:02:32Z gcosmo $
 27 //                                                 28 //
 28 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 meth     29 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth
 29 // order method (giving fifth-order accuracy)      30 // order method (giving fifth-order accuracy) for the solution of an ODE.
 30 // Two different fourth order estimates are ca     31 // Two different fourth order estimates are calculated; their difference
 31 // gives an error estimate. [ref. Numerical Re     32 // gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition]
 32 // It is used to integrate the equations of th     33 // It is used to integrate the equations of the motion of a particle 
 33 // in a magnetic field.                            34 // in a magnetic field.
 34 //                                                 35 //
 35 // [ref. Numerical Recipes in C, 2nd Edition]  <<  36 //  [ref. Numerical Recipes in C, 2nd Edition]
 36 //                                                 37 //
 37 // Authors: J.Apostolakis, V.Grichine - 30.01. << 
 38 // -------------------------------------------     38 // -------------------------------------------------------------------
 39                                                    39 
 40 #include "G4CashKarpRKF45.hh"                      40 #include "G4CashKarpRKF45.hh"
 41 #include "G4LineSection.hh"                        41 #include "G4LineSection.hh"
 42                                                    42 
 43 //////////////////////////////////////////////     43 /////////////////////////////////////////////////////////////////////
 44 //                                                 44 //
 45 // Constructor                                     45 // Constructor
 46 //                                             <<  46 
 47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfM     47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfMotion *EqRhs, 
 48                                  G4int noInteg <<  48          G4int noIntegrationVariables, 
 49                                  G4bool primar <<  49          G4bool primary)
 50   : G4MagIntegratorStepper(EqRhs, noIntegratio <<  50   : G4MagIntegratorStepper(EqRhs, noIntegrationVariables),
                                                   >>  51     fLastStepLength(0.), fAuxStepper(0)
 51 {                                                  52 {
 52   const G4int numberOfVariables =              <<  53   const G4int numberOfVariables = noIntegrationVariables;
 53       std::max( noIntegrationVariables,        << 
 54                ( ( (noIntegrationVariables-1)/ << 
 55   // For better alignment with cache-line      << 
 56                                                << 
 57   ak2 = new G4double[numberOfVariables] ;      << 
 58   ak3 = new G4double[numberOfVariables] ;      << 
 59   ak4 = new G4double[numberOfVariables] ;      << 
 60   ak5 = new G4double[numberOfVariables] ;      << 
 61   ak6 = new G4double[numberOfVariables] ;      << 
 62   // ak7 = 0;                                  << 
 63                                                << 
 64   // Must ensure space extra 'state' variables << 
 65   const G4int numStateMax  = std::max(GetNumbe << 
 66   const G4int numStateVars = std::max(noIntegr << 
 67                                       numState << 
 68                                    // GetNumbe << 
 69                                                << 
 70   yTemp = new G4double[numStateVars] ;         << 
 71   yIn = new G4double[numStateVars] ;           << 
 72                                                    54 
 73   fLastInitialVector = new G4double[numStateVa <<  55   ak2 = new G4double[numberOfVariables] ;  
 74   fLastFinalVector = new G4double[numStateVars <<  56   ak3 = new G4double[numberOfVariables] ; 
                                                   >>  57   ak4 = new G4double[numberOfVariables] ; 
                                                   >>  58   ak5 = new G4double[numberOfVariables] ; 
                                                   >>  59   ak6 = new G4double[numberOfVariables] ; 
                                                   >>  60   ak7 = 0;
                                                   >>  61   yTemp = new G4double[numberOfVariables] ; 
                                                   >>  62   yIn = new G4double[numberOfVariables] ;
                                                   >>  63 
                                                   >>  64   fLastInitialVector = new G4double[numberOfVariables] ;
                                                   >>  65   fLastFinalVector = new G4double[numberOfVariables] ;
 75   fLastDyDx = new G4double[numberOfVariables];     66   fLastDyDx = new G4double[numberOfVariables];
 76                                                    67 
 77   fMidVector = new G4double[numStateVars];     <<  68   fMidVector = new G4double[numberOfVariables];
 78   fMidError =  new G4double[numStateVars];     <<  69   fMidError =  new G4double[numberOfVariables];
 79   if( primary )                                    70   if( primary )
 80   {                                                71   { 
 81     fAuxStepper = new G4CashKarpRKF45(EqRhs, n     72     fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary);
 82   }                                                73   }
 83 }                                                  74 }
 84                                                    75 
 85 //////////////////////////////////////////////     76 /////////////////////////////////////////////////////////////////////
 86 //                                                 77 //
 87 // Destructor                                      78 // Destructor
 88 //                                             <<  79 
 89 G4CashKarpRKF45::~G4CashKarpRKF45()                80 G4CashKarpRKF45::~G4CashKarpRKF45()
 90 {                                                  81 {
 91   delete [] ak2;                               <<  82   delete[] ak2;
 92   delete [] ak3;                               <<  83   delete[] ak3;
 93   delete [] ak4;                               <<  84   delete[] ak4;
 94   delete [] ak5;                               <<  85   delete[] ak5;
 95   delete [] ak6;                               <<  86   delete[] ak6;
 96   // delete [] ak7;                            <<  87   // delete[] ak7;
 97   delete [] yTemp;                             <<  88   delete[] yTemp;
 98   delete [] yIn;                               <<  89   delete[] yIn;
 99                                                <<  90 
100   delete [] fLastInitialVector;                <<  91   delete[] fLastInitialVector;
101   delete [] fLastFinalVector;                  <<  92   delete[] fLastFinalVector;
102   delete [] fLastDyDx;                         <<  93   delete[] fLastDyDx;
103   delete [] fMidVector;                        <<  94   delete[] fMidVector;
104   delete [] fMidError;                         <<  95   delete[] fMidError; 
105                                                    96 
106   delete fAuxStepper;                              97   delete fAuxStepper;
107 }                                                  98 }
108                                                    99 
109 //////////////////////////////////////////////    100 //////////////////////////////////////////////////////////////////////
110 //                                                101 //
111 // Given values for n = 6 variables yIn[0,...,    102 // Given values for n = 6 variables yIn[0,...,n-1] 
112 // known  at x, use the fifth-order Cash-Karp     103 // known  at x, use the fifth-order Cash-Karp Runge-
113 // Kutta-Fehlberg-4-5 method to advance the so    104 // Kutta-Fehlberg-4-5 method to advance the solution over an interval
114 // Step and return the incremented variables a    105 // Step and return the incremented variables as yOut[0,...,n-1]. Also
115 // return an estimate of the local truncation     106 // return an estimate of the local truncation error yErr[] using the
116 // embedded 4th-order method. The user supplie    107 // embedded 4th-order method. The user supplies routine
117 // RightHandSide(y,dydx), which returns deriva    108 // RightHandSide(y,dydx), which returns derivatives dydx for y .
118 //                                             << 109 
119 void                                              110 void
120 G4CashKarpRKF45::Stepper(const G4double yInput    111 G4CashKarpRKF45::Stepper(const G4double yInput[],
121                          const G4double dydx[]    112                          const G4double dydx[],
122                                G4double Step,     113                                G4double Step,
123                                G4double yOut[]    114                                G4double yOut[],
124                                G4double yErr[]    115                                G4double yErr[])
125 {                                                 116 {
126   // const G4int nvar = 6 ;                       117   // const G4int nvar = 6 ;
127   // const G4double a2 = 0.2 , a3 = 0.3 , a4 =    118   // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875;
128   G4int i;                                     << 119  G4int i;
129                                                << 
130   const G4double  b21 = 0.2 ,                  << 
131                   b31 = 3.0/40.0 , b32 = 9.0/4 << 
132                   b41 = 0.3 , b42 = -0.9 , b43 << 
133                                                << 
134                   b51 = -11.0/54.0 , b52 = 2.5 << 
135                   b54 = 35.0/27.0 ,            << 
136                                                << 
137                   b61 = 1631.0/55296.0 , b62 = << 
138                   b63 =  575.0/13824.0 , b64 = << 
139                   b65 =  253.0/4096.0 ,        << 
140                                                   120 
141                   c1 = 37.0/378.0 , c3 = 250.0 << 121  const G4double  b21 = 0.2 ,
142                   c6 = 512.0/1771.0 , dc5 = -2 << 122                  b31 = 3.0/40.0 , b32 = 9.0/40.0 ,
                                                   >> 123                  b41 = 0.3 , b42 = -0.9 , b43 = 1.2 ,
                                                   >> 124 
                                                   >> 125                  b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 ,
                                                   >> 126                  b54 = 35.0/27.0 ,
                                                   >> 127 
                                                   >> 128                  b61 = 1631.0/55296.0 , b62 =   175.0/512.0 ,
                                                   >> 129                  b63 =  575.0/13824.0 , b64 = 44275.0/110592.0 ,
                                                   >> 130                  b65 =  253.0/4096.0 ,
                                                   >> 131 
                                                   >> 132                  c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 ,
                                                   >> 133                  c6 = 512.0/1771.0 ,
                                                   >> 134                                           dc5 = -277.0/14336.0 ;
                                                   >> 135 
                                                   >> 136  const G4double dc1 = c1 - 2825.0/27648.0 ,  dc3 = c3 - 18575.0/48384.0 ,
                                                   >> 137     dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ;
                                                   >> 138 
                                                   >> 139  // Initialise time to t0, needed when it is not updated by the integration.
                                                   >> 140  //        [ Note: Only for time dependent fields (usually electric) 
                                                   >> 141  //                  is it neccessary to integrate the time.] 
                                                   >> 142  yOut[7] = yTemp[7]   = yIn[7]; 
                                                   >> 143 
                                                   >> 144  const G4int numberOfVariables= this->GetNumberOfVariables(); 
                                                   >> 145  // The number of variables to be integrated over
                                                   >> 146 
                                                   >> 147    //  Saving yInput because yInput and yOut can be aliases for same array
                                                   >> 148 
                                                   >> 149    for(i=0;i<numberOfVariables;i++) 
                                                   >> 150    {
                                                   >> 151      yIn[i]=yInput[i];
                                                   >> 152    }
                                                   >> 153  // RightHandSide(yIn, dydx) ;              // 1st Step
                                                   >> 154 
                                                   >> 155  for(i=0;i<numberOfVariables;i++) 
                                                   >> 156  {
                                                   >> 157    yTemp[i] = yIn[i] + b21*Step*dydx[i] ;
                                                   >> 158  }
                                                   >> 159  RightHandSide(yTemp, ak2) ;              // 2nd Step
143                                                   160 
144   const G4double dc1 = c1 - 2825.0/27648.0 ,   << 161  for(i=0;i<numberOfVariables;i++)
145                  dc4 = c4 - 13525.0/55296.0 ,  << 162  {
146                                                << 
147   // Initialise time to t0, needed when it is  << 
148   //        [ Note: Only for time dependent fi << 
149   //                  is it neccessary to inte << 
150   yOut[7] = yTemp[7] = yIn[7] = yInput[7];     << 
151                                                << 
152   const G4int numberOfVariables= this->GetNumb << 
153     // The number of variables to be integrate << 
154                                                << 
155   //  Saving yInput because yInput and yOut ca << 
156                                                << 
157   for(i=0; i<numberOfVariables; ++i)           << 
158   {                                            << 
159     yIn[i]=yInput[i];                          << 
160   }                                            << 
161   // RightHandSide(yIn, dydx) ;            //  << 
162                                                << 
163   for(i=0; i<numberOfVariables; ++i)           << 
164   {                                            << 
165     yTemp[i] = yIn[i] + b21*Step*dydx[i] ;     << 
166   }                                            << 
167   RightHandSide(yTemp, ak2) ;              //  << 
168                                                << 
169   for(i=0; i<numberOfVariables; ++i)           << 
170   {                                            << 
171     yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b3    163     yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ;
172   }                                            << 164  }
173   RightHandSide(yTemp, ak3) ;              //  << 165  RightHandSide(yTemp, ak3) ;              // 3rd Step
174                                                   166 
175   for(i=0; i<numberOfVariables; ++i)           << 167  for(i=0;i<numberOfVariables;i++)
176   {                                            << 168  {
177     yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b4    169     yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ;
178   }                                            << 170  }
179   RightHandSide(yTemp, ak4) ;              //  << 171  RightHandSide(yTemp, ak4) ;              // 4th Step
180                                                   172 
181   for(i=0; i<numberOfVariables; ++i)           << 173  for(i=0;i<numberOfVariables;i++)
182   {                                            << 174  {
183     yTemp[i] = yIn[i] + Step*(b51*dydx[i]      << 175     yTemp[i] = yIn[i] + Step*(b51*dydx[i] + b52*ak2[i] + b53*ak3[i] +
184                       + b52*ak2[i] + b53*ak3[i << 176                       b54*ak4[i]) ;
185   }                                            << 177  }
186   RightHandSide(yTemp, ak5) ;              //  << 178  RightHandSide(yTemp, ak5) ;              // 5th Step
                                                   >> 179 
                                                   >> 180  for(i=0;i<numberOfVariables;i++)
                                                   >> 181  {
                                                   >> 182     yTemp[i] = yIn[i] + Step*(b61*dydx[i] + b62*ak2[i] + b63*ak3[i] +
                                                   >> 183                       b64*ak4[i] + b65*ak5[i]) ;
                                                   >> 184  }
                                                   >> 185  RightHandSide(yTemp, ak6) ;              // 6th Step
187                                                   186 
188   for(i=0; i<numberOfVariables; ++i)           << 187  for(i=0;i<numberOfVariables;i++)
189   {                                            << 188  {
190     yTemp[i] = yIn[i] + Step*(b61*dydx[i]      << 
191                       + b62*ak2[i] + b63*ak3[i << 
192   }                                            << 
193   RightHandSide(yTemp, ak6) ;              //  << 
194                                                << 
195   for(i=0; i<numberOfVariables; ++i)           << 
196   {                                            << 
197     // Accumulate increments with proper weigh    189     // Accumulate increments with proper weights
198     //                                         << 190 
199     yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*a    191     yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ;
200                                                   192 
201     // Estimate error as difference between 4t << 193     // Estimate error as difference between 4th and
202     //                                         << 194     // 5th order methods
203     yErr[i] = Step*(dc1*dydx[i]                << 195 
204             + dc3*ak3[i] + dc4*ak4[i] + dc5*ak << 196     yErr[i] = Step*(dc1*dydx[i] + dc3*ak3[i] + dc4*ak4[i] +
                                                   >> 197               dc5*ak5[i] + dc6*ak6[i]) ;
205                                                   198 
206     // Store Input and Final values, for possi    199     // Store Input and Final values, for possible use in calculating chord
207     //                                         << 
208     fLastInitialVector[i] = yIn[i] ;              200     fLastInitialVector[i] = yIn[i] ;
209     fLastFinalVector[i]   = yOut[i];              201     fLastFinalVector[i]   = yOut[i];
210     fLastDyDx[i]          = dydx[i];              202     fLastDyDx[i]          = dydx[i];
211   }                                            << 203  }
212   // NormaliseTangentVector( yOut ); // Not wa << 204  // NormaliseTangentVector( yOut ); // Not wanted
213                                                   205 
214   fLastStepLength = Step;                      << 206  fLastStepLength =Step;
215                                                   207 
216   return;                                      << 208  return ;
217 }                                                 209 } 
218                                                   210 
219 //////////////////////////////////////////////    211 ///////////////////////////////////////////////////////////////////////////////
220 //                                             << 212 
221 void                                              213 void
222 G4CashKarpRKF45::StepWithEst( const G4double*,    214 G4CashKarpRKF45::StepWithEst( const G4double*,
223                               const G4double*,    215                               const G4double*,
224                                     G4double,     216                                     G4double,
225                                     G4double*,    217                                     G4double*,
226                                     G4double&,    218                                     G4double&,
227                                     G4double&,    219                                     G4double&,
228                               const G4double*,    220                               const G4double*,
229                                     G4double*     221                                     G4double*  )    
230 {                                                 222 {
231   G4Exception("G4CashKarpRKF45::StepWithEst()"    223   G4Exception("G4CashKarpRKF45::StepWithEst()", "GeomField0001",
232               FatalException, "Method no longe    224               FatalException, "Method no longer used.");
233   return ;                                        225   return ;
234 }                                                 226 }
235                                                   227 
236 //////////////////////////////////////////////    228 /////////////////////////////////////////////////////////////////
237 //                                             << 229 
238 G4double  G4CashKarpRKF45::DistChord() const      230 G4double  G4CashKarpRKF45::DistChord() const
239 {                                                 231 {
240   G4double distLine, distChord;                   232   G4double distLine, distChord; 
241   G4ThreeVector initialPoint, finalPoint, midP    233   G4ThreeVector initialPoint, finalPoint, midPoint;
242                                                   234 
243   // Store last initial and final points       << 235   // Store last initial and final points (they will be overwritten in self-Stepper call!)
244   // (they will be overwritten in self-Stepper << 
245   //                                           << 
246   initialPoint = G4ThreeVector( fLastInitialVe    236   initialPoint = G4ThreeVector( fLastInitialVector[0], 
247                                 fLastInitialVe    237                                 fLastInitialVector[1], fLastInitialVector[2]); 
248   finalPoint   = G4ThreeVector( fLastFinalVect    238   finalPoint   = G4ThreeVector( fLastFinalVector[0],  
249                                 fLastFinalVect    239                                 fLastFinalVector[1],  fLastFinalVector[2]); 
250                                                   240 
251   // Do half a step using StepNoErr               241   // Do half a step using StepNoErr
252   //                                           << 242 
253   fAuxStepper->Stepper( fLastInitialVector, fL << 243   fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength, 
254                         0.5 * fLastStepLength, << 244            fMidVector,   fMidError );
255                                                   245 
256   midPoint = G4ThreeVector( fMidVector[0], fMi    246   midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);       
257                                                   247 
258   // Use stored values of Initial and Endpoint    248   // Use stored values of Initial and Endpoint + new Midpoint to evaluate
259   // distance of Chord                         << 249   //  distance of Chord
260   //                                           << 250 
                                                   >> 251 
261   if (initialPoint != finalPoint)                 252   if (initialPoint != finalPoint) 
262   {                                               253   {
263      distLine  = G4LineSection::Distline( midP    254      distLine  = G4LineSection::Distline( midPoint, initialPoint, finalPoint );
264      distChord = distLine;                        255      distChord = distLine;
265   }                                               256   }
266   else                                            257   else
267   {                                               258   {
268      distChord = (midPoint-initialPoint).mag()    259      distChord = (midPoint-initialPoint).mag();
269   }                                               260   }
270   return distChord;                               261   return distChord;
271 }                                                 262 }
                                                   >> 263 
                                                   >> 264 
272                                                   265