Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id$ 27 // 28 // 28 // by I.Hrivnacova, V.Berejnoi 13.10.99 29 // by I.Hrivnacova, V.Berejnoi 13.10.99 29 30 30 #include <assert.h> << 31 << 32 #include "G3Division.hh" 31 #include "G3Division.hh" 33 #include "G3VolTableEntry.hh" 32 #include "G3VolTableEntry.hh" 34 #include "G3toG4MakeSolid.hh" 33 #include "G3toG4MakeSolid.hh" 35 #include "G4Para.hh" 34 #include "G4Para.hh" 36 #include "G3Pos.hh" 35 #include "G3Pos.hh" 37 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 38 #include "G4LogicalVolume.hh" 37 #include "G4LogicalVolume.hh" 39 #include "G4VPhysicalVolume.hh" 38 #include "G4VPhysicalVolume.hh" 40 #include "G4PVPlacement.hh" 39 #include "G4PVPlacement.hh" 41 #include "G4PVReplica.hh" 40 #include "G4PVReplica.hh" 42 #ifndef G3G4_NO_REFLECTION 41 #ifndef G3G4_NO_REFLECTION 43 #include "G4ReflectionFactory.hh" 42 #include "G4ReflectionFactory.hh" 44 #endif 43 #endif 45 44 46 G3VolTableEntry* G4CreateVTE(G4String vname, G 45 G3VolTableEntry* G4CreateVTE(G4String vname, G4String shape, G4int nmed, 47 G4double Rpar[] 46 G4double Rpar[], G4int npar); 48 47 49 G3Division::G3Division(G3DivType type, G3VolTa 48 G3Division::G3Division(G3DivType type, G3VolTableEntry* vte, 50 G3VolTableEntry* mvte, G4int n 49 G3VolTableEntry* mvte, G4int nofDivisions, 51 G4int iaxis, G4int nmed, G4double c0, G4do 50 G4int iaxis, G4int nmed, G4double c0, G4double step) 52 : fType(type), 51 : fType(type), 53 fVTE(vte), 52 fVTE(vte), 54 fMVTE(mvte), 53 fMVTE(mvte), 55 fNofDivisions(nofDivisions), 54 fNofDivisions(nofDivisions), 56 fIAxis(iaxis), 55 fIAxis(iaxis), 57 fNmed(nmed), 56 fNmed(nmed), 58 fC0(c0), 57 fC0(c0), 59 fStep(step), 58 fStep(step), 60 fLowRange(0.), 59 fLowRange(0.), 61 fHighRange(0.), 60 fHighRange(0.), 62 fWidth(0.), 61 fWidth(0.), 63 fOffset(0.), 62 fOffset(0.), 64 fAxis(kXAxis) 63 fAxis(kXAxis) 65 { 64 { 66 fVTE->SetHasNegPars(true); 65 fVTE->SetHasNegPars(true); 67 } 66 } 68 67 69 G3Division::G3Division(G3VolTableEntry* vte, G 68 G3Division::G3Division(G3VolTableEntry* vte, G3VolTableEntry* mvte, 70 const G3Division& divis 69 const G3Division& division) 71 : fVTE(vte), 70 : fVTE(vte), 72 fMVTE(mvte) 71 fMVTE(mvte) 73 { 72 { 74 // only "input" parameters are copied from d 73 // only "input" parameters are copied from division 75 fType = division.fType; 74 fType = division.fType; 76 fNofDivisions = division.fNofDivisions; 75 fNofDivisions = division.fNofDivisions; 77 fIAxis = division.fIAxis; 76 fIAxis = division.fIAxis; 78 fNmed = division.fNmed; 77 fNmed = division.fNmed; 79 fC0 = division.fC0; 78 fC0 = division.fC0; 80 fStep = division.fStep; 79 fStep = division.fStep; 81 80 82 // other parameters are set as in standard c 81 // other parameters are set as in standard constructor 83 fLowRange = 0.; 82 fLowRange = 0.; 84 fHighRange = 0.; 83 fHighRange = 0.; 85 fWidth = 0.; 84 fWidth = 0.; 86 fOffset = 0.; 85 fOffset = 0.; 87 fAxis = kXAxis; 86 fAxis = kXAxis; 88 fVTE->SetHasNegPars(true); 87 fVTE->SetHasNegPars(true); 89 } 88 } 90 89 91 G3Division::~G3Division() 90 G3Division::~G3Division() 92 {} 91 {} 93 92 94 // public methods 93 // public methods 95 94 96 void G3Division::UpdateVTE() 95 void G3Division::UpdateVTE() 97 { 96 { 98 if (fVTE->HasNegPars() && !(fMVTE->HasNegPar 97 if (fVTE->HasNegPars() && !(fMVTE->HasNegPars())) { 99 98 100 // set nmed from mother 99 // set nmed from mother 101 if (fNmed == 0) fNmed = fMVTE->GetNmed(); 100 if (fNmed == 0) fNmed = fMVTE->GetNmed(); 102 fVTE->SetNmed(fNmed); 101 fVTE->SetNmed(fNmed); 103 102 104 SetRangeAndAxis(); 103 SetRangeAndAxis(); 105 104 106 // create envelope (if necessary) 105 // create envelope (if necessary) 107 // and solid 106 // and solid 108 G3VolTableEntry* envVTE = 0; 107 G3VolTableEntry* envVTE = 0; 109 if (fType == kDvn) envVTE = Dvn(); 108 if (fType == kDvn) envVTE = Dvn(); 110 else if (fType == kDvn2) envVTE = Dvn2(); 109 else if (fType == kDvn2) envVTE = Dvn2(); 111 else if (fType == kDvt) envVTE = Dvt(); 110 else if (fType == kDvt) envVTE = Dvt(); 112 else if (fType == kDvt2) envVTE = Dvt2(); 111 else if (fType == kDvt2) envVTE = Dvt2(); 113 112 114 if (envVTE) { 113 if (envVTE) { 115 // reset mother <-> daughter 114 // reset mother <-> daughter 116 fMVTE->ReplaceDaughter(fVTE, envVTE); 115 fMVTE->ReplaceDaughter(fVTE, envVTE); 117 fVTE->ReplaceMother(fMVTE, envVTE); 116 fVTE->ReplaceMother(fMVTE, envVTE); 118 envVTE->AddDaughter(fVTE); 117 envVTE->AddDaughter(fVTE); 119 envVTE->AddMother(fMVTE); 118 envVTE->AddMother(fMVTE); 120 119 121 // replace mother with envelope 120 // replace mother with envelope 122 fMVTE = envVTE; 121 fMVTE = envVTE; 123 } 122 } 124 } 123 } 125 } 124 } 126 125 127 void G3Division::CreatePVReplica() 126 void G3Division::CreatePVReplica() 128 { 127 { 129 G4String name = fVTE->GetName(); 128 G4String name = fVTE->GetName(); 130 G4LogicalVolume* lv = fVTE->GetLV(); 129 G4LogicalVolume* lv = fVTE->GetLV(); 131 G4LogicalVolume* mlv = fMVTE->GetLV(); 130 G4LogicalVolume* mlv = fMVTE->GetLV(); 132 131 133 G4String shape = fMVTE->GetShape(); 132 G4String shape = fMVTE->GetShape(); 134 if (shape == "PARA") { 133 if (shape == "PARA") { 135 // The para volume cannot be replicated us 134 // The para volume cannot be replicated using G4PVReplica. 136 // (Replicating a volume along a cartesian 135 // (Replicating a volume along a cartesian axis means "slicing" it 137 // with slices -perpendicular- to that axi 136 // with slices -perpendicular- to that axis.) 138 137 139 // position the replicated elements 138 // position the replicated elements 140 for (G4int i=0; i<fNofDivisions; i++) { 139 for (G4int i=0; i<fNofDivisions; i++) { 141 G4ThreeVector position = G4ThreeVector( 140 G4ThreeVector position = G4ThreeVector(); 142 position[fIAxis-1] = fLowRange + fWidth 141 position[fIAxis-1] = fLowRange + fWidth/2. + i*fWidth; 143 if (position.y()!=0.) 142 if (position.y()!=0.) 144 position.setX(position.y()*((G4Para*) 143 position.setX(position.y()*((G4Para*)lv->GetSolid())->GetTanAlpha()); 145 144 146 #ifndef G3G4_NO_REFLECTION 145 #ifndef G3G4_NO_REFLECTION 147 G4ReflectionFactory::Instance() 146 G4ReflectionFactory::Instance() 148 ->Place(G4Translate3D(position), name 147 ->Place(G4Translate3D(position), name, lv, mlv, 0, i); 149 148 150 #else 149 #else 151 new G4PVPlacement(0, position, lv, name 150 new G4PVPlacement(0, position, lv, name, mlv, 0, i); 152 151 153 #endif 152 #endif 154 } 153 } 155 154 156 // G4PVReplica cannot be created 155 // G4PVReplica cannot be created 157 return; 156 return; 158 } 157 } 159 158 160 #ifdef G3G4DEBUG 159 #ifdef G3G4DEBUG 161 G4cout << "Create G4PVReplica name " << na 160 G4cout << "Create G4PVReplica name " << name << " logical volume name " 162 << lv->GetName() << " mother logical volm 161 << lv->GetName() << " mother logical volme name " 163 << mlv->GetName() << " axis " << fAxis << 162 << mlv->GetName() << " axis " << fAxis << " ndivisions " 164 << fNofDivisions << " width " << fWidth < 163 << fNofDivisions << " width " << fWidth << " Offset " 165 << fOffset << G4endl; 164 << fOffset << G4endl; 166 #endif 165 #endif 167 166 168 #ifndef G3G4_NO_REFLECTION 167 #ifndef G3G4_NO_REFLECTION 169 G4ReflectionFactory::Instance() 168 G4ReflectionFactory::Instance() 170 ->Replicate(name, lv, mlv, fAxis, fNofDivi 169 ->Replicate(name, lv, mlv, fAxis, fNofDivisions, fWidth, fOffset); 171 170 172 #else 171 #else 173 new G4PVReplica(name, lv, mlv, fAxis, fNofDi 172 new G4PVReplica(name, lv, mlv, fAxis, fNofDivisions, fWidth, fOffset); 174 173 175 #endif 174 #endif 176 } 175 } 177 176 178 // private methods 177 // private methods 179 178 180 void G3Division::Exception(G4String where, G4S 179 void G3Division::Exception(G4String where, G4String what) 181 { 180 { 182 G4String err_message = "G3Division::" + wher 181 G4String err_message = "G3Division::" + where + " for " 183 + what + " is not imple 182 + what + " is not implemented"; 184 G4Exception("G3Division::Exception()", "G3to 183 G4Exception("G3Division::Exception()", "G3toG40004", 185 FatalException, err_message); 184 FatalException, err_message); 186 return; 185 return; 187 } 186 } 188 187 189 void G3Division::SetRangeAndAxis() 188 void G3Division::SetRangeAndAxis() 190 // set fHighRange, fLowRange, fAxis 189 // set fHighRange, fLowRange, fAxis 191 { 190 { 192 G4String shape = fMVTE->GetShape(); 191 G4String shape = fMVTE->GetShape(); 193 G4double *Rpar = fMVTE->GetRpar(); 192 G4double *Rpar = fMVTE->GetRpar(); 194 193 195 switch (fIAxis) { 194 switch (fIAxis) { 196 case 1: fAxis = kXAxis; 195 case 1: fAxis = kXAxis; 197 break; 196 break; 198 case 2: fAxis = kYAxis; 197 case 2: fAxis = kYAxis; 199 break; 198 break; 200 case 3: fAxis = kZAxis; 199 case 3: fAxis = kZAxis; 201 break; 200 break; 202 default: G4Exception("G3Division::SetRan 201 default: G4Exception("G3Division::SetRangeAndAxis()", "G3toG40005", 203 FatalException, "W << 202 FatalException, "Wrong iaxis defenition!"); 204 } 203 } 205 204 206 if ( shape == "BOX" ) { 205 if ( shape == "BOX" ) { 207 fHighRange = Rpar[fIAxis-1]*cm; 206 fHighRange = Rpar[fIAxis-1]*cm; 208 fLowRange = -fHighRange; 207 fLowRange = -fHighRange; 209 } 208 } 210 else if ( shape == "TRD1" ) { 209 else if ( shape == "TRD1" ) { 211 if (fIAxis == 1){ 210 if (fIAxis == 1){ 212 fHighRange = std::max(Rpar[0]*cm, Rpar 211 fHighRange = std::max(Rpar[0]*cm, Rpar[1]*cm); 213 } 212 } 214 else if( fIAxis == 2) { 213 else if( fIAxis == 2) { 215 fHighRange = Rpar[2]*cm; 214 fHighRange = Rpar[2]*cm; 216 } 215 } 217 else if( fIAxis == 3) { 216 else if( fIAxis == 3) { 218 fHighRange = Rpar[3]*cm; 217 fHighRange = Rpar[3]*cm; 219 } 218 } 220 fLowRange = - fHighRange; 219 fLowRange = - fHighRange; 221 } 220 } 222 else if ( shape == "TRD2" ) { 221 else if ( shape == "TRD2" ) { 223 if (fIAxis == 1){ 222 if (fIAxis == 1){ 224 fHighRange = std::max(Rpar[0]*cm, Rpar 223 fHighRange = std::max(Rpar[0]*cm, Rpar[1]*cm); 225 } 224 } 226 else if( fIAxis == 2) { 225 else if( fIAxis == 2) { 227 fHighRange = std::max(Rpar[2]*cm, Rpar 226 fHighRange = std::max(Rpar[2]*cm, Rpar[3]*cm); 228 } 227 } 229 else if( fIAxis == 3) { 228 else if( fIAxis == 3) { 230 fHighRange = Rpar[4]*cm; 229 fHighRange = Rpar[4]*cm; 231 } 230 } 232 } 231 } 233 else if ( shape == "TRAP" ) { 232 else if ( shape == "TRAP" ) { 234 if ( fIAxis == 3 ) fHighRange = Rpar[0]* 233 if ( fIAxis == 3 ) fHighRange = Rpar[0]*cm; 235 else fHighRange = 0.; 234 else fHighRange = 0.; 236 fLowRange = -fHighRange; 235 fLowRange = -fHighRange; 237 } 236 } 238 else if ( shape == "TUBE" ) { 237 else if ( shape == "TUBE" ) { 239 if (fIAxis == 1){ 238 if (fIAxis == 1){ 240 fHighRange = Rpar[1]*cm; 239 fHighRange = Rpar[1]*cm; 241 fLowRange = Rpar[0]*cm; 240 fLowRange = Rpar[0]*cm; 242 fAxis = kRho; 241 fAxis = kRho; 243 } 242 } 244 else if( fIAxis == 2) { 243 else if( fIAxis == 2) { 245 fHighRange = 360.*deg; 244 fHighRange = 360.*deg; 246 fLowRange = 0.; 245 fLowRange = 0.; 247 fAxis = kPhi; 246 fAxis = kPhi; 248 } 247 } 249 else if( fIAxis == 3) { 248 else if( fIAxis == 3) { 250 fHighRange = Rpar[2]*cm; 249 fHighRange = Rpar[2]*cm; 251 fLowRange = -fHighRange; 250 fLowRange = -fHighRange; 252 } 251 } 253 } 252 } 254 else if ( shape == "TUBS" ) { 253 else if ( shape == "TUBS" ) { 255 if (fIAxis == 1){ 254 if (fIAxis == 1){ 256 fHighRange = Rpar[1]*cm; 255 fHighRange = Rpar[1]*cm; 257 fLowRange = Rpar[0]*cm; 256 fLowRange = Rpar[0]*cm; 258 fAxis = kRho; 257 fAxis = kRho; 259 } 258 } 260 else if( fIAxis == 2) { 259 else if( fIAxis == 2) { 261 260 262 fLowRange = Rpar[3]*deg; 261 fLowRange = Rpar[3]*deg; 263 fHighRange = Rpar[4]*deg - fLowRange; 262 fHighRange = Rpar[4]*deg - fLowRange; 264 if ( Rpar[4]*deg <= fLowRange )fHighRan 263 if ( Rpar[4]*deg <= fLowRange )fHighRange = fHighRange + 360.*deg; 265 fHighRange = fHighRange + fLowRange; 264 fHighRange = fHighRange + fLowRange; 266 fAxis = kPhi; 265 fAxis = kPhi; 267 } 266 } 268 else if( fIAxis == 3) { 267 else if( fIAxis == 3) { 269 fHighRange = Rpar[2]*cm; 268 fHighRange = Rpar[2]*cm; 270 fLowRange = -fHighRange; 269 fLowRange = -fHighRange; 271 } 270 } 272 } 271 } 273 else if ( shape == "CONE" ) { 272 else if ( shape == "CONE" ) { 274 if (fIAxis == 1){ 273 if (fIAxis == 1){ 275 fHighRange = std::max(Rpar[2]*cm,Rpar[ 274 fHighRange = std::max(Rpar[2]*cm,Rpar[4]*cm); 276 fLowRange = std::max(Rpar[1]*cm,Rpar[3 275 fLowRange = std::max(Rpar[1]*cm,Rpar[3]*cm); 277 fAxis = kRho; 276 fAxis = kRho; 278 } 277 } 279 else if( fIAxis == 2) { 278 else if( fIAxis == 2) { 280 279 281 fLowRange = 0.; 280 fLowRange = 0.; 282 fHighRange = 360.*deg; 281 fHighRange = 360.*deg; 283 fAxis = kPhi; 282 fAxis = kPhi; 284 } 283 } 285 else if( fIAxis == 3) { 284 else if( fIAxis == 3) { 286 fHighRange = Rpar[0]*cm; 285 fHighRange = Rpar[0]*cm; 287 fLowRange = -fHighRange; 286 fLowRange = -fHighRange; 288 } 287 } 289 } 288 } 290 else if ( shape == "CONS" ) { 289 else if ( shape == "CONS" ) { 291 if (fIAxis == 1){ 290 if (fIAxis == 1){ 292 fHighRange = std::max(Rpar[2]*cm,Rpar[ 291 fHighRange = std::max(Rpar[2]*cm,Rpar[4]*cm); 293 fLowRange = std::max(Rpar[1]*cm,Rpar[3 292 fLowRange = std::max(Rpar[1]*cm,Rpar[3]*cm); 294 fAxis = kRho; 293 fAxis = kRho; 295 } 294 } 296 else if( fIAxis == 2) { 295 else if( fIAxis == 2) { 297 296 298 fLowRange = Rpar[5]*deg; 297 fLowRange = Rpar[5]*deg; 299 fHighRange = Rpar[6]*deg - fLowRange; 298 fHighRange = Rpar[6]*deg - fLowRange; 300 if ( Rpar[6]*deg <= fLowRange )fHighRan 299 if ( Rpar[6]*deg <= fLowRange )fHighRange = fHighRange + 360.*deg; 301 fHighRange = fHighRange + fLowRange; 300 fHighRange = fHighRange + fLowRange; 302 fAxis = kPhi; 301 fAxis = kPhi; 303 } 302 } 304 else if( fIAxis == 3) { 303 else if( fIAxis == 3) { 305 fHighRange = Rpar[2]*cm; 304 fHighRange = Rpar[2]*cm; 306 fLowRange = -fHighRange; 305 fLowRange = -fHighRange; 307 } 306 } 308 } 307 } 309 else if ( shape == "SPHE" ) { 308 else if ( shape == "SPHE" ) { 310 if (fIAxis == 1){ 309 if (fIAxis == 1){ 311 fHighRange = Rpar[1]*cm; 310 fHighRange = Rpar[1]*cm; 312 fLowRange = Rpar[0]*cm; 311 fLowRange = Rpar[0]*cm; 313 fAxis = kRho; 312 fAxis = kRho; 314 } 313 } 315 else if( fIAxis == 2) { 314 else if( fIAxis == 2) { 316 fLowRange = std::min(Rpar[2]*deg,Rpar[3 315 fLowRange = std::min(Rpar[2]*deg,Rpar[3]*deg); 317 fHighRange = std::max(Rpar[2]*deg,Rpar[ 316 fHighRange = std::max(Rpar[2]*deg,Rpar[3]*deg); 318 fAxis = kPhi; 317 fAxis = kPhi; 319 } 318 } 320 else if( fIAxis == 3) { 319 else if( fIAxis == 3) { 321 fLowRange = std::min(Rpar[4]*deg,Rpar[5 320 fLowRange = std::min(Rpar[4]*deg,Rpar[5]*deg); 322 fHighRange = std::max(Rpar[4]*deg,Rpar[ 321 fHighRange = std::max(Rpar[4]*deg,Rpar[5]*deg); 323 fAxis = kPhi; // ?????? 322 fAxis = kPhi; // ?????? 324 } 323 } 325 } 324 } 326 else if ( shape == "PARA" ) { 325 else if ( shape == "PARA" ) { 327 fHighRange = Rpar[fIAxis-1]*cm; 326 fHighRange = Rpar[fIAxis-1]*cm; 328 fLowRange = -fHighRange; 327 fLowRange = -fHighRange; 329 } 328 } 330 else if ( shape == "PGON" ) { 329 else if ( shape == "PGON" ) { 331 G4int i; 330 G4int i; 332 G4int nz = G4int(Rpar[3]); 331 G4int nz = G4int(Rpar[3]); 333 332 334 G4double pPhi1 = Rpar[0]*deg; 333 G4double pPhi1 = Rpar[0]*deg; 335 G4double dPhi = Rpar[1]*deg; 334 G4double dPhi = Rpar[1]*deg; 336 335 337 G4double *DzArray = new G4double[nz]; 336 G4double *DzArray = new G4double[nz]; 338 G4double *Rmax = new G4double[nz]; 337 G4double *Rmax = new G4double[nz]; 339 G4double *Rmin = new G4double[nz]; 338 G4double *Rmin = new G4double[nz]; 340 G4double rangehi[3], rangelo[3]; 339 G4double rangehi[3], rangelo[3]; 341 rangehi[0] = -kInfinity ; 340 rangehi[0] = -kInfinity ; 342 rangelo[0] = kInfinity ; 341 rangelo[0] = kInfinity ; 343 rangehi[2] = -kInfinity ; 342 rangehi[2] = -kInfinity ; 344 rangelo[2] = kInfinity ; 343 rangelo[2] = kInfinity ; 345 344 346 for(i=0; i<nz; i++) 345 for(i=0; i<nz; i++) 347 { 346 { 348 G4int i4=3*i+4; 347 G4int i4=3*i+4; 349 G4int i5=i4+1; 348 G4int i5=i4+1; 350 G4int i6=i4+2; 349 G4int i6=i4+2; 351 350 352 DzArray[i] = Rpar[i4]*cm; 351 DzArray[i] = Rpar[i4]*cm; 353 Rmin[i] = Rpar[i5]*cm; 352 Rmin[i] = Rpar[i5]*cm; 354 Rmax[i] = Rpar[i6]*cm; 353 Rmax[i] = Rpar[i6]*cm; 355 rangelo[0] = std::min(rangelo[0], 354 rangelo[0] = std::min(rangelo[0], Rmin[i]); 356 rangehi[0] = std::max(rangehi[0], 355 rangehi[0] = std::max(rangehi[0], Rmax[i]); 357 rangelo[2] = std::min(rangelo[2], 356 rangelo[2] = std::min(rangelo[2], DzArray[i]); 358 rangehi[2] = std::max(rangehi[2], 357 rangehi[2] = std::max(rangehi[2], DzArray[i]); 359 } 358 } 360 for (i=0;i<nz;i++){ 359 for (i=0;i<nz;i++){ 361 assert(Rmin[i]>=0 && Rmax[i]>=Rmin 360 assert(Rmin[i]>=0 && Rmax[i]>=Rmin[i]); 362 } 361 } 363 rangehi[1] = pPhi1 + dPhi; 362 rangehi[1] = pPhi1 + dPhi; 364 rangelo[1] = pPhi1; 363 rangelo[1] = pPhi1; 365 fHighRange = rangehi[fIAxis-1]; 364 fHighRange = rangehi[fIAxis-1]; 366 fLowRange = rangelo[fIAxis-1]; 365 fLowRange = rangelo[fIAxis-1]; 367 if (fIAxis == 1)fAxis = kRho; 366 if (fIAxis == 1)fAxis = kRho; 368 else if (fIAxis == 2)fAxis = kPhi; 367 else if (fIAxis == 2)fAxis = kPhi; 369 else if (fIAxis == 3)fAxis = kZAxis; 368 else if (fIAxis == 3)fAxis = kZAxis; 370 369 371 delete [] DzArray; 370 delete [] DzArray; 372 delete [] Rmin; 371 delete [] Rmin; 373 delete [] Rmax; 372 delete [] Rmax; 374 373 375 } 374 } 376 else if ( shape == "PCON" ) { 375 else if ( shape == "PCON" ) { 377 376 378 G4int i; 377 G4int i; 379 G4double pPhi1 = Rpar[0]*deg; 378 G4double pPhi1 = Rpar[0]*deg; 380 G4double dPhi = Rpar[1]*deg; 379 G4double dPhi = Rpar[1]*deg; 381 G4int nz = G4int(Rpar[2]); 380 G4int nz = G4int(Rpar[2]); 382 381 383 G4double *DzArray = new G4double[nz]; 382 G4double *DzArray = new G4double[nz]; 384 G4double *Rmax = new G4double[nz]; 383 G4double *Rmax = new G4double[nz]; 385 G4double *Rmin = new G4double[nz]; 384 G4double *Rmin = new G4double[nz]; 386 G4double rangehi[3],rangelo[3]; 385 G4double rangehi[3],rangelo[3]; 387 386 388 rangehi[0] = -kInfinity ; 387 rangehi[0] = -kInfinity ; 389 rangelo[0] = kInfinity ; 388 rangelo[0] = kInfinity ; 390 rangehi[2] = -kInfinity ; 389 rangehi[2] = -kInfinity ; 391 rangelo[2] = kInfinity ; 390 rangelo[2] = kInfinity ; 392 391 393 for(i=0; i<nz; i++){ 392 for(i=0; i<nz; i++){ 394 G4int i4=3*i+3; 393 G4int i4=3*i+3; 395 G4int i5=i4+1; 394 G4int i5=i4+1; 396 G4int i6=i4+2; 395 G4int i6=i4+2; 397 396 398 DzArray[i] = Rpar[i4]*cm; 397 DzArray[i] = Rpar[i4]*cm; 399 Rmin[i] = Rpar[i5]*cm; 398 Rmin[i] = Rpar[i5]*cm; 400 Rmax[i] = Rpar[i6]*cm; 399 Rmax[i] = Rpar[i6]*cm; 401 rangelo[0] = std::min(rangelo[0], 400 rangelo[0] = std::min(rangelo[0], Rmin[i]); 402 rangehi[0] = std::max(rangehi[0], 401 rangehi[0] = std::max(rangehi[0], Rmax[i]); 403 rangelo[2] = std::min(rangelo[2], 402 rangelo[2] = std::min(rangelo[2], DzArray[i]); 404 rangehi[2] = std::max(rangehi[2], 403 rangehi[2] = std::max(rangehi[2], DzArray[i]); 405 } 404 } 406 for (i=0;i<nz;i++){ 405 for (i=0;i<nz;i++){ 407 assert(Rmin[i]>=0 && Rmax[i]>=Rmin 406 assert(Rmin[i]>=0 && Rmax[i]>=Rmin[i]); 408 } 407 } 409 rangehi[1] = pPhi1 + dPhi; 408 rangehi[1] = pPhi1 + dPhi; 410 rangelo[1] = pPhi1; 409 rangelo[1] = pPhi1; 411 fHighRange = rangehi[fIAxis-1]; 410 fHighRange = rangehi[fIAxis-1]; 412 fLowRange = rangelo[fIAxis-1]; 411 fLowRange = rangelo[fIAxis-1]; 413 if (fIAxis == 1)fAxis = kRho; 412 if (fIAxis == 1)fAxis = kRho; 414 else if (fIAxis == 2)fAxis = kPhi; 413 else if (fIAxis == 2)fAxis = kPhi; 415 else if (fIAxis == 3)fAxis = kZAxis; 414 else if (fIAxis == 3)fAxis = kZAxis; 416 415 417 416 418 delete [] DzArray; 417 delete [] DzArray; 419 delete [] Rmin; 418 delete [] Rmin; 420 delete [] Rmax; 419 delete [] Rmax; 421 } 420 } 422 else if ( shape == "ELTU" || shape == "HY 421 else if ( shape == "ELTU" || shape == "HYPE" || shape == "GTRA" || 423 shape == "CTUB") { 422 shape == "CTUB") { 424 Exception("SetRangeAndAxis", shape); 423 Exception("SetRangeAndAxis", shape); 425 } 424 } 426 else { 425 else { 427 Exception("SetRangeAndAxis", "Unknown s 426 Exception("SetRangeAndAxis", "Unknown shape" + shape); 428 } 427 } 429 428 430 // verbose 429 // verbose 431 #ifdef G3G4DEBUG 430 #ifdef G3G4DEBUG 432 G4cout << "Shape " << shape << " SetRang 431 G4cout << "Shape " << shape << " SetRangeAndAxis: " 433 << fLowRange << " " << fHighRange << " 432 << fLowRange << " " << fHighRange << " " << fAxis << G4endl; 434 #endif 433 #endif 435 } 434 } 436 435 437 G3VolTableEntry* G3Division::CreateEnvelope(G4 436 G3VolTableEntry* G3Division::CreateEnvelope(G4String shape, G4double hi, 438 G4double lo, G4 437 G4double lo, G4double par[], G4int npar) 439 // create new VTE with G3Pos corresponding to 438 // create new VTE with G3Pos corresponding to the 440 // envelope of divided volume 439 // envelope of divided volume 441 { 440 { 442 // verbose 441 // verbose 443 // G4cout << " G3Division::CreateEnvelope 442 // G4cout << " G3Division::CreateEnvelope " << "fIAaxis= " << fIAxis 444 // << " hi= " << hi 443 // << " hi= " << hi 445 // << " lo= " << lo 444 // << " lo= " << lo 446 // << G4endl; 445 // << G4endl; 447 446 448 G4double *Rpar = new G4double[npar+2]; 447 G4double *Rpar = new G4double[npar+2]; 449 for (G4int i=0; i<npar; ++i){ Rpar[i] = pa 448 for (G4int i=0; i<npar; ++i){ Rpar[i] = par[i];} 450 G4double pos[3] = {0.,0.,0.}; 449 G4double pos[3] = {0.,0.,0.}; 451 450 452 if ( shape == "BOX" ) { 451 if ( shape == "BOX" ) { 453 Rpar[fIAxis-1] = (hi - lo)/2./cm; 452 Rpar[fIAxis-1] = (hi - lo)/2./cm; 454 pos [fIAxis-1] = (hi + lo)/2.; 453 pos [fIAxis-1] = (hi + lo)/2.; 455 } 454 } 456 else if ( shape == "TRD1" ) { 455 else if ( shape == "TRD1" ) { 457 if ( fIAxis == 1 || fIAxis == 2 ) { 456 if ( fIAxis == 1 || fIAxis == 2 ) { 458 Exception("CreateEnvelope","TRD1-x,y") 457 Exception("CreateEnvelope","TRD1-x,y"); 459 } 458 } 460 else if ( fIAxis == 3 ) { 459 else if ( fIAxis == 3 ) { 461 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 460 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 462 G4double tn, x1, z1; 461 G4double tn, x1, z1; 463 tn = (Rpar[1] - Rpar[0])/(2.* Rpar[3]) 462 tn = (Rpar[1] - Rpar[0])/(2.* Rpar[3]); 464 x1 = Rpar[0]; z1 = -Rpar[3]; 463 x1 = Rpar[0]; z1 = -Rpar[3]; 465 Rpar[0] = x1 + tn * (lo/cm - z1); 464 Rpar[0] = x1 + tn * (lo/cm - z1); 466 Rpar[1] = x1 + tn * (hi/cm - z1); 465 Rpar[1] = x1 + tn * (hi/cm - z1); 467 Rpar[3] = (hi - lo)/2./cm; 466 Rpar[3] = (hi - lo)/2./cm; 468 pos[2] = (hi + lo)/2.; 467 pos[2] = (hi + lo)/2.; 469 } 468 } 470 } 469 } 471 else if ( shape == "TRD2" ) { 470 else if ( shape == "TRD2" ) { 472 if ( fIAxis == 1 || fIAxis == 2) { 471 if ( fIAxis == 1 || fIAxis == 2) { 473 Exception("CreateEnvelope","TRD2-x,y") 472 Exception("CreateEnvelope","TRD2-x,y"); 474 } 473 } 475 else if ( fIAxis == 3 ) { 474 else if ( fIAxis == 3 ) { 476 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 475 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 477 // y = y1 + (c-z1)(y2 -y1)/(z2-z1) 476 // y = y1 + (c-z1)(y2 -y1)/(z2-z1) 478 G4double tn1, tn2, x1, y1, z1; 477 G4double tn1, tn2, x1, y1, z1; 479 tn1 = (Rpar[1] - Rpar[0])/(2.* Rpar[4] 478 tn1 = (Rpar[1] - Rpar[0])/(2.* Rpar[4]); 480 tn2 = (Rpar[3] - Rpar[2])/(2.* Rpar[4] 479 tn2 = (Rpar[3] - Rpar[2])/(2.* Rpar[4]); 481 x1 = Rpar[0]; y1 = Rpar[2]; z1 = -Rpar 480 x1 = Rpar[0]; y1 = Rpar[2]; z1 = -Rpar[3]; 482 Rpar[0] = x1 + tn1 * (lo/cm - z1); 481 Rpar[0] = x1 + tn1 * (lo/cm - z1); 483 Rpar[1] = x1 + tn1 * (hi/cm - z1); 482 Rpar[1] = x1 + tn1 * (hi/cm - z1); 484 Rpar[2] = y1 + tn2 * (lo/cm - z1); 483 Rpar[2] = y1 + tn2 * (lo/cm - z1); 485 Rpar[3] = y1 + tn2 * (hi/cm - z1); 484 Rpar[3] = y1 + tn2 * (hi/cm - z1); 486 Rpar[4] = (hi - lo)/2./cm; 485 Rpar[4] = (hi - lo)/2./cm; 487 pos[2] = (hi + lo)/2.; 486 pos[2] = (hi + lo)/2.; 488 } 487 } 489 } 488 } 490 else if ( shape == "TRAP" ) { 489 else if ( shape == "TRAP" ) { 491 Exception("CreateEnvelope","TRAP-x,y,z") 490 Exception("CreateEnvelope","TRAP-x,y,z"); 492 } 491 } 493 else if ( shape == "TUBE" ) { 492 else if ( shape == "TUBE" ) { 494 if ( fIAxis == 1 ) { 493 if ( fIAxis == 1 ) { 495 Rpar[0] = lo/cm; 494 Rpar[0] = lo/cm; 496 Rpar[1] = hi/cm; 495 Rpar[1] = hi/cm; 497 } 496 } 498 else if ( fIAxis == 2 ) { 497 else if ( fIAxis == 2 ) { 499 Rpar[3] = lo/deg; 498 Rpar[3] = lo/deg; 500 Rpar[4] = hi/deg; 499 Rpar[4] = hi/deg; 501 npar = npar + 2; 500 npar = npar + 2; 502 shape = "TUBS"; 501 shape = "TUBS"; 503 } 502 } 504 else if ( fIAxis == 3 ) { 503 else if ( fIAxis == 3 ) { 505 Rpar[2] = (hi - lo)/2./cm; 504 Rpar[2] = (hi - lo)/2./cm; 506 pos [2] = (hi + lo)/2.; 505 pos [2] = (hi + lo)/2.; 507 } 506 } 508 } 507 } 509 else if ( shape == "TUBS" ) { 508 else if ( shape == "TUBS" ) { 510 if ( fIAxis == 1 ) { 509 if ( fIAxis == 1 ) { 511 Rpar[0] = lo/cm; 510 Rpar[0] = lo/cm; 512 Rpar[1] = hi/cm; 511 Rpar[1] = hi/cm; 513 } 512 } 514 else if ( fIAxis == 2 ) { 513 else if ( fIAxis == 2 ) { 515 Rpar[3] = lo/deg; 514 Rpar[3] = lo/deg; 516 Rpar[4] = hi/deg; 515 Rpar[4] = hi/deg; 517 } 516 } 518 else if ( fIAxis == 3 ) { 517 else if ( fIAxis == 3 ) { 519 Rpar[2] = (hi - lo)/2./cm; 518 Rpar[2] = (hi - lo)/2./cm; 520 pos [2] = (hi + lo)/2.; 519 pos [2] = (hi + lo)/2.; 521 } 520 } 522 } 521 } 523 else if ( shape == "CONE" ) { 522 else if ( shape == "CONE" ) { 524 if ( fIAxis == 1) { 523 if ( fIAxis == 1) { 525 Exception("CreateEnvelope","CONE-x,z") 524 Exception("CreateEnvelope","CONE-x,z"); 526 } 525 } 527 else if ( fIAxis == 2 ) { 526 else if ( fIAxis == 2 ) { 528 Rpar[5] = lo/deg; 527 Rpar[5] = lo/deg; 529 Rpar[6] = hi/deg; 528 Rpar[6] = hi/deg; 530 npar = npar + 2; 529 npar = npar + 2; 531 shape = "CONS"; 530 shape = "CONS"; 532 } 531 } 533 else if ( fIAxis == 3 ) { 532 else if ( fIAxis == 3 ) { 534 G4double tn1, tn2, rmin, rmax, z1; 533 G4double tn1, tn2, rmin, rmax, z1; 535 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0] 534 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0]); 536 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0] 535 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0]); 537 rmin = Rpar[1]; rmax = Rpar[2]; z1 = - 536 rmin = Rpar[1]; rmax = Rpar[2]; z1 = -Rpar[0]; 538 Rpar[1] = rmin + tn1 * (lo/cm - z1); 537 Rpar[1] = rmin + tn1 * (lo/cm - z1); 539 Rpar[3] = rmin + tn1 * (hi/cm - z1); 538 Rpar[3] = rmin + tn1 * (hi/cm - z1); 540 Rpar[2] = rmax + tn2 * (lo/cm - z1); 539 Rpar[2] = rmax + tn2 * (lo/cm - z1); 541 Rpar[4] = rmax + tn2 * (hi/cm - z1); 540 Rpar[4] = rmax + tn2 * (hi/cm - z1); 542 Rpar[0] = (hi - lo)/2./cm; 541 Rpar[0] = (hi - lo)/2./cm; 543 pos[2] = (hi + lo)/2.; 542 pos[2] = (hi + lo)/2.; 544 } 543 } 545 } 544 } 546 else if ( shape == "CONS" ) { 545 else if ( shape == "CONS" ) { 547 if ( fIAxis == 1 ) { 546 if ( fIAxis == 1 ) { 548 Exception("CreateEnvelope","CONS-x"); 547 Exception("CreateEnvelope","CONS-x"); 549 } 548 } 550 else if ( fIAxis == 2 ) { 549 else if ( fIAxis == 2 ) { 551 Rpar[5] = lo/deg; 550 Rpar[5] = lo/deg; 552 Rpar[6] = hi/deg; 551 Rpar[6] = hi/deg; 553 } 552 } 554 else if ( fIAxis == 3 ) { 553 else if ( fIAxis == 3 ) { 555 G4double tn1, tn2, rmin, rmax, z1; 554 G4double tn1, tn2, rmin, rmax, z1; 556 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0] 555 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0]); 557 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0] 556 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0]); 558 rmin = Rpar[1]; rmax = Rpar[2]; z1 = - 557 rmin = Rpar[1]; rmax = Rpar[2]; z1 = -Rpar[0]; 559 Rpar[1] = rmin + tn1 * (lo/cm - z1); 558 Rpar[1] = rmin + tn1 * (lo/cm - z1); 560 Rpar[3] = rmin + tn1 * (hi/cm - z1); 559 Rpar[3] = rmin + tn1 * (hi/cm - z1); 561 Rpar[2] = rmax + tn2 * (lo/cm - z1); 560 Rpar[2] = rmax + tn2 * (lo/cm - z1); 562 Rpar[4] = rmax + tn2 * (hi/cm - z1); 561 Rpar[4] = rmax + tn2 * (hi/cm - z1); 563 Rpar[0] = (hi - lo)/2./cm; 562 Rpar[0] = (hi - lo)/2./cm; 564 pos[2] = (hi + lo)/2.; 563 pos[2] = (hi + lo)/2.; 565 } 564 } 566 } 565 } 567 else if ( shape == "SPHE" ) { 566 else if ( shape == "SPHE" ) { 568 Exception("CreateEnvelope","SPHE-x,y,z") 567 Exception("CreateEnvelope","SPHE-x,y,z"); 569 } 568 } 570 else if ( shape == "PARA" ) { 569 else if ( shape == "PARA" ) { 571 Exception("CreateEnvelope","PARA-x,y,z") 570 Exception("CreateEnvelope","PARA-x,y,z"); 572 } 571 } 573 else if ( shape == "PGON" ) { 572 else if ( shape == "PGON" ) { 574 if ( fIAxis == 2) { 573 if ( fIAxis == 2) { 575 Rpar[0] = lo/deg; 574 Rpar[0] = lo/deg; 576 Rpar[1] = hi/deg; 575 Rpar[1] = hi/deg; 577 // rotm = ??? 576 // rotm = ??? 578 } 577 } 579 else { 578 else { 580 Exception("CreateEnvelope","PGON-x,z") 579 Exception("CreateEnvelope","PGON-x,z"); 581 } 580 } 582 } 581 } 583 else if ( shape == "PCON" ) { 582 else if ( shape == "PCON" ) { 584 if ( fIAxis == 2) { 583 if ( fIAxis == 2) { 585 Rpar[0] = lo/deg; 584 Rpar[0] = lo/deg; 586 Rpar[1] = hi/deg; 585 Rpar[1] = hi/deg; 587 // rotm = ??? 586 // rotm = ??? 588 } 587 } 589 else { 588 else { 590 Exception("CreateEnvelope","PCON-x,z") 589 Exception("CreateEnvelope","PCON-x,z"); 591 } 590 } 592 } 591 } 593 else { 592 else { 594 Exception("CreateEnvelope", "Unknown sh 593 Exception("CreateEnvelope", "Unknown shape" + shape); 595 } 594 } 596 595 597 // create new VTE corresponding to envelop 596 // create new VTE corresponding to envelope 598 G4String envName = fVTE->GetName() + "_ENV 597 G4String envName = fVTE->GetName() + "_ENV"; 599 G3VolTableEntry* envVTE 598 G3VolTableEntry* envVTE 600 = G4CreateVTE(envName, shape, fNmed, Rpa 599 = G4CreateVTE(envName, shape, fNmed, Rpar, npar); 601 600 602 // create a G3Pos object and add it to env 601 // create a G3Pos object and add it to envVTE 603 G4String motherName = fMVTE->GetMasterClon 602 G4String motherName = fMVTE->GetMasterClone()->GetName(); 604 G4ThreeVector* offset = new G4ThreeVector( 603 G4ThreeVector* offset = new G4ThreeVector(pos[0],pos[1],pos[2]); 605 G4String only = "ONLY"; 604 G4String only = "ONLY"; 606 G3Pos* aG3Pos = new G3Pos(motherName, 1, o 605 G3Pos* aG3Pos = new G3Pos(motherName, 1, offset, 0, only); 607 envVTE->AddG3Pos(aG3Pos); 606 envVTE->AddG3Pos(aG3Pos); 608 607 609 delete [] Rpar; 608 delete [] Rpar; 610 609 611 return envVTE; 610 return envVTE; 612 } 611 } 613 612 614 void G3Division::CreateSolid(G4String shape, G 613 void G3Division::CreateSolid(G4String shape, G4double par[], G4int npar) 615 // create the solid corresponding to divided v 614 // create the solid corresponding to divided volume 616 // and set the fOffset for replica 615 // and set the fOffset for replica 617 { 616 { 618 G4double *Rpar = new G4double[npar+2]; 617 G4double *Rpar = new G4double[npar+2]; 619 for (G4int i=0; i<npar; ++i){ Rpar[i] = pa 618 for (G4int i=0; i<npar; ++i){ Rpar[i] = par[i];} 620 619 621 // verbose 620 // verbose 622 // G4cout << "G3Division::CreateSolid volu 621 // G4cout << "G3Division::CreateSolid volume before: " 623 // << fVTE->GetName() << " " << sha 622 // << fVTE->GetName() << " " << shape << G4endl; 624 // G4cout << " npar,Rpar: " << npar; 623 // G4cout << " npar,Rpar: " << npar; 625 // for (G4int ii = 0; ii < npar; ++ii) G4c 624 // for (G4int ii = 0; ii < npar; ++ii) G4cout << " " << Rpar[ii]; 626 // G4cout << G4endl; 625 // G4cout << G4endl; 627 626 628 if ( shape == "BOX" ) { 627 if ( shape == "BOX" ) { 629 if ( fIAxis == 1 ) Rpar[0] = fWidth 628 if ( fIAxis == 1 ) Rpar[0] = fWidth/2./cm; 630 else if ( fIAxis == 2 ) Rpar[1] = fWidth 629 else if ( fIAxis == 2 ) Rpar[1] = fWidth/2./cm; 631 else if ( fIAxis == 3 ) Rpar[2] = fWidth 630 else if ( fIAxis == 3 ) Rpar[2] = fWidth/2./cm; 632 } 631 } 633 else if ( shape == "TRD1" ) { 632 else if ( shape == "TRD1" ) { 634 if ( fIAxis == 1 || fIAxis == 2 ) { 633 if ( fIAxis == 1 || fIAxis == 2 ) { 635 Exception("CreateSolid", "TRD1-x,y"); 634 Exception("CreateSolid", "TRD1-x,y"); 636 } 635 } 637 else if ( fIAxis == 3 ) { 636 else if ( fIAxis == 3 ) { 638 Rpar[3] = fWidth/2./cm; 637 Rpar[3] = fWidth/2./cm; 639 } 638 } 640 } 639 } 641 else if ( shape == "TRD2" ) { 640 else if ( shape == "TRD2" ) { 642 if ( fIAxis == 1 || fIAxis == 2 ) { 641 if ( fIAxis == 1 || fIAxis == 2 ) { 643 Exception("CreateSolid", "TRD2-x,y"); 642 Exception("CreateSolid", "TRD2-x,y"); 644 } 643 } 645 else if ( fIAxis == 3 ) { 644 else if ( fIAxis == 3 ) { 646 Rpar[4] = fWidth/2./cm; 645 Rpar[4] = fWidth/2./cm; 647 } 646 } 648 } 647 } 649 else if ( shape == "TRAP" ) { 648 else if ( shape == "TRAP" ) { 650 if ( fIAxis == 1 || fIAxis == 2) { 649 if ( fIAxis == 1 || fIAxis == 2) { 651 Exception("CreateSolid", "TRAP-x,y"); 650 Exception("CreateSolid", "TRAP-x,y"); 652 } 651 } 653 else if ( fIAxis == 3 ) { 652 else if ( fIAxis == 3 ) { 654 Rpar[0] = fWidth/2./cm; 653 Rpar[0] = fWidth/2./cm; 655 } 654 } 656 } 655 } 657 else if ( shape == "TUBE" ) { 656 else if ( shape == "TUBE" ) { 658 if ( fIAxis == 1 ) { 657 if ( fIAxis == 1 ) { 659 Rpar[1] = Rpar[0] + fWidth/cm; 658 Rpar[1] = Rpar[0] + fWidth/cm; 660 fOffset = Rpar[0]*cm; 659 fOffset = Rpar[0]*cm; 661 } 660 } 662 else if ( fIAxis == 2 ) { 661 else if ( fIAxis == 2 ) { 663 Rpar[3] = 0.; 662 Rpar[3] = 0.; 664 Rpar[4] = fWidth/deg; 663 Rpar[4] = fWidth/deg; 665 shape = "TUBS"; 664 shape = "TUBS"; 666 npar = npar + 2; 665 npar = npar + 2; 667 } 666 } 668 else if ( fIAxis == 3 ) { 667 else if ( fIAxis == 3 ) { 669 Rpar[2] = fWidth/2./cm; 668 Rpar[2] = fWidth/2./cm; 670 } 669 } 671 } 670 } 672 else if ( shape == "TUBS" ) { 671 else if ( shape == "TUBS" ) { 673 if ( fIAxis == 1 ) { 672 if ( fIAxis == 1 ) { 674 Rpar[1] = Rpar[0] + fWidth/cm; 673 Rpar[1] = Rpar[0] + fWidth/cm; 675 fOffset = Rpar[0]*cm; 674 fOffset = Rpar[0]*cm; 676 } 675 } 677 else if ( fIAxis == 2 ) { 676 else if ( fIAxis == 2 ) { 678 fOffset = Rpar[3]*deg; 677 fOffset = Rpar[3]*deg; 679 Rpar[3] = 0.; 678 Rpar[3] = 0.; 680 Rpar[4] = fWidth/deg; 679 Rpar[4] = fWidth/deg; 681 } 680 } 682 else if ( fIAxis == 3 ) { 681 else if ( fIAxis == 3 ) { 683 Rpar[2] = fWidth/2./cm; 682 Rpar[2] = fWidth/2./cm; 684 } 683 } 685 } 684 } 686 else if ( shape == "CONE" ) { 685 else if ( shape == "CONE" ) { 687 if ( fIAxis == 1 ) { 686 if ( fIAxis == 1 ) { 688 Exception("CreateSolid", "CONE-x"); 687 Exception("CreateSolid", "CONE-x"); 689 } 688 } 690 else if ( fIAxis == 2 ) { 689 else if ( fIAxis == 2 ) { 691 Rpar[5] = 0.; 690 Rpar[5] = 0.; 692 Rpar[6] = fWidth/deg; 691 Rpar[6] = fWidth/deg; 693 shape = "CONS"; 692 shape = "CONS"; 694 npar = npar + 2; 693 npar = npar + 2; 695 } 694 } 696 else if ( fIAxis == 3 ) { 695 else if ( fIAxis == 3 ) { 697 Rpar[0] = fWidth/2./cm; 696 Rpar[0] = fWidth/2./cm; 698 } 697 } 699 } 698 } 700 else if ( shape == "CONS" ) { 699 else if ( shape == "CONS" ) { 701 if ( fIAxis == 1 ) { 700 if ( fIAxis == 1 ) { 702 Exception("CreateSolid", "CONS-x"); 701 Exception("CreateSolid", "CONS-x"); 703 } 702 } 704 else if ( fIAxis == 2 ) { 703 else if ( fIAxis == 2 ) { 705 fOffset = Rpar[5]*deg; 704 fOffset = Rpar[5]*deg; 706 Rpar[5] = 0.; 705 Rpar[5] = 0.; 707 Rpar[6] = fWidth/deg; 706 Rpar[6] = fWidth/deg; 708 } 707 } 709 else if ( fIAxis == 3 ) { 708 else if ( fIAxis == 3 ) { 710 Rpar[0] = fWidth/2./cm; 709 Rpar[0] = fWidth/2./cm; 711 } 710 } 712 } 711 } 713 else if (shape == "PARA") { 712 else if (shape == "PARA") { 714 if ( fIAxis == 1 ) { 713 if ( fIAxis == 1 ) { 715 Rpar[0] = fWidth/2./cm; 714 Rpar[0] = fWidth/2./cm; 716 } 715 } 717 else if ( Rpar[4] == 0. && Rpar[5] == 0. 716 else if ( Rpar[4] == 0. && Rpar[5] == 0. ) { 718 // only special case for axis 2,3 is 717 // only special case for axis 2,3 is supported 719 if ( fIAxis == 2 ) { 718 if ( fIAxis == 2 ) { 720 Rpar[1] = fWidth/2./cm; 719 Rpar[1] = fWidth/2./cm; 721 } 720 } 722 else if ( fIAxis == 3) { 721 else if ( fIAxis == 3) { 723 Rpar[2] = fWidth/2./cm; 722 Rpar[2] = fWidth/2./cm; 724 } 723 } 725 } 724 } 726 else 725 else 727 Exception("CreateSolid", shape); 726 Exception("CreateSolid", shape); 728 } 727 } 729 else if (shape == "SPHE") { 728 else if (shape == "SPHE") { 730 Exception("CreateSolid", shape); 729 Exception("CreateSolid", shape); 731 } 730 } 732 else if ( shape == "PGON" ) { 731 else if ( shape == "PGON" ) { 733 if ( fIAxis == 2 ) { 732 if ( fIAxis == 2 ) { 734 fOffset = Rpar[0]*deg; 733 fOffset = Rpar[0]*deg; 735 Rpar[0] = 0.; 734 Rpar[0] = 0.; 736 Rpar[1] = fWidth/deg; 735 Rpar[1] = fWidth/deg; 737 Rpar[2] = 1.; 736 Rpar[2] = 1.; 738 } 737 } 739 else 738 else 740 Exception("CreateSolid", shape); 739 Exception("CreateSolid", shape); 741 } 740 } 742 else if ( shape == "PCON" ) { 741 else if ( shape == "PCON" ) { 743 if ( fIAxis == 2 ) { 742 if ( fIAxis == 2 ) { 744 fOffset = Rpar[0]*deg; 743 fOffset = Rpar[0]*deg; 745 Rpar[0] = 0.; 744 Rpar[0] = 0.; 746 Rpar[1] = fWidth/deg; 745 Rpar[1] = fWidth/deg; 747 } 746 } 748 else { 747 else { 749 Exception("CreateSolid", shape); 748 Exception("CreateSolid", shape); 750 } 749 } 751 } 750 } 752 else { 751 else { 753 Exception("CreateSolid", "Unknown shape 752 Exception("CreateSolid", "Unknown shape" + shape); 754 } 753 } 755 754 756 // create solid and set it to fVTE 755 // create solid and set it to fVTE 757 G4bool hasNegPars; 756 G4bool hasNegPars; 758 G4bool deferred; 757 G4bool deferred; 759 G4bool okAxis[3]; 758 G4bool okAxis[3]; 760 G4VSolid* solid 759 G4VSolid* solid 761 = G3toG4MakeSolid(fVTE->GetName(), shape, 760 = G3toG4MakeSolid(fVTE->GetName(), shape, Rpar, npar, hasNegPars, deferred, okAxis); 762 761 763 if (hasNegPars) { 762 if (hasNegPars) { 764 G4String err_message = "CreateSolid VTE 763 G4String err_message = "CreateSolid VTE " + fVTE->GetName() 765 + " has negative p 764 + " has negative parameters."; 766 G4Exception("G3Division::CreateSolid()" 765 G4Exception("G3Division::CreateSolid()", "G3toG40006", 767 FatalException, err_message 766 FatalException, err_message); 768 return; 767 return; 769 } 768 } 770 769 771 // update vte 770 // update vte 772 fVTE->SetSolid(solid); 771 fVTE->SetSolid(solid); 773 fVTE->SetNRpar(npar, Rpar); 772 fVTE->SetNRpar(npar, Rpar); 774 fVTE->SetHasNegPars(hasNegPars); 773 fVTE->SetHasNegPars(hasNegPars); 775 774 776 // verbose 775 // verbose 777 // G4cout << "G3Division::CreateSolid volu 776 // G4cout << "G3Division::CreateSolid volume after: " 778 // << fVTE->GetName() << " " << sha 777 // << fVTE->GetName() << " " << shape << G4endl; 779 // G4cout << " npar,Rpar: " << npar; 778 // G4cout << " npar,Rpar: " << npar; 780 // for (G4int iii = 0; iii < npar; ++iii) 779 // for (G4int iii = 0; iii < npar; ++iii) G4cout << " " << Rpar[iii]; 781 // G4cout << G4endl; 780 // G4cout << G4endl; 782 delete [] Rpar; 781 delete [] Rpar; 783 } 782 } 784 783 785 784 786 G3VolTableEntry* G3Division::Dvn() 785 G3VolTableEntry* G3Division::Dvn() 787 { 786 { 788 // no envelope need to be created 787 // no envelope need to be created 789 788 790 // get parameters from mother 789 // get parameters from mother 791 G4String shape = fMVTE->GetShape(); 790 G4String shape = fMVTE->GetShape(); 792 G4double* Rpar = fMVTE->GetRpar(); 791 G4double* Rpar = fMVTE->GetRpar(); 793 G4int npar = fMVTE->GetNpar(); 792 G4int npar = fMVTE->GetNpar(); 794 793 795 // set width for replica and create solid 794 // set width for replica and create solid 796 fWidth = (fHighRange - fLowRange)/fNofDivisi 795 fWidth = (fHighRange - fLowRange)/fNofDivisions; 797 CreateSolid(shape, Rpar, npar); 796 CreateSolid(shape, Rpar, npar); 798 797 799 return 0; 798 return 0; 800 } 799 } 801 800 802 G3VolTableEntry* G3Division::Dvn2() 801 G3VolTableEntry* G3Division::Dvn2() 803 { 802 { 804 // to be defined as const of this class 803 // to be defined as const of this class 805 G4double Rmin = 0.0001*cm; 804 G4double Rmin = 0.0001*cm; 806 805 807 G4String shape = fMVTE->GetShape(); 806 G4String shape = fMVTE->GetShape(); 808 G4double* Rpar = fMVTE->GetRpar(); 807 G4double* Rpar = fMVTE->GetRpar(); 809 G4int npar = fMVTE->GetNpar(); 808 G4int npar = fMVTE->GetNpar(); 810 809 811 G4double c0 = fC0; 810 G4double c0 = fC0; 812 if (fAxis == kPhi) c0 = c0*deg; 811 if (fAxis == kPhi) c0 = c0*deg; 813 else c0 = c0*cm; 812 else c0 = c0*cm; 814 813 815 // create envelope (if needed) 814 // create envelope (if needed) 816 G3VolTableEntry* envVTE = 0; 815 G3VolTableEntry* envVTE = 0; 817 if( std::abs(c0 - fLowRange) > Rmin) { 816 if( std::abs(c0 - fLowRange) > Rmin) { 818 envVTE = CreateEnvelope(shape, fHighRange, 817 envVTE = CreateEnvelope(shape, fHighRange, c0, Rpar, npar); 819 Rpar = envVTE->GetRpar(); 818 Rpar = envVTE->GetRpar(); 820 npar = envVTE->GetNpar(); 819 npar = envVTE->GetNpar(); 821 } 820 } 822 821 823 // set width for replica and create solid 822 // set width for replica and create solid 824 fWidth = (fHighRange - c0)/fNofDivisions; 823 fWidth = (fHighRange - c0)/fNofDivisions; 825 CreateSolid(shape, Rpar, npar); 824 CreateSolid(shape, Rpar, npar); 826 825 827 return envVTE; 826 return envVTE; 828 } 827 } 829 828 830 G3VolTableEntry* G3Division::Dvt() 829 G3VolTableEntry* G3Division::Dvt() 831 { 830 { 832 // to be defined as const of this class 831 // to be defined as const of this class 833 G4double Rmin = 0.0001*cm; 832 G4double Rmin = 0.0001*cm; 834 833 835 // get parameters from mother 834 // get parameters from mother 836 G4String shape = fMVTE->GetShape(); 835 G4String shape = fMVTE->GetShape(); 837 G4double* Rpar = fMVTE->GetRpar(); 836 G4double* Rpar = fMVTE->GetRpar(); 838 G4int npar = fMVTE->GetNpar(); 837 G4int npar = fMVTE->GetNpar(); 839 838 840 // calculate the number of divisions 839 // calculate the number of divisions 841 G4int ndvmx = fNofDivisions; 840 G4int ndvmx = fNofDivisions; 842 G4double step = fStep; 841 G4double step = fStep; 843 842 844 if (fAxis == kPhi) step = step*deg; 843 if (fAxis == kPhi) step = step*deg; 845 else step = step*cm; 844 else step = step*cm; 846 845 847 G4int ndiv = G4int((fHighRange - fLowRange + 846 G4int ndiv = G4int((fHighRange - fLowRange + Rmin)/step); 848 // to be added warning 847 // to be added warning 849 if (ndvmx > 255) ndvmx = 255; 848 if (ndvmx > 255) ndvmx = 255; 850 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx 849 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx; 851 850 852 // create envVTE (if needed) 851 // create envVTE (if needed) 853 G3VolTableEntry* envVTE = 0; 852 G3VolTableEntry* envVTE = 0; 854 G4double delta = std::abs((fHighRange - fLow 853 G4double delta = std::abs((fHighRange - fLowRange) - ndiv*step); 855 if (delta > Rmin) { 854 if (delta > Rmin) { 856 envVTE 855 envVTE 857 = CreateEnvelope(shape, fHighRange-delt 856 = CreateEnvelope(shape, fHighRange-delta/2., fLowRange+delta/2., 858 Rpar, npar); 857 Rpar, npar); 859 Rpar = envVTE->GetRpar(); 858 Rpar = envVTE->GetRpar(); 860 npar = envVTE->GetNpar(); 859 npar = envVTE->GetNpar(); 861 } 860 } 862 861 863 // set width for replica and create solid 862 // set width for replica and create solid 864 fWidth = step; 863 fWidth = step; 865 fNofDivisions = ndiv; 864 fNofDivisions = ndiv; 866 CreateSolid(shape, Rpar, npar); 865 CreateSolid(shape, Rpar, npar); 867 866 868 return envVTE; 867 return envVTE; 869 } 868 } 870 869 871 G3VolTableEntry* G3Division::Dvt2() 870 G3VolTableEntry* G3Division::Dvt2() 872 { 871 { 873 // to be defined as const of this class 872 // to be defined as const of this class 874 G4double Rmin = 0.0001*cm; 873 G4double Rmin = 0.0001*cm; 875 874 876 // get parameters from mother 875 // get parameters from mother 877 G4String shape = fMVTE->GetShape(); 876 G4String shape = fMVTE->GetShape(); 878 G4double* Rpar = fMVTE->GetRpar(); 877 G4double* Rpar = fMVTE->GetRpar(); 879 G4int npar = fMVTE->GetNpar(); 878 G4int npar = fMVTE->GetNpar(); 880 879 881 // calculate the number of divisions 880 // calculate the number of divisions 882 G4int ndvmx = fNofDivisions; 881 G4int ndvmx = fNofDivisions; 883 G4double step = fStep; 882 G4double step = fStep; 884 G4double c0 = fC0; 883 G4double c0 = fC0; 885 884 886 if(fAxis == kPhi){ 885 if(fAxis == kPhi){ 887 step = step*deg; 886 step = step*deg; 888 c0 = c0*deg; 887 c0 = c0*deg; 889 } 888 } 890 else { 889 else { 891 step = step*cm; 890 step = step*cm; 892 c0 = c0*cm; 891 c0 = c0*cm; 893 } 892 } 894 893 895 G4int ndiv = G4int((fHighRange - c0 + Rmin)/ 894 G4int ndiv = G4int((fHighRange - c0 + Rmin)/step); 896 // to be added warning 895 // to be added warning 897 if (ndvmx > 255) ndvmx = 255; 896 if (ndvmx > 255) ndvmx = 255; 898 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx 897 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx; 899 898 900 // create envelope (if needed) 899 // create envelope (if needed) 901 G3VolTableEntry* envVTE = 0; 900 G3VolTableEntry* envVTE = 0; 902 G4double delta = std::abs((fHighRange - c0) 901 G4double delta = std::abs((fHighRange - c0) - ndiv*step); 903 if (std::abs(c0 - fLowRange) > Rmin) { 902 if (std::abs(c0 - fLowRange) > Rmin) { 904 envVTE 903 envVTE 905 = CreateEnvelope(shape, fHighRange-delta 904 = CreateEnvelope(shape, fHighRange-delta/2., c0+delta/2., Rpar, npar); 906 Rpar = envVTE->GetRpar(); 905 Rpar = envVTE->GetRpar(); 907 npar = envVTE->GetNpar(); 906 npar = envVTE->GetNpar(); 908 } 907 } 909 908 910 // set with for replica and create solid 909 // set with for replica and create solid 911 fWidth = step; 910 fWidth = step; 912 fNofDivisions = ndiv; 911 fNofDivisions = ndiv; 913 CreateSolid(shape, Rpar, npar); 912 CreateSolid(shape, Rpar, npar); 914 913 915 return envVTE; 914 return envVTE; 916 } 915 } 917 916