Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ParameterisationTubs[Rho/Phi/Z] implement << 26 // >> 27 // $Id: G4ParameterisationTubs.cc 66356 2012-12-18 09:02:32Z gcosmo $ >> 28 // >> 29 // class G4ParameterisationTubs Implementation file 27 // 30 // 28 // 26.05.03 - P.Arce, Initial version 31 // 26.05.03 - P.Arce, Initial version 29 // 08.04.04 - I.Hrivnacova, Implemented reflec 32 // 08.04.04 - I.Hrivnacova, Implemented reflection 30 // 21.04.10 - M.Asai, Added gaps 33 // 21.04.10 - M.Asai, Added gaps 31 // ------------------------------------------- 34 // -------------------------------------------------------------------- 32 35 33 #include "G4ParameterisationTubs.hh" 36 #include "G4ParameterisationTubs.hh" 34 37 35 #include <iomanip> 38 #include <iomanip> 36 #include "G4ThreeVector.hh" 39 #include "G4ThreeVector.hh" 37 #include "G4RotationMatrix.hh" 40 #include "G4RotationMatrix.hh" 38 #include "G4VPhysicalVolume.hh" 41 #include "G4VPhysicalVolume.hh" 39 #include "G4LogicalVolume.hh" 42 #include "G4LogicalVolume.hh" 40 #include "G4ReflectedSolid.hh" 43 #include "G4ReflectedSolid.hh" 41 #include "G4Tubs.hh" 44 #include "G4Tubs.hh" 42 45 43 //-------------------------------------------- 46 //-------------------------------------------------------------------------- 44 G4VParameterisationTubs:: 47 G4VParameterisationTubs:: 45 G4VParameterisationTubs( EAxis axis, G4int nDi 48 G4VParameterisationTubs( EAxis axis, G4int nDiv, G4double width, 46 G4double offset, G4VS << 49 G4double offset, G4VSolid* msolid, 47 DivisionType divType << 50 DivisionType divType ) 48 : G4VDivisionParameterisation( axis, nDiv, w << 51 : G4VDivisionParameterisation( axis, nDiv, width, offset, divType, msolid ) 49 { 52 { 50 auto msol = (G4Tubs*)(msolid); << 53 G4Tubs* msol = (G4Tubs*)(msolid); 51 if (msolid->GetEntityType() == "G4ReflectedS 54 if (msolid->GetEntityType() == "G4ReflectedSolid") 52 { 55 { 53 //----- get constituent solid 56 //----- get constituent solid 54 G4VSolid* mConstituentSolid 57 G4VSolid* mConstituentSolid 55 = ((G4ReflectedSolid*)msolid)->GetConst 58 = ((G4ReflectedSolid*)msolid)->GetConstituentMovedSolid(); 56 msol = (G4Tubs*)(mConstituentSolid); 59 msol = (G4Tubs*)(mConstituentSolid); 57 fmotherSolid = msol; 60 fmotherSolid = msol; 58 fReflectedSolid = true; 61 fReflectedSolid = true; 59 } 62 } 60 } 63 } 61 64 62 //-------------------------------------------- 65 //------------------------------------------------------------------------ 63 G4VParameterisationTubs::~G4VParameterisationT << 66 G4VParameterisationTubs::~G4VParameterisationTubs() >> 67 { >> 68 } 64 69 65 //-------------------------------------------- 70 //-------------------------------------------------------------------------- 66 G4ParameterisationTubsRho:: 71 G4ParameterisationTubsRho:: 67 G4ParameterisationTubsRho( EAxis axis, G4int n 72 G4ParameterisationTubsRho( EAxis axis, G4int nDiv, 68 G4double width, G4d 73 G4double width, G4double offset, 69 G4VSolid* msolid, D 74 G4VSolid* msolid, DivisionType divType ) 70 : G4VParameterisationTubs( axis, nDiv, width << 75 : G4VParameterisationTubs( axis, nDiv, width, offset, msolid, divType ) 71 { 76 { 72 CheckParametersValidity(); 77 CheckParametersValidity(); 73 SetType( "DivisionTubsRho" ); 78 SetType( "DivisionTubsRho" ); 74 79 75 auto msol = (G4Tubs*)(fmotherSolid); << 80 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 76 if( divType == DivWIDTH ) 81 if( divType == DivWIDTH ) 77 { 82 { 78 fnDiv = CalculateNDiv( msol->GetOuterRadiu 83 fnDiv = CalculateNDiv( msol->GetOuterRadius() - msol->GetInnerRadius(), 79 width, offset ); 84 width, offset ); 80 } 85 } 81 else if( divType == DivNDIV ) 86 else if( divType == DivNDIV ) 82 { 87 { 83 fwidth = CalculateWidth( msol->GetOuterRad 88 fwidth = CalculateWidth( msol->GetOuterRadius() - msol->GetInnerRadius(), 84 nDiv, offset ); 89 nDiv, offset ); 85 } 90 } 86 91 87 #ifdef G4DIVDEBUG 92 #ifdef G4DIVDEBUG 88 if( verbose >= 1 ) 93 if( verbose >= 1 ) 89 { 94 { 90 G4cout << " G4ParameterisationTubsRho - no 95 G4cout << " G4ParameterisationTubsRho - no divisions " << fnDiv << " = " 91 << nDiv << G4endl 96 << nDiv << G4endl 92 << " Offset " << foffset << " = " < 97 << " Offset " << foffset << " = " << offset << G4endl 93 << " Width " << fwidth << " = " << 98 << " Width " << fwidth << " = " << width << G4endl 94 << " DivType " << divType << G4endl 99 << " DivType " << divType << G4endl; 95 } 100 } 96 #endif 101 #endif 97 } 102 } 98 103 99 //-------------------------------------------- 104 //-------------------------------------------------------------------------- 100 G4ParameterisationTubsRho::~G4Parameterisation << 105 G4ParameterisationTubsRho::~G4ParameterisationTubsRho() >> 106 { >> 107 } 101 108 102 //-------------------------------------------- 109 //------------------------------------------------------------------------ 103 G4double G4ParameterisationTubsRho::GetMaxPara 110 G4double G4ParameterisationTubsRho::GetMaxParameter() const 104 { 111 { 105 auto msol = (G4Tubs*)(fmotherSolid); << 112 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 106 return msol->GetOuterRadius() - msol->GetInn 113 return msol->GetOuterRadius() - msol->GetInnerRadius(); 107 } 114 } 108 115 109 116 110 //-------------------------------------------- 117 //-------------------------------------------------------------------------- 111 void 118 void 112 G4ParameterisationTubsRho:: 119 G4ParameterisationTubsRho:: 113 ComputeTransformation(const G4int, G4VPhysical 120 ComputeTransformation(const G4int, G4VPhysicalVolume* physVol) const 114 { 121 { 115 //----- translation 122 //----- translation 116 G4ThreeVector origin(0.,0.,0.); 123 G4ThreeVector origin(0.,0.,0.); 117 //----- set translation 124 //----- set translation 118 physVol->SetTranslation( origin ); 125 physVol->SetTranslation( origin ); 119 126 120 //----- calculate rotation matrix: unit 127 //----- calculate rotation matrix: unit 121 128 122 #ifdef G4DIVDEBUG 129 #ifdef G4DIVDEBUG 123 if( verbose >= 2 ) 130 if( verbose >= 2 ) 124 { 131 { 125 G4cout << " G4ParameterisationTubsRho " << 132 G4cout << " G4ParameterisationTubsRho " << G4endl 126 << " Offset: " << foffset/CLHEP::de << 133 << " Offset: " << foffset/deg 127 << " - Width: " << fwidth/CLHEP::de << 134 << " - Width: " << fwidth/deg << G4endl; 128 } 135 } 129 #endif 136 #endif 130 137 131 ChangeRotMatrix( physVol ); 138 ChangeRotMatrix( physVol ); 132 139 133 #ifdef G4DIVDEBUG 140 #ifdef G4DIVDEBUG 134 if( verbose >= 2 ) 141 if( verbose >= 2 ) 135 { 142 { 136 G4cout << std::setprecision(8) << " G4Para 143 G4cout << std::setprecision(8) << " G4ParameterisationTubsRho " << G4endl 137 << " Position: " << origin << " - W 144 << " Position: " << origin << " - Width: " << fwidth 138 << " - Axis " << faxis << G4endl; 145 << " - Axis " << faxis << G4endl; 139 } 146 } 140 #endif 147 #endif 141 } 148 } 142 149 143 //-------------------------------------------- 150 //-------------------------------------------------------------------------- 144 void 151 void 145 G4ParameterisationTubsRho:: 152 G4ParameterisationTubsRho:: 146 ComputeDimensions( G4Tubs& tubs, const G4int c 153 ComputeDimensions( G4Tubs& tubs, const G4int copyNo, 147 const G4VPhysicalVolume* ) 154 const G4VPhysicalVolume* ) const 148 { 155 { 149 auto msol = (G4Tubs*)(fmotherSolid); << 156 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 150 157 151 G4double pRMin = msol->GetInnerRadius() + fo << 158 G4double pRMin = msol->GetInnerRadius() + foffset + fwidth * copyNo + fhgap; 152 G4double pRMax = msol->GetInnerRadius() + fo << 159 G4double pRMax = msol->GetInnerRadius() + foffset + fwidth * (copyNo+1) - fhgap; 153 G4double pDz = msol->GetZHalfLength(); 160 G4double pDz = msol->GetZHalfLength(); 154 //- already rotated G4double pSR = foffset 161 //- already rotated G4double pSR = foffset + copyNo*fwidth; 155 G4double pSPhi = msol->GetStartPhiAngle(); 162 G4double pSPhi = msol->GetStartPhiAngle(); 156 G4double pDPhi = msol->GetDeltaPhiAngle();; 163 G4double pDPhi = msol->GetDeltaPhiAngle();; 157 164 158 tubs.SetInnerRadius( pRMin ); 165 tubs.SetInnerRadius( pRMin ); 159 tubs.SetOuterRadius( pRMax ); 166 tubs.SetOuterRadius( pRMax ); 160 tubs.SetZHalfLength( pDz ); 167 tubs.SetZHalfLength( pDz ); 161 tubs.SetStartPhiAngle( pSPhi, false ); 168 tubs.SetStartPhiAngle( pSPhi, false ); 162 tubs.SetDeltaPhiAngle( pDPhi ); 169 tubs.SetDeltaPhiAngle( pDPhi ); 163 170 164 #ifdef G4DIVDEBUG 171 #ifdef G4DIVDEBUG 165 if( verbose >= 2 ) 172 if( verbose >= 2 ) 166 { 173 { 167 G4cout << " G4ParameterisationTubsRho::Com 174 G4cout << " G4ParameterisationTubsRho::ComputeDimensions()" << G4endl 168 << " pRMin: " << pRMin << " - pRMax 175 << " pRMin: " << pRMin << " - pRMax: " << pRMax << G4endl; 169 tubs.DumpInfo(); 176 tubs.DumpInfo(); 170 } 177 } 171 #endif 178 #endif 172 } 179 } 173 180 174 //-------------------------------------------- 181 //-------------------------------------------------------------------------- 175 G4ParameterisationTubsPhi:: 182 G4ParameterisationTubsPhi:: 176 G4ParameterisationTubsPhi( EAxis axis, G4int n 183 G4ParameterisationTubsPhi( EAxis axis, G4int nDiv, 177 G4double width, G4d 184 G4double width, G4double offset, 178 G4VSolid* msolid, D 185 G4VSolid* msolid, DivisionType divType ) 179 : G4VParameterisationTubs( axis, nDiv, width << 186 : G4VParameterisationTubs( axis, nDiv, width, offset, msolid, divType ) 180 { 187 { 181 CheckParametersValidity(); 188 CheckParametersValidity(); 182 SetType( "DivisionTubsPhi" ); 189 SetType( "DivisionTubsPhi" ); 183 190 184 auto msol = (G4Tubs*)(fmotherSolid); << 191 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 185 if( divType == DivWIDTH ) 192 if( divType == DivWIDTH ) 186 { 193 { 187 fnDiv = CalculateNDiv( msol->GetDeltaPhiAn 194 fnDiv = CalculateNDiv( msol->GetDeltaPhiAngle(), width, offset ); 188 } 195 } 189 else if( divType == DivNDIV ) 196 else if( divType == DivNDIV ) 190 { 197 { 191 fwidth = CalculateWidth( msol->GetDeltaPhi 198 fwidth = CalculateWidth( msol->GetDeltaPhiAngle(), nDiv, offset ); 192 } 199 } 193 200 194 #ifdef G4DIVDEBUG 201 #ifdef G4DIVDEBUG 195 if( verbose >= 1 ) 202 if( verbose >= 1 ) 196 { 203 { 197 G4cout << " G4ParameterisationTubsPhi no d 204 G4cout << " G4ParameterisationTubsPhi no divisions " << fnDiv << " = " 198 << nDiv << G4endl 205 << nDiv << G4endl 199 << " Offset " << foffset << " = " < 206 << " Offset " << foffset << " = " << offset << G4endl 200 << " Width " << fwidth << " = " << 207 << " Width " << fwidth << " = " << width << G4endl; 201 } 208 } 202 #endif 209 #endif 203 } 210 } 204 211 205 //-------------------------------------------- 212 //-------------------------------------------------------------------------- 206 G4ParameterisationTubsPhi::~G4Parameterisation << 213 G4ParameterisationTubsPhi::~G4ParameterisationTubsPhi() >> 214 { >> 215 } 207 216 208 //-------------------------------------------- 217 //------------------------------------------------------------------------ 209 G4double G4ParameterisationTubsPhi::GetMaxPara 218 G4double G4ParameterisationTubsPhi::GetMaxParameter() const 210 { 219 { 211 auto msol = (G4Tubs*)(fmotherSolid); << 220 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 212 return msol->GetDeltaPhiAngle(); 221 return msol->GetDeltaPhiAngle(); 213 } 222 } 214 223 215 //-------------------------------------------- 224 //-------------------------------------------------------------------------- 216 void 225 void 217 G4ParameterisationTubsPhi:: 226 G4ParameterisationTubsPhi:: 218 ComputeTransformation(const G4int copyNo, G4VP 227 ComputeTransformation(const G4int copyNo, G4VPhysicalVolume *physVol) const 219 { 228 { 220 //----- translation 229 //----- translation 221 G4ThreeVector origin(0.,0.,0.); 230 G4ThreeVector origin(0.,0.,0.); 222 //----- set translation 231 //----- set translation 223 physVol->SetTranslation( origin ); 232 physVol->SetTranslation( origin ); 224 233 225 //----- calculate rotation matrix (so that a 234 //----- calculate rotation matrix (so that all volumes point to the centre) 226 G4double posi = foffset + copyNo*fwidth; 235 G4double posi = foffset + copyNo*fwidth; 227 236 228 #ifdef G4DIVDEBUG 237 #ifdef G4DIVDEBUG 229 if( verbose >= 2 ) 238 if( verbose >= 2 ) 230 { 239 { 231 G4cout << " G4ParameterisationTubsPhi - po << 240 G4cout << " G4ParameterisationTubsPhi - position: " << posi/deg << G4endl 232 << " copyNo: " << copyNo << " - fof << 241 << " copyNo: " << copyNo << " - foffset: " << foffset/deg 233 << " - fwidth: " << fwidth/CLHEP::d << 242 << " - fwidth: " << fwidth/deg << G4endl; 234 } 243 } 235 #endif 244 #endif 236 245 237 ChangeRotMatrix( physVol, -posi ); 246 ChangeRotMatrix( physVol, -posi ); 238 247 239 #ifdef G4DIVDEBUG 248 #ifdef G4DIVDEBUG 240 if( verbose >= 2 ) 249 if( verbose >= 2 ) 241 { 250 { 242 G4cout << std::setprecision(8) << " G4Para 251 G4cout << std::setprecision(8) << " G4ParameterisationTubsPhi " << copyNo 243 << G4endl 252 << G4endl 244 << " Position: " << origin << " - W 253 << " Position: " << origin << " - Width: " << fwidth 245 << " - Axis: " << faxis << G4endl; 254 << " - Axis: " << faxis << G4endl; 246 } 255 } 247 #endif 256 #endif 248 } 257 } 249 258 250 //-------------------------------------------- 259 //-------------------------------------------------------------------------- 251 void 260 void 252 G4ParameterisationTubsPhi:: 261 G4ParameterisationTubsPhi:: 253 ComputeDimensions( G4Tubs& tubs, const G4int, 262 ComputeDimensions( G4Tubs& tubs, const G4int, 254 const G4VPhysicalVolume* ) 263 const G4VPhysicalVolume* ) const 255 { 264 { 256 auto msol = (G4Tubs*)(fmotherSolid); << 265 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 257 266 258 G4double pRMin = msol->GetInnerRadius(); 267 G4double pRMin = msol->GetInnerRadius(); 259 G4double pRMax = msol->GetOuterRadius(); 268 G4double pRMax = msol->GetOuterRadius(); 260 G4double pDz = msol->GetZHalfLength(); 269 G4double pDz = msol->GetZHalfLength(); 261 //----- already rotated in 'ComputeTransform 270 //----- already rotated in 'ComputeTransformation' 262 G4double pSPhi = msol->GetStartPhiAngle() + 271 G4double pSPhi = msol->GetStartPhiAngle() + fhgap; 263 G4double pDPhi = fwidth - 2.*fhgap; 272 G4double pDPhi = fwidth - 2.*fhgap; 264 273 265 tubs.SetInnerRadius( pRMin ); 274 tubs.SetInnerRadius( pRMin ); 266 tubs.SetOuterRadius( pRMax ); 275 tubs.SetOuterRadius( pRMax ); 267 tubs.SetZHalfLength( pDz ); 276 tubs.SetZHalfLength( pDz ); 268 tubs.SetStartPhiAngle( pSPhi, false ); 277 tubs.SetStartPhiAngle( pSPhi, false ); 269 tubs.SetDeltaPhiAngle( pDPhi ); 278 tubs.SetDeltaPhiAngle( pDPhi ); 270 279 271 #ifdef G4DIVDEBUG 280 #ifdef G4DIVDEBUG 272 if( verbose >= 2 ) 281 if( verbose >= 2 ) 273 { 282 { 274 G4cout << " G4ParameterisationTubsPhi::Com 283 G4cout << " G4ParameterisationTubsPhi::ComputeDimensions" << G4endl 275 << " pSPhi: " << pSPhi << " - pDPhi 284 << " pSPhi: " << pSPhi << " - pDPhi: " << pDPhi << G4endl; 276 tubs.DumpInfo(); 285 tubs.DumpInfo(); 277 } 286 } 278 #endif 287 #endif 279 } 288 } 280 289 281 //-------------------------------------------- 290 //-------------------------------------------------------------------------- 282 G4ParameterisationTubsZ:: 291 G4ParameterisationTubsZ:: 283 G4ParameterisationTubsZ( EAxis axis, G4int nDi 292 G4ParameterisationTubsZ( EAxis axis, G4int nDiv, 284 G4double width, G4dou 293 G4double width, G4double offset, 285 G4VSolid* msolid, Div 294 G4VSolid* msolid, DivisionType divType ) 286 : G4VParameterisationTubs( axis, nDiv, width 295 : G4VParameterisationTubs( axis, nDiv, width, offset, msolid, divType ) 287 { 296 { 288 CheckParametersValidity(); 297 CheckParametersValidity(); 289 SetType( "DivisionTubsZ" ); 298 SetType( "DivisionTubsZ" ); 290 299 291 auto msol = (G4Tubs*)(fmotherSolid); << 300 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 292 if( divType == DivWIDTH ) 301 if( divType == DivWIDTH ) 293 { 302 { 294 fnDiv = CalculateNDiv( 2*msol->GetZHalfLen 303 fnDiv = CalculateNDiv( 2*msol->GetZHalfLength(), width, offset ); 295 } 304 } 296 else if( divType == DivNDIV ) 305 else if( divType == DivNDIV ) 297 { 306 { 298 fwidth = CalculateWidth( 2*msol->GetZHalfL 307 fwidth = CalculateWidth( 2*msol->GetZHalfLength(), nDiv, offset ); 299 } 308 } 300 309 301 #ifdef G4DIVDEBUG 310 #ifdef G4DIVDEBUG 302 if( verbose >= 1 ) 311 if( verbose >= 1 ) 303 { 312 { 304 G4cout << " G4ParameterisationTubsZ: # div 313 G4cout << " G4ParameterisationTubsZ: # divisions " << fnDiv << " = " 305 << nDiv << G4endl 314 << nDiv << G4endl 306 << " Offset " << foffset << " = " < 315 << " Offset " << foffset << " = " << offset << G4endl 307 << " Width " << fwidth << " = " << 316 << " Width " << fwidth << " = " << width << G4endl; 308 } 317 } 309 #endif 318 #endif 310 } 319 } 311 320 312 //-------------------------------------------- 321 //-------------------------------------------------------------------------- 313 G4ParameterisationTubsZ::~G4ParameterisationTu << 322 G4ParameterisationTubsZ::~G4ParameterisationTubsZ() >> 323 { >> 324 } 314 325 315 //-------------------------------------------- 326 //------------------------------------------------------------------------ 316 G4double G4ParameterisationTubsZ::GetMaxParame 327 G4double G4ParameterisationTubsZ::GetMaxParameter() const 317 { 328 { 318 auto msol = (G4Tubs*)(fmotherSolid); << 329 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 319 return 2*msol->GetZHalfLength(); 330 return 2*msol->GetZHalfLength(); 320 } 331 } 321 332 322 //-------------------------------------------- 333 //-------------------------------------------------------------------------- 323 void 334 void 324 G4ParameterisationTubsZ:: 335 G4ParameterisationTubsZ:: 325 ComputeTransformation(const G4int copyNo, G4VP 336 ComputeTransformation(const G4int copyNo, G4VPhysicalVolume *physVol) const 326 { 337 { 327 //----- set translation: along Z axis 338 //----- set translation: along Z axis 328 auto motherTubs = (G4Tubs*)(fmotherSolid); << 339 G4Tubs* motherTubs = (G4Tubs*)(fmotherSolid); 329 G4double posi = - motherTubs->GetZHalfLength 340 G4double posi = - motherTubs->GetZHalfLength() + OffsetZ() 330 + fwidth/2 + copyNo*fwidth; 341 + fwidth/2 + copyNo*fwidth; 331 G4ThreeVector origin(0.,0.,posi); 342 G4ThreeVector origin(0.,0.,posi); 332 physVol->SetTranslation( origin ); 343 physVol->SetTranslation( origin ); 333 344 334 //----- calculate rotation matrix: unit 345 //----- calculate rotation matrix: unit 335 346 336 #ifdef G4DIVDEBUG 347 #ifdef G4DIVDEBUG 337 if( verbose >= 2 ) 348 if( verbose >= 2 ) 338 { 349 { 339 G4cout << " G4ParameterisationTubsZ::Compu 350 G4cout << " G4ParameterisationTubsZ::ComputeTransformation()" << G4endl 340 << " Position: " << posi << " - cop 351 << " Position: " << posi << " - copyNo: " << copyNo << G4endl 341 << " foffset " << foffset/CLHEP::de << 352 << " foffset " << foffset/deg << " - fwidth " << fwidth/deg 342 << G4endl; 353 << G4endl; 343 } 354 } 344 #endif 355 #endif 345 356 346 ChangeRotMatrix( physVol ); 357 ChangeRotMatrix( physVol ); 347 358 348 #ifdef G4DIVDEBUG 359 #ifdef G4DIVDEBUG 349 if( verbose >= 2 ) 360 if( verbose >= 2 ) 350 { 361 { 351 G4cout << std::setprecision(8) << " G4Para 362 G4cout << std::setprecision(8) << " G4ParameterisationTubsZ " << copyNo 352 << G4endl 363 << G4endl 353 << " Position: " << origin << " - W 364 << " Position: " << origin << " - Width: " << fwidth 354 << " - Axis: " << faxis << G4endl; 365 << " - Axis: " << faxis << G4endl; 355 } 366 } 356 #endif 367 #endif 357 } 368 } 358 369 359 //-------------------------------------------- 370 //-------------------------------------------------------------------------- 360 void 371 void 361 G4ParameterisationTubsZ:: 372 G4ParameterisationTubsZ:: 362 ComputeDimensions( G4Tubs& tubs, const G4int, 373 ComputeDimensions( G4Tubs& tubs, const G4int, 363 const G4VPhysicalVolume* ) 374 const G4VPhysicalVolume* ) const 364 { 375 { 365 auto msol = (G4Tubs*)(fmotherSolid); << 376 G4Tubs* msol = (G4Tubs*)(fmotherSolid); 366 377 367 G4double pRMin = msol->GetInnerRadius(); 378 G4double pRMin = msol->GetInnerRadius(); 368 G4double pRMax = msol->GetOuterRadius(); 379 G4double pRMax = msol->GetOuterRadius(); 369 // G4double pDz = msol->GetZHalfLength() / 380 // G4double pDz = msol->GetZHalfLength() / GetNoDiv(); 370 G4double pDz = fwidth/2. - fhgap; 381 G4double pDz = fwidth/2. - fhgap; 371 G4double pSPhi = msol->GetStartPhiAngle(); 382 G4double pSPhi = msol->GetStartPhiAngle(); 372 G4double pDPhi = msol->GetDeltaPhiAngle(); 383 G4double pDPhi = msol->GetDeltaPhiAngle(); 373 384 374 tubs.SetInnerRadius( pRMin ); 385 tubs.SetInnerRadius( pRMin ); 375 tubs.SetOuterRadius( pRMax ); 386 tubs.SetOuterRadius( pRMax ); 376 tubs.SetZHalfLength( pDz ); 387 tubs.SetZHalfLength( pDz ); 377 tubs.SetStartPhiAngle( pSPhi, false ); 388 tubs.SetStartPhiAngle( pSPhi, false ); 378 tubs.SetDeltaPhiAngle( pDPhi ); 389 tubs.SetDeltaPhiAngle( pDPhi ); 379 390 380 #ifdef G4DIVDEBUG 391 #ifdef G4DIVDEBUG 381 if( verbose >= 2 ) 392 if( verbose >= 2 ) 382 { 393 { 383 G4cout << " G4ParameterisationTubsZ::Compu 394 G4cout << " G4ParameterisationTubsZ::ComputeDimensions()" << G4endl 384 << " pDz: " << pDz << G4endl; 395 << " pDz: " << pDz << G4endl; 385 tubs.DumpInfo(); 396 tubs.DumpInfo(); 386 } 397 } 387 #endif 398 #endif 388 } 399 } 389 400