Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G3Division.cc,v 1.16 2004/12/07 08:33:38 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-07-01 $ 27 // 26 // 28 // by I.Hrivnacova, V.Berejnoi 13.10.99 27 // by I.Hrivnacova, V.Berejnoi 13.10.99 29 28 30 #include <assert.h> << 31 << 32 #include "G3Division.hh" 29 #include "G3Division.hh" 33 #include "G3VolTableEntry.hh" 30 #include "G3VolTableEntry.hh" 34 #include "G3toG4MakeSolid.hh" 31 #include "G3toG4MakeSolid.hh" 35 #include "G4Para.hh" 32 #include "G4Para.hh" 36 #include "G3Pos.hh" 33 #include "G3Pos.hh" 37 #include "G4SystemOfUnits.hh" << 38 #include "G4LogicalVolume.hh" 34 #include "G4LogicalVolume.hh" 39 #include "G4VPhysicalVolume.hh" 35 #include "G4VPhysicalVolume.hh" 40 #include "G4PVPlacement.hh" 36 #include "G4PVPlacement.hh" 41 #include "G4PVReplica.hh" 37 #include "G4PVReplica.hh" 42 #ifndef G3G4_NO_REFLECTION 38 #ifndef G3G4_NO_REFLECTION 43 #include "G4ReflectionFactory.hh" 39 #include "G4ReflectionFactory.hh" 44 #endif 40 #endif 45 41 46 G3VolTableEntry* G4CreateVTE(G4String vname, G 42 G3VolTableEntry* G4CreateVTE(G4String vname, G4String shape, G4int nmed, 47 G4double Rpar[] 43 G4double Rpar[], G4int npar); 48 44 49 G3Division::G3Division(G3DivType type, G3VolTa 45 G3Division::G3Division(G3DivType type, G3VolTableEntry* vte, 50 G3VolTableEntry* mvte, G4int n 46 G3VolTableEntry* mvte, G4int nofDivisions, 51 G4int iaxis, G4int nmed, G4double c0, G4do 47 G4int iaxis, G4int nmed, G4double c0, G4double step) 52 : fType(type), 48 : fType(type), 53 fVTE(vte), 49 fVTE(vte), 54 fMVTE(mvte), 50 fMVTE(mvte), 55 fNofDivisions(nofDivisions), 51 fNofDivisions(nofDivisions), 56 fIAxis(iaxis), 52 fIAxis(iaxis), 57 fNmed(nmed), 53 fNmed(nmed), 58 fC0(c0), 54 fC0(c0), 59 fStep(step), 55 fStep(step), 60 fLowRange(0.), 56 fLowRange(0.), 61 fHighRange(0.), 57 fHighRange(0.), 62 fWidth(0.), 58 fWidth(0.), 63 fOffset(0.), 59 fOffset(0.), 64 fAxis(kXAxis) 60 fAxis(kXAxis) 65 { 61 { 66 fVTE->SetHasNegPars(true); 62 fVTE->SetHasNegPars(true); 67 } 63 } 68 64 69 G3Division::G3Division(G3VolTableEntry* vte, G 65 G3Division::G3Division(G3VolTableEntry* vte, G3VolTableEntry* mvte, 70 const G3Division& divis 66 const G3Division& division) 71 : fVTE(vte), 67 : fVTE(vte), 72 fMVTE(mvte) 68 fMVTE(mvte) 73 { 69 { 74 // only "input" parameters are copied from d 70 // only "input" parameters are copied from division 75 fType = division.fType; 71 fType = division.fType; 76 fNofDivisions = division.fNofDivisions; 72 fNofDivisions = division.fNofDivisions; 77 fIAxis = division.fIAxis; 73 fIAxis = division.fIAxis; 78 fNmed = division.fNmed; 74 fNmed = division.fNmed; 79 fC0 = division.fC0; 75 fC0 = division.fC0; 80 fStep = division.fStep; 76 fStep = division.fStep; 81 77 82 // other parameters are set as in standard c 78 // other parameters are set as in standard constructor 83 fLowRange = 0.; 79 fLowRange = 0.; 84 fHighRange = 0.; 80 fHighRange = 0.; 85 fWidth = 0.; 81 fWidth = 0.; 86 fOffset = 0.; 82 fOffset = 0.; 87 fAxis = kXAxis; 83 fAxis = kXAxis; 88 fVTE->SetHasNegPars(true); 84 fVTE->SetHasNegPars(true); 89 } 85 } 90 86 91 G3Division::~G3Division() 87 G3Division::~G3Division() 92 {} 88 {} 93 89 94 // public methods 90 // public methods 95 91 96 void G3Division::UpdateVTE() 92 void G3Division::UpdateVTE() 97 { 93 { 98 if (fVTE->HasNegPars() && !(fMVTE->HasNegPar 94 if (fVTE->HasNegPars() && !(fMVTE->HasNegPars())) { 99 95 100 // set nmed from mother 96 // set nmed from mother 101 if (fNmed == 0) fNmed = fMVTE->GetNmed(); 97 if (fNmed == 0) fNmed = fMVTE->GetNmed(); 102 fVTE->SetNmed(fNmed); 98 fVTE->SetNmed(fNmed); 103 99 104 SetRangeAndAxis(); 100 SetRangeAndAxis(); 105 101 106 // create envelope (if necessary) 102 // create envelope (if necessary) 107 // and solid 103 // and solid 108 G3VolTableEntry* envVTE = 0; 104 G3VolTableEntry* envVTE = 0; 109 if (fType == kDvn) envVTE = Dvn(); 105 if (fType == kDvn) envVTE = Dvn(); 110 else if (fType == kDvn2) envVTE = Dvn2(); 106 else if (fType == kDvn2) envVTE = Dvn2(); 111 else if (fType == kDvt) envVTE = Dvt(); 107 else if (fType == kDvt) envVTE = Dvt(); 112 else if (fType == kDvt2) envVTE = Dvt2(); 108 else if (fType == kDvt2) envVTE = Dvt2(); 113 109 114 if (envVTE) { 110 if (envVTE) { 115 // reset mother <-> daughter 111 // reset mother <-> daughter 116 fMVTE->ReplaceDaughter(fVTE, envVTE); 112 fMVTE->ReplaceDaughter(fVTE, envVTE); 117 fVTE->ReplaceMother(fMVTE, envVTE); 113 fVTE->ReplaceMother(fMVTE, envVTE); 118 envVTE->AddDaughter(fVTE); 114 envVTE->AddDaughter(fVTE); 119 envVTE->AddMother(fMVTE); 115 envVTE->AddMother(fMVTE); 120 116 121 // replace mother with envelope 117 // replace mother with envelope 122 fMVTE = envVTE; 118 fMVTE = envVTE; 123 } 119 } 124 } 120 } 125 } 121 } 126 122 127 void G3Division::CreatePVReplica() 123 void G3Division::CreatePVReplica() 128 { 124 { 129 G4String name = fVTE->GetName(); 125 G4String name = fVTE->GetName(); 130 G4LogicalVolume* lv = fVTE->GetLV(); 126 G4LogicalVolume* lv = fVTE->GetLV(); 131 G4LogicalVolume* mlv = fMVTE->GetLV(); 127 G4LogicalVolume* mlv = fMVTE->GetLV(); 132 128 133 G4String shape = fMVTE->GetShape(); 129 G4String shape = fMVTE->GetShape(); 134 if (shape == "PARA") { 130 if (shape == "PARA") { 135 // The para volume cannot be replicated us 131 // The para volume cannot be replicated using G4PVReplica. 136 // (Replicating a volume along a cartesian 132 // (Replicating a volume along a cartesian axis means "slicing" it 137 // with slices -perpendicular- to that axi 133 // with slices -perpendicular- to that axis.) 138 134 139 // position the replicated elements 135 // position the replicated elements 140 for (G4int i=0; i<fNofDivisions; i++) { 136 for (G4int i=0; i<fNofDivisions; i++) { 141 G4ThreeVector position = G4ThreeVector( 137 G4ThreeVector position = G4ThreeVector(); 142 position[fIAxis-1] = fLowRange + fWidth 138 position[fIAxis-1] = fLowRange + fWidth/2. + i*fWidth; 143 if (position.y()!=0.) 139 if (position.y()!=0.) 144 position.setX(position.y()*((G4Para*) 140 position.setX(position.y()*((G4Para*)lv->GetSolid())->GetTanAlpha()); 145 141 146 #ifndef G3G4_NO_REFLECTION 142 #ifndef G3G4_NO_REFLECTION 147 G4ReflectionFactory::Instance() 143 G4ReflectionFactory::Instance() 148 ->Place(G4Translate3D(position), name 144 ->Place(G4Translate3D(position), name, lv, mlv, 0, i); 149 145 150 #else 146 #else 151 new G4PVPlacement(0, position, lv, name 147 new G4PVPlacement(0, position, lv, name, mlv, 0, i); 152 148 153 #endif 149 #endif 154 } 150 } 155 151 156 // G4PVReplica cannot be created 152 // G4PVReplica cannot be created 157 return; 153 return; 158 } 154 } 159 155 160 #ifdef G3G4DEBUG 156 #ifdef G3G4DEBUG 161 G4cout << "Create G4PVReplica name " << na 157 G4cout << "Create G4PVReplica name " << name << " logical volume name " 162 << lv->GetName() << " mother logical volm 158 << lv->GetName() << " mother logical volme name " 163 << mlv->GetName() << " axis " << fAxis << 159 << mlv->GetName() << " axis " << fAxis << " ndivisions " 164 << fNofDivisions << " width " << fWidth < 160 << fNofDivisions << " width " << fWidth << " Offset " 165 << fOffset << G4endl; 161 << fOffset << G4endl; 166 #endif 162 #endif 167 163 168 #ifndef G3G4_NO_REFLECTION 164 #ifndef G3G4_NO_REFLECTION 169 G4ReflectionFactory::Instance() 165 G4ReflectionFactory::Instance() 170 ->Replicate(name, lv, mlv, fAxis, fNofDivi 166 ->Replicate(name, lv, mlv, fAxis, fNofDivisions, fWidth, fOffset); 171 167 172 #else 168 #else 173 new G4PVReplica(name, lv, mlv, fAxis, fNofDi 169 new G4PVReplica(name, lv, mlv, fAxis, fNofDivisions, fWidth, fOffset); 174 170 175 #endif 171 #endif 176 } 172 } 177 173 178 // private methods 174 // private methods 179 175 180 void G3Division::Exception(G4String where, G4S << 176 void G3Division::Exception(G4String where, G4String what) { 181 { << 177 G4Exception("G3Division::" + where + " for " + what + " is not implemented"); 182 G4String err_message = "G3Division::" + wher << 183 + what + " is not imple << 184 G4Exception("G3Division::Exception()", "G3to << 185 FatalException, err_message); << 186 return; << 187 } 178 } 188 179 189 void G3Division::SetRangeAndAxis() 180 void G3Division::SetRangeAndAxis() 190 // set fHighRange, fLowRange, fAxis 181 // set fHighRange, fLowRange, fAxis 191 { 182 { 192 G4String shape = fMVTE->GetShape(); 183 G4String shape = fMVTE->GetShape(); 193 G4double *Rpar = fMVTE->GetRpar(); 184 G4double *Rpar = fMVTE->GetRpar(); 194 185 195 switch (fIAxis) { 186 switch (fIAxis) { 196 case 1: fAxis = kXAxis; 187 case 1: fAxis = kXAxis; 197 break; 188 break; 198 case 2: fAxis = kYAxis; 189 case 2: fAxis = kYAxis; 199 break; 190 break; 200 case 3: fAxis = kZAxis; 191 case 3: fAxis = kZAxis; 201 break; 192 break; 202 default: G4Exception("G3Division::SetRan << 193 default: G4Exception("G3Division: wrong iaxis defenition"); 203 FatalException, "W << 204 } 194 } 205 195 206 if ( shape == "BOX" ) { 196 if ( shape == "BOX" ) { 207 fHighRange = Rpar[fIAxis-1]*cm; 197 fHighRange = Rpar[fIAxis-1]*cm; 208 fLowRange = -fHighRange; 198 fLowRange = -fHighRange; 209 } 199 } 210 else if ( shape == "TRD1" ) { 200 else if ( shape == "TRD1" ) { 211 if (fIAxis == 1){ 201 if (fIAxis == 1){ 212 fHighRange = std::max(Rpar[0]*cm, Rpar 202 fHighRange = std::max(Rpar[0]*cm, Rpar[1]*cm); 213 } 203 } 214 else if( fIAxis == 2) { 204 else if( fIAxis == 2) { 215 fHighRange = Rpar[2]*cm; 205 fHighRange = Rpar[2]*cm; 216 } 206 } 217 else if( fIAxis == 3) { 207 else if( fIAxis == 3) { 218 fHighRange = Rpar[3]*cm; 208 fHighRange = Rpar[3]*cm; 219 } 209 } 220 fLowRange = - fHighRange; 210 fLowRange = - fHighRange; 221 } 211 } 222 else if ( shape == "TRD2" ) { 212 else if ( shape == "TRD2" ) { 223 if (fIAxis == 1){ 213 if (fIAxis == 1){ 224 fHighRange = std::max(Rpar[0]*cm, Rpar 214 fHighRange = std::max(Rpar[0]*cm, Rpar[1]*cm); 225 } 215 } 226 else if( fIAxis == 2) { 216 else if( fIAxis == 2) { 227 fHighRange = std::max(Rpar[2]*cm, Rpar 217 fHighRange = std::max(Rpar[2]*cm, Rpar[3]*cm); 228 } 218 } 229 else if( fIAxis == 3) { 219 else if( fIAxis == 3) { 230 fHighRange = Rpar[4]*cm; 220 fHighRange = Rpar[4]*cm; 231 } 221 } 232 } 222 } 233 else if ( shape == "TRAP" ) { 223 else if ( shape == "TRAP" ) { 234 if ( fIAxis == 3 ) fHighRange = Rpar[0]* 224 if ( fIAxis == 3 ) fHighRange = Rpar[0]*cm; 235 else fHighRange = 0.; 225 else fHighRange = 0.; 236 fLowRange = -fHighRange; 226 fLowRange = -fHighRange; 237 } 227 } 238 else if ( shape == "TUBE" ) { 228 else if ( shape == "TUBE" ) { 239 if (fIAxis == 1){ 229 if (fIAxis == 1){ 240 fHighRange = Rpar[1]*cm; 230 fHighRange = Rpar[1]*cm; 241 fLowRange = Rpar[0]*cm; 231 fLowRange = Rpar[0]*cm; 242 fAxis = kRho; 232 fAxis = kRho; 243 } 233 } 244 else if( fIAxis == 2) { 234 else if( fIAxis == 2) { 245 fHighRange = 360.*deg; 235 fHighRange = 360.*deg; 246 fLowRange = 0.; 236 fLowRange = 0.; 247 fAxis = kPhi; 237 fAxis = kPhi; 248 } 238 } 249 else if( fIAxis == 3) { 239 else if( fIAxis == 3) { 250 fHighRange = Rpar[2]*cm; 240 fHighRange = Rpar[2]*cm; 251 fLowRange = -fHighRange; 241 fLowRange = -fHighRange; 252 } 242 } 253 } 243 } 254 else if ( shape == "TUBS" ) { 244 else if ( shape == "TUBS" ) { 255 if (fIAxis == 1){ 245 if (fIAxis == 1){ 256 fHighRange = Rpar[1]*cm; 246 fHighRange = Rpar[1]*cm; 257 fLowRange = Rpar[0]*cm; 247 fLowRange = Rpar[0]*cm; 258 fAxis = kRho; 248 fAxis = kRho; 259 } 249 } 260 else if( fIAxis == 2) { 250 else if( fIAxis == 2) { 261 251 262 fLowRange = Rpar[3]*deg; 252 fLowRange = Rpar[3]*deg; 263 fHighRange = Rpar[4]*deg - fLowRange; 253 fHighRange = Rpar[4]*deg - fLowRange; 264 if ( Rpar[4]*deg <= fLowRange )fHighRan 254 if ( Rpar[4]*deg <= fLowRange )fHighRange = fHighRange + 360.*deg; 265 fHighRange = fHighRange + fLowRange; 255 fHighRange = fHighRange + fLowRange; 266 fAxis = kPhi; 256 fAxis = kPhi; 267 } 257 } 268 else if( fIAxis == 3) { 258 else if( fIAxis == 3) { 269 fHighRange = Rpar[2]*cm; 259 fHighRange = Rpar[2]*cm; 270 fLowRange = -fHighRange; 260 fLowRange = -fHighRange; 271 } 261 } 272 } 262 } 273 else if ( shape == "CONE" ) { 263 else if ( shape == "CONE" ) { 274 if (fIAxis == 1){ 264 if (fIAxis == 1){ 275 fHighRange = std::max(Rpar[2]*cm,Rpar[ 265 fHighRange = std::max(Rpar[2]*cm,Rpar[4]*cm); 276 fLowRange = std::max(Rpar[1]*cm,Rpar[3 266 fLowRange = std::max(Rpar[1]*cm,Rpar[3]*cm); 277 fAxis = kRho; 267 fAxis = kRho; 278 } 268 } 279 else if( fIAxis == 2) { 269 else if( fIAxis == 2) { 280 270 281 fLowRange = 0.; 271 fLowRange = 0.; 282 fHighRange = 360.*deg; 272 fHighRange = 360.*deg; 283 fAxis = kPhi; 273 fAxis = kPhi; 284 } 274 } 285 else if( fIAxis == 3) { 275 else if( fIAxis == 3) { 286 fHighRange = Rpar[0]*cm; 276 fHighRange = Rpar[0]*cm; 287 fLowRange = -fHighRange; 277 fLowRange = -fHighRange; 288 } 278 } 289 } 279 } 290 else if ( shape == "CONS" ) { 280 else if ( shape == "CONS" ) { 291 if (fIAxis == 1){ 281 if (fIAxis == 1){ 292 fHighRange = std::max(Rpar[2]*cm,Rpar[ 282 fHighRange = std::max(Rpar[2]*cm,Rpar[4]*cm); 293 fLowRange = std::max(Rpar[1]*cm,Rpar[3 283 fLowRange = std::max(Rpar[1]*cm,Rpar[3]*cm); 294 fAxis = kRho; 284 fAxis = kRho; 295 } 285 } 296 else if( fIAxis == 2) { 286 else if( fIAxis == 2) { 297 287 298 fLowRange = Rpar[5]*deg; 288 fLowRange = Rpar[5]*deg; 299 fHighRange = Rpar[6]*deg - fLowRange; 289 fHighRange = Rpar[6]*deg - fLowRange; 300 if ( Rpar[6]*deg <= fLowRange )fHighRan 290 if ( Rpar[6]*deg <= fLowRange )fHighRange = fHighRange + 360.*deg; 301 fHighRange = fHighRange + fLowRange; 291 fHighRange = fHighRange + fLowRange; 302 fAxis = kPhi; 292 fAxis = kPhi; 303 } 293 } 304 else if( fIAxis == 3) { 294 else if( fIAxis == 3) { 305 fHighRange = Rpar[2]*cm; 295 fHighRange = Rpar[2]*cm; 306 fLowRange = -fHighRange; 296 fLowRange = -fHighRange; 307 } 297 } 308 } 298 } 309 else if ( shape == "SPHE" ) { 299 else if ( shape == "SPHE" ) { 310 if (fIAxis == 1){ 300 if (fIAxis == 1){ 311 fHighRange = Rpar[1]*cm; 301 fHighRange = Rpar[1]*cm; 312 fLowRange = Rpar[0]*cm; 302 fLowRange = Rpar[0]*cm; 313 fAxis = kRho; 303 fAxis = kRho; 314 } 304 } 315 else if( fIAxis == 2) { 305 else if( fIAxis == 2) { 316 fLowRange = std::min(Rpar[2]*deg,Rpar[3 306 fLowRange = std::min(Rpar[2]*deg,Rpar[3]*deg); 317 fHighRange = std::max(Rpar[2]*deg,Rpar[ 307 fHighRange = std::max(Rpar[2]*deg,Rpar[3]*deg); 318 fAxis = kPhi; 308 fAxis = kPhi; 319 } 309 } 320 else if( fIAxis == 3) { 310 else if( fIAxis == 3) { 321 fLowRange = std::min(Rpar[4]*deg,Rpar[5 311 fLowRange = std::min(Rpar[4]*deg,Rpar[5]*deg); 322 fHighRange = std::max(Rpar[4]*deg,Rpar[ 312 fHighRange = std::max(Rpar[4]*deg,Rpar[5]*deg); 323 fAxis = kPhi; // ?????? 313 fAxis = kPhi; // ?????? 324 } 314 } 325 } 315 } 326 else if ( shape == "PARA" ) { 316 else if ( shape == "PARA" ) { 327 fHighRange = Rpar[fIAxis-1]*cm; 317 fHighRange = Rpar[fIAxis-1]*cm; 328 fLowRange = -fHighRange; 318 fLowRange = -fHighRange; 329 } 319 } 330 else if ( shape == "PGON" ) { 320 else if ( shape == "PGON" ) { 331 G4int i; 321 G4int i; 332 G4int nz = G4int(Rpar[3]); 322 G4int nz = G4int(Rpar[3]); 333 323 334 G4double pPhi1 = Rpar[0]*deg; 324 G4double pPhi1 = Rpar[0]*deg; 335 G4double dPhi = Rpar[1]*deg; 325 G4double dPhi = Rpar[1]*deg; 336 326 337 G4double *DzArray = new G4double[nz]; 327 G4double *DzArray = new G4double[nz]; 338 G4double *Rmax = new G4double[nz]; 328 G4double *Rmax = new G4double[nz]; 339 G4double *Rmin = new G4double[nz]; 329 G4double *Rmin = new G4double[nz]; 340 G4double rangehi[3], rangelo[3]; 330 G4double rangehi[3], rangelo[3]; 341 rangehi[0] = -kInfinity ; 331 rangehi[0] = -kInfinity ; 342 rangelo[0] = kInfinity ; 332 rangelo[0] = kInfinity ; 343 rangehi[2] = -kInfinity ; 333 rangehi[2] = -kInfinity ; 344 rangelo[2] = kInfinity ; 334 rangelo[2] = kInfinity ; 345 335 346 for(i=0; i<nz; i++) 336 for(i=0; i<nz; i++) 347 { 337 { 348 G4int i4=3*i+4; 338 G4int i4=3*i+4; 349 G4int i5=i4+1; 339 G4int i5=i4+1; 350 G4int i6=i4+2; 340 G4int i6=i4+2; 351 341 352 DzArray[i] = Rpar[i4]*cm; 342 DzArray[i] = Rpar[i4]*cm; 353 Rmin[i] = Rpar[i5]*cm; 343 Rmin[i] = Rpar[i5]*cm; 354 Rmax[i] = Rpar[i6]*cm; 344 Rmax[i] = Rpar[i6]*cm; 355 rangelo[0] = std::min(rangelo[0], 345 rangelo[0] = std::min(rangelo[0], Rmin[i]); 356 rangehi[0] = std::max(rangehi[0], 346 rangehi[0] = std::max(rangehi[0], Rmax[i]); 357 rangelo[2] = std::min(rangelo[2], 347 rangelo[2] = std::min(rangelo[2], DzArray[i]); 358 rangehi[2] = std::max(rangehi[2], 348 rangehi[2] = std::max(rangehi[2], DzArray[i]); 359 } 349 } 360 for (i=0;i<nz;i++){ 350 for (i=0;i<nz;i++){ 361 assert(Rmin[i]>=0 && Rmax[i]>=Rmin 351 assert(Rmin[i]>=0 && Rmax[i]>=Rmin[i]); 362 } 352 } 363 rangehi[1] = pPhi1 + dPhi; 353 rangehi[1] = pPhi1 + dPhi; 364 rangelo[1] = pPhi1; 354 rangelo[1] = pPhi1; 365 fHighRange = rangehi[fIAxis-1]; 355 fHighRange = rangehi[fIAxis-1]; 366 fLowRange = rangelo[fIAxis-1]; 356 fLowRange = rangelo[fIAxis-1]; 367 if (fIAxis == 1)fAxis = kRho; 357 if (fIAxis == 1)fAxis = kRho; 368 else if (fIAxis == 2)fAxis = kPhi; 358 else if (fIAxis == 2)fAxis = kPhi; 369 else if (fIAxis == 3)fAxis = kZAxis; 359 else if (fIAxis == 3)fAxis = kZAxis; 370 360 371 delete [] DzArray; 361 delete [] DzArray; 372 delete [] Rmin; 362 delete [] Rmin; 373 delete [] Rmax; 363 delete [] Rmax; 374 364 375 } 365 } 376 else if ( shape == "PCON" ) { 366 else if ( shape == "PCON" ) { 377 367 378 G4int i; 368 G4int i; 379 G4double pPhi1 = Rpar[0]*deg; 369 G4double pPhi1 = Rpar[0]*deg; 380 G4double dPhi = Rpar[1]*deg; 370 G4double dPhi = Rpar[1]*deg; 381 G4int nz = G4int(Rpar[2]); 371 G4int nz = G4int(Rpar[2]); 382 372 383 G4double *DzArray = new G4double[nz]; 373 G4double *DzArray = new G4double[nz]; 384 G4double *Rmax = new G4double[nz]; 374 G4double *Rmax = new G4double[nz]; 385 G4double *Rmin = new G4double[nz]; 375 G4double *Rmin = new G4double[nz]; 386 G4double rangehi[3],rangelo[3]; 376 G4double rangehi[3],rangelo[3]; 387 377 388 rangehi[0] = -kInfinity ; 378 rangehi[0] = -kInfinity ; 389 rangelo[0] = kInfinity ; 379 rangelo[0] = kInfinity ; 390 rangehi[2] = -kInfinity ; 380 rangehi[2] = -kInfinity ; 391 rangelo[2] = kInfinity ; 381 rangelo[2] = kInfinity ; 392 382 393 for(i=0; i<nz; i++){ 383 for(i=0; i<nz; i++){ 394 G4int i4=3*i+3; 384 G4int i4=3*i+3; 395 G4int i5=i4+1; 385 G4int i5=i4+1; 396 G4int i6=i4+2; 386 G4int i6=i4+2; 397 387 398 DzArray[i] = Rpar[i4]*cm; 388 DzArray[i] = Rpar[i4]*cm; 399 Rmin[i] = Rpar[i5]*cm; 389 Rmin[i] = Rpar[i5]*cm; 400 Rmax[i] = Rpar[i6]*cm; 390 Rmax[i] = Rpar[i6]*cm; 401 rangelo[0] = std::min(rangelo[0], 391 rangelo[0] = std::min(rangelo[0], Rmin[i]); 402 rangehi[0] = std::max(rangehi[0], 392 rangehi[0] = std::max(rangehi[0], Rmax[i]); 403 rangelo[2] = std::min(rangelo[2], 393 rangelo[2] = std::min(rangelo[2], DzArray[i]); 404 rangehi[2] = std::max(rangehi[2], 394 rangehi[2] = std::max(rangehi[2], DzArray[i]); 405 } 395 } 406 for (i=0;i<nz;i++){ 396 for (i=0;i<nz;i++){ 407 assert(Rmin[i]>=0 && Rmax[i]>=Rmin 397 assert(Rmin[i]>=0 && Rmax[i]>=Rmin[i]); 408 } 398 } 409 rangehi[1] = pPhi1 + dPhi; 399 rangehi[1] = pPhi1 + dPhi; 410 rangelo[1] = pPhi1; 400 rangelo[1] = pPhi1; 411 fHighRange = rangehi[fIAxis-1]; 401 fHighRange = rangehi[fIAxis-1]; 412 fLowRange = rangelo[fIAxis-1]; 402 fLowRange = rangelo[fIAxis-1]; 413 if (fIAxis == 1)fAxis = kRho; 403 if (fIAxis == 1)fAxis = kRho; 414 else if (fIAxis == 2)fAxis = kPhi; 404 else if (fIAxis == 2)fAxis = kPhi; 415 else if (fIAxis == 3)fAxis = kZAxis; 405 else if (fIAxis == 3)fAxis = kZAxis; 416 406 417 407 418 delete [] DzArray; 408 delete [] DzArray; 419 delete [] Rmin; 409 delete [] Rmin; 420 delete [] Rmax; 410 delete [] Rmax; 421 } 411 } 422 else if ( shape == "ELTU" || shape == "HY 412 else if ( shape == "ELTU" || shape == "HYPE" || shape == "GTRA" || 423 shape == "CTUB") { 413 shape == "CTUB") { 424 Exception("SetRangeAndAxis", shape); 414 Exception("SetRangeAndAxis", shape); 425 } 415 } 426 else { 416 else { 427 Exception("SetRangeAndAxis", "Unknown s 417 Exception("SetRangeAndAxis", "Unknown shape" + shape); 428 } 418 } 429 419 430 // verbose 420 // verbose 431 #ifdef G3G4DEBUG 421 #ifdef G3G4DEBUG 432 G4cout << "Shape " << shape << " SetRang 422 G4cout << "Shape " << shape << " SetRangeAndAxis: " 433 << fLowRange << " " << fHighRange << " 423 << fLowRange << " " << fHighRange << " " << fAxis << G4endl; 434 #endif 424 #endif 435 } 425 } 436 426 437 G3VolTableEntry* G3Division::CreateEnvelope(G4 427 G3VolTableEntry* G3Division::CreateEnvelope(G4String shape, G4double hi, 438 G4double lo, G4 428 G4double lo, G4double par[], G4int npar) 439 // create new VTE with G3Pos corresponding to 429 // create new VTE with G3Pos corresponding to the 440 // envelope of divided volume 430 // envelope of divided volume 441 { 431 { 442 // verbose 432 // verbose 443 // G4cout << " G3Division::CreateEnvelope 433 // G4cout << " G3Division::CreateEnvelope " << "fIAaxis= " << fIAxis 444 // << " hi= " << hi 434 // << " hi= " << hi 445 // << " lo= " << lo 435 // << " lo= " << lo 446 // << G4endl; 436 // << G4endl; 447 437 448 G4double *Rpar = new G4double[npar+2]; 438 G4double *Rpar = new G4double[npar+2]; 449 for (G4int i=0; i<npar; ++i){ Rpar[i] = pa 439 for (G4int i=0; i<npar; ++i){ Rpar[i] = par[i];} 450 G4double pos[3] = {0.,0.,0.}; 440 G4double pos[3] = {0.,0.,0.}; 451 441 452 if ( shape == "BOX" ) { 442 if ( shape == "BOX" ) { 453 Rpar[fIAxis-1] = (hi - lo)/2./cm; 443 Rpar[fIAxis-1] = (hi - lo)/2./cm; 454 pos [fIAxis-1] = (hi + lo)/2.; 444 pos [fIAxis-1] = (hi + lo)/2.; 455 } 445 } 456 else if ( shape == "TRD1" ) { 446 else if ( shape == "TRD1" ) { 457 if ( fIAxis == 1 || fIAxis == 2 ) { 447 if ( fIAxis == 1 || fIAxis == 2 ) { 458 Exception("CreateEnvelope","TRD1-x,y") 448 Exception("CreateEnvelope","TRD1-x,y"); 459 } 449 } 460 else if ( fIAxis == 3 ) { 450 else if ( fIAxis == 3 ) { 461 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 451 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 462 G4double tn, x1, z1; 452 G4double tn, x1, z1; 463 tn = (Rpar[1] - Rpar[0])/(2.* Rpar[3]) 453 tn = (Rpar[1] - Rpar[0])/(2.* Rpar[3]); 464 x1 = Rpar[0]; z1 = -Rpar[3]; 454 x1 = Rpar[0]; z1 = -Rpar[3]; 465 Rpar[0] = x1 + tn * (lo/cm - z1); 455 Rpar[0] = x1 + tn * (lo/cm - z1); 466 Rpar[1] = x1 + tn * (hi/cm - z1); 456 Rpar[1] = x1 + tn * (hi/cm - z1); 467 Rpar[3] = (hi - lo)/2./cm; 457 Rpar[3] = (hi - lo)/2./cm; 468 pos[2] = (hi + lo)/2.; 458 pos[2] = (hi + lo)/2.; 469 } 459 } 470 } 460 } 471 else if ( shape == "TRD2" ) { 461 else if ( shape == "TRD2" ) { 472 if ( fIAxis == 1 || fIAxis == 2) { 462 if ( fIAxis == 1 || fIAxis == 2) { 473 Exception("CreateEnvelope","TRD2-x,y") 463 Exception("CreateEnvelope","TRD2-x,y"); 474 } 464 } 475 else if ( fIAxis == 3 ) { 465 else if ( fIAxis == 3 ) { 476 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 466 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 477 // y = y1 + (c-z1)(y2 -y1)/(z2-z1) 467 // y = y1 + (c-z1)(y2 -y1)/(z2-z1) 478 G4double tn1, tn2, x1, y1, z1; 468 G4double tn1, tn2, x1, y1, z1; 479 tn1 = (Rpar[1] - Rpar[0])/(2.* Rpar[4] 469 tn1 = (Rpar[1] - Rpar[0])/(2.* Rpar[4]); 480 tn2 = (Rpar[3] - Rpar[2])/(2.* Rpar[4] 470 tn2 = (Rpar[3] - Rpar[2])/(2.* Rpar[4]); 481 x1 = Rpar[0]; y1 = Rpar[2]; z1 = -Rpar 471 x1 = Rpar[0]; y1 = Rpar[2]; z1 = -Rpar[3]; 482 Rpar[0] = x1 + tn1 * (lo/cm - z1); 472 Rpar[0] = x1 + tn1 * (lo/cm - z1); 483 Rpar[1] = x1 + tn1 * (hi/cm - z1); 473 Rpar[1] = x1 + tn1 * (hi/cm - z1); 484 Rpar[2] = y1 + tn2 * (lo/cm - z1); 474 Rpar[2] = y1 + tn2 * (lo/cm - z1); 485 Rpar[3] = y1 + tn2 * (hi/cm - z1); 475 Rpar[3] = y1 + tn2 * (hi/cm - z1); 486 Rpar[4] = (hi - lo)/2./cm; 476 Rpar[4] = (hi - lo)/2./cm; 487 pos[2] = (hi + lo)/2.; 477 pos[2] = (hi + lo)/2.; 488 } 478 } 489 } 479 } 490 else if ( shape == "TRAP" ) { 480 else if ( shape == "TRAP" ) { 491 Exception("CreateEnvelope","TRAP-x,y,z") 481 Exception("CreateEnvelope","TRAP-x,y,z"); 492 } 482 } 493 else if ( shape == "TUBE" ) { 483 else if ( shape == "TUBE" ) { 494 if ( fIAxis == 1 ) { 484 if ( fIAxis == 1 ) { 495 Rpar[0] = lo/cm; 485 Rpar[0] = lo/cm; 496 Rpar[1] = hi/cm; 486 Rpar[1] = hi/cm; 497 } 487 } 498 else if ( fIAxis == 2 ) { 488 else if ( fIAxis == 2 ) { 499 Rpar[3] = lo/deg; 489 Rpar[3] = lo/deg; 500 Rpar[4] = hi/deg; 490 Rpar[4] = hi/deg; 501 npar = npar + 2; 491 npar = npar + 2; 502 shape = "TUBS"; 492 shape = "TUBS"; 503 } 493 } 504 else if ( fIAxis == 3 ) { 494 else if ( fIAxis == 3 ) { 505 Rpar[2] = (hi - lo)/2./cm; 495 Rpar[2] = (hi - lo)/2./cm; 506 pos [2] = (hi + lo)/2.; 496 pos [2] = (hi + lo)/2.; 507 } 497 } 508 } 498 } 509 else if ( shape == "TUBS" ) { 499 else if ( shape == "TUBS" ) { 510 if ( fIAxis == 1 ) { 500 if ( fIAxis == 1 ) { 511 Rpar[0] = lo/cm; 501 Rpar[0] = lo/cm; 512 Rpar[1] = hi/cm; 502 Rpar[1] = hi/cm; 513 } 503 } 514 else if ( fIAxis == 2 ) { 504 else if ( fIAxis == 2 ) { 515 Rpar[3] = lo/deg; 505 Rpar[3] = lo/deg; 516 Rpar[4] = hi/deg; 506 Rpar[4] = hi/deg; 517 } 507 } 518 else if ( fIAxis == 3 ) { 508 else if ( fIAxis == 3 ) { 519 Rpar[2] = (hi - lo)/2./cm; 509 Rpar[2] = (hi - lo)/2./cm; 520 pos [2] = (hi + lo)/2.; 510 pos [2] = (hi + lo)/2.; 521 } 511 } 522 } 512 } 523 else if ( shape == "CONE" ) { 513 else if ( shape == "CONE" ) { 524 if ( fIAxis == 1) { 514 if ( fIAxis == 1) { 525 Exception("CreateEnvelope","CONE-x,z") 515 Exception("CreateEnvelope","CONE-x,z"); 526 } 516 } 527 else if ( fIAxis == 2 ) { 517 else if ( fIAxis == 2 ) { 528 Rpar[5] = lo/deg; 518 Rpar[5] = lo/deg; 529 Rpar[6] = hi/deg; 519 Rpar[6] = hi/deg; 530 npar = npar + 2; 520 npar = npar + 2; 531 shape = "CONS"; 521 shape = "CONS"; 532 } 522 } 533 else if ( fIAxis == 3 ) { 523 else if ( fIAxis == 3 ) { 534 G4double tn1, tn2, rmin, rmax, z1; 524 G4double tn1, tn2, rmin, rmax, z1; 535 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0] 525 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0]); 536 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0] 526 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0]); 537 rmin = Rpar[1]; rmax = Rpar[2]; z1 = - 527 rmin = Rpar[1]; rmax = Rpar[2]; z1 = -Rpar[0]; 538 Rpar[1] = rmin + tn1 * (lo/cm - z1); 528 Rpar[1] = rmin + tn1 * (lo/cm - z1); 539 Rpar[3] = rmin + tn1 * (hi/cm - z1); 529 Rpar[3] = rmin + tn1 * (hi/cm - z1); 540 Rpar[2] = rmax + tn2 * (lo/cm - z1); 530 Rpar[2] = rmax + tn2 * (lo/cm - z1); 541 Rpar[4] = rmax + tn2 * (hi/cm - z1); 531 Rpar[4] = rmax + tn2 * (hi/cm - z1); 542 Rpar[0] = (hi - lo)/2./cm; 532 Rpar[0] = (hi - lo)/2./cm; 543 pos[2] = (hi + lo)/2.; 533 pos[2] = (hi + lo)/2.; 544 } 534 } 545 } 535 } 546 else if ( shape == "CONS" ) { 536 else if ( shape == "CONS" ) { 547 if ( fIAxis == 1 ) { 537 if ( fIAxis == 1 ) { 548 Exception("CreateEnvelope","CONS-x"); 538 Exception("CreateEnvelope","CONS-x"); 549 } 539 } 550 else if ( fIAxis == 2 ) { 540 else if ( fIAxis == 2 ) { 551 Rpar[5] = lo/deg; 541 Rpar[5] = lo/deg; 552 Rpar[6] = hi/deg; 542 Rpar[6] = hi/deg; 553 } 543 } 554 else if ( fIAxis == 3 ) { 544 else if ( fIAxis == 3 ) { 555 G4double tn1, tn2, rmin, rmax, z1; 545 G4double tn1, tn2, rmin, rmax, z1; 556 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0] 546 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0]); 557 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0] 547 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0]); 558 rmin = Rpar[1]; rmax = Rpar[2]; z1 = - 548 rmin = Rpar[1]; rmax = Rpar[2]; z1 = -Rpar[0]; 559 Rpar[1] = rmin + tn1 * (lo/cm - z1); 549 Rpar[1] = rmin + tn1 * (lo/cm - z1); 560 Rpar[3] = rmin + tn1 * (hi/cm - z1); 550 Rpar[3] = rmin + tn1 * (hi/cm - z1); 561 Rpar[2] = rmax + tn2 * (lo/cm - z1); 551 Rpar[2] = rmax + tn2 * (lo/cm - z1); 562 Rpar[4] = rmax + tn2 * (hi/cm - z1); 552 Rpar[4] = rmax + tn2 * (hi/cm - z1); 563 Rpar[0] = (hi - lo)/2./cm; 553 Rpar[0] = (hi - lo)/2./cm; 564 pos[2] = (hi + lo)/2.; 554 pos[2] = (hi + lo)/2.; 565 } 555 } 566 } 556 } 567 else if ( shape == "SPHE" ) { 557 else if ( shape == "SPHE" ) { 568 Exception("CreateEnvelope","SPHE-x,y,z") 558 Exception("CreateEnvelope","SPHE-x,y,z"); 569 } 559 } 570 else if ( shape == "PARA" ) { 560 else if ( shape == "PARA" ) { 571 Exception("CreateEnvelope","PARA-x,y,z") 561 Exception("CreateEnvelope","PARA-x,y,z"); 572 } 562 } 573 else if ( shape == "PGON" ) { 563 else if ( shape == "PGON" ) { 574 if ( fIAxis == 2) { 564 if ( fIAxis == 2) { 575 Rpar[0] = lo/deg; 565 Rpar[0] = lo/deg; 576 Rpar[1] = hi/deg; 566 Rpar[1] = hi/deg; 577 // rotm = ??? 567 // rotm = ??? 578 } 568 } 579 else { 569 else { 580 Exception("CreateEnvelope","PGON-x,z") 570 Exception("CreateEnvelope","PGON-x,z"); 581 } 571 } 582 } 572 } 583 else if ( shape == "PCON" ) { 573 else if ( shape == "PCON" ) { 584 if ( fIAxis == 2) { 574 if ( fIAxis == 2) { 585 Rpar[0] = lo/deg; 575 Rpar[0] = lo/deg; 586 Rpar[1] = hi/deg; 576 Rpar[1] = hi/deg; 587 // rotm = ??? 577 // rotm = ??? 588 } 578 } 589 else { 579 else { 590 Exception("CreateEnvelope","PCON-x,z") 580 Exception("CreateEnvelope","PCON-x,z"); 591 } 581 } 592 } 582 } 593 else { 583 else { 594 Exception("CreateEnvelope", "Unknown sh 584 Exception("CreateEnvelope", "Unknown shape" + shape); 595 } 585 } 596 586 597 // create new VTE corresponding to envelop 587 // create new VTE corresponding to envelope 598 G4String envName = fVTE->GetName() + "_ENV 588 G4String envName = fVTE->GetName() + "_ENV"; 599 G3VolTableEntry* envVTE 589 G3VolTableEntry* envVTE 600 = G4CreateVTE(envName, shape, fNmed, Rpa 590 = G4CreateVTE(envName, shape, fNmed, Rpar, npar); 601 591 602 // create a G3Pos object and add it to env 592 // create a G3Pos object and add it to envVTE 603 G4String motherName = fMVTE->GetMasterClon 593 G4String motherName = fMVTE->GetMasterClone()->GetName(); 604 G4ThreeVector* offset = new G4ThreeVector( 594 G4ThreeVector* offset = new G4ThreeVector(pos[0],pos[1],pos[2]); 605 G4String only = "ONLY"; 595 G4String only = "ONLY"; 606 G3Pos* aG3Pos = new G3Pos(motherName, 1, o 596 G3Pos* aG3Pos = new G3Pos(motherName, 1, offset, 0, only); 607 envVTE->AddG3Pos(aG3Pos); 597 envVTE->AddG3Pos(aG3Pos); 608 598 609 delete [] Rpar; 599 delete [] Rpar; 610 600 611 return envVTE; 601 return envVTE; 612 } 602 } 613 603 614 void G3Division::CreateSolid(G4String shape, G 604 void G3Division::CreateSolid(G4String shape, G4double par[], G4int npar) 615 // create the solid corresponding to divided v 605 // create the solid corresponding to divided volume 616 // and set the fOffset for replica 606 // and set the fOffset for replica 617 { 607 { 618 G4double *Rpar = new G4double[npar+2]; 608 G4double *Rpar = new G4double[npar+2]; 619 for (G4int i=0; i<npar; ++i){ Rpar[i] = pa 609 for (G4int i=0; i<npar; ++i){ Rpar[i] = par[i];} 620 610 621 // verbose 611 // verbose 622 // G4cout << "G3Division::CreateSolid volu 612 // G4cout << "G3Division::CreateSolid volume before: " 623 // << fVTE->GetName() << " " << sha 613 // << fVTE->GetName() << " " << shape << G4endl; 624 // G4cout << " npar,Rpar: " << npar; 614 // G4cout << " npar,Rpar: " << npar; 625 // for (G4int ii = 0; ii < npar; ++ii) G4c 615 // for (G4int ii = 0; ii < npar; ++ii) G4cout << " " << Rpar[ii]; 626 // G4cout << G4endl; 616 // G4cout << G4endl; 627 617 628 if ( shape == "BOX" ) { 618 if ( shape == "BOX" ) { 629 if ( fIAxis == 1 ) Rpar[0] = fWidth 619 if ( fIAxis == 1 ) Rpar[0] = fWidth/2./cm; 630 else if ( fIAxis == 2 ) Rpar[1] = fWidth 620 else if ( fIAxis == 2 ) Rpar[1] = fWidth/2./cm; 631 else if ( fIAxis == 3 ) Rpar[2] = fWidth 621 else if ( fIAxis == 3 ) Rpar[2] = fWidth/2./cm; 632 } 622 } 633 else if ( shape == "TRD1" ) { 623 else if ( shape == "TRD1" ) { 634 if ( fIAxis == 1 || fIAxis == 2 ) { 624 if ( fIAxis == 1 || fIAxis == 2 ) { 635 Exception("CreateSolid", "TRD1-x,y"); 625 Exception("CreateSolid", "TRD1-x,y"); 636 } 626 } 637 else if ( fIAxis == 3 ) { 627 else if ( fIAxis == 3 ) { 638 Rpar[3] = fWidth/2./cm; 628 Rpar[3] = fWidth/2./cm; 639 } 629 } 640 } 630 } 641 else if ( shape == "TRD2" ) { 631 else if ( shape == "TRD2" ) { 642 if ( fIAxis == 1 || fIAxis == 2 ) { 632 if ( fIAxis == 1 || fIAxis == 2 ) { 643 Exception("CreateSolid", "TRD2-x,y"); 633 Exception("CreateSolid", "TRD2-x,y"); 644 } 634 } 645 else if ( fIAxis == 3 ) { 635 else if ( fIAxis == 3 ) { 646 Rpar[4] = fWidth/2./cm; 636 Rpar[4] = fWidth/2./cm; 647 } 637 } 648 } 638 } 649 else if ( shape == "TRAP" ) { 639 else if ( shape == "TRAP" ) { 650 if ( fIAxis == 1 || fIAxis == 2) { 640 if ( fIAxis == 1 || fIAxis == 2) { 651 Exception("CreateSolid", "TRAP-x,y"); 641 Exception("CreateSolid", "TRAP-x,y"); 652 } 642 } 653 else if ( fIAxis == 3 ) { 643 else if ( fIAxis == 3 ) { 654 Rpar[0] = fWidth/2./cm; 644 Rpar[0] = fWidth/2./cm; 655 } 645 } 656 } 646 } 657 else if ( shape == "TUBE" ) { 647 else if ( shape == "TUBE" ) { 658 if ( fIAxis == 1 ) { 648 if ( fIAxis == 1 ) { 659 Rpar[1] = Rpar[0] + fWidth/cm; 649 Rpar[1] = Rpar[0] + fWidth/cm; 660 fOffset = Rpar[0]*cm; 650 fOffset = Rpar[0]*cm; 661 } 651 } 662 else if ( fIAxis == 2 ) { 652 else if ( fIAxis == 2 ) { 663 Rpar[3] = 0.; 653 Rpar[3] = 0.; 664 Rpar[4] = fWidth/deg; 654 Rpar[4] = fWidth/deg; 665 shape = "TUBS"; 655 shape = "TUBS"; 666 npar = npar + 2; 656 npar = npar + 2; 667 } 657 } 668 else if ( fIAxis == 3 ) { 658 else if ( fIAxis == 3 ) { 669 Rpar[2] = fWidth/2./cm; 659 Rpar[2] = fWidth/2./cm; 670 } 660 } 671 } 661 } 672 else if ( shape == "TUBS" ) { 662 else if ( shape == "TUBS" ) { 673 if ( fIAxis == 1 ) { 663 if ( fIAxis == 1 ) { 674 Rpar[1] = Rpar[0] + fWidth/cm; 664 Rpar[1] = Rpar[0] + fWidth/cm; 675 fOffset = Rpar[0]*cm; 665 fOffset = Rpar[0]*cm; 676 } 666 } 677 else if ( fIAxis == 2 ) { 667 else if ( fIAxis == 2 ) { 678 fOffset = Rpar[3]*deg; 668 fOffset = Rpar[3]*deg; 679 Rpar[3] = 0.; 669 Rpar[3] = 0.; 680 Rpar[4] = fWidth/deg; 670 Rpar[4] = fWidth/deg; 681 } 671 } 682 else if ( fIAxis == 3 ) { 672 else if ( fIAxis == 3 ) { 683 Rpar[2] = fWidth/2./cm; 673 Rpar[2] = fWidth/2./cm; 684 } 674 } 685 } 675 } 686 else if ( shape == "CONE" ) { 676 else if ( shape == "CONE" ) { 687 if ( fIAxis == 1 ) { 677 if ( fIAxis == 1 ) { 688 Exception("CreateSolid", "CONE-x"); 678 Exception("CreateSolid", "CONE-x"); 689 } 679 } 690 else if ( fIAxis == 2 ) { 680 else if ( fIAxis == 2 ) { 691 Rpar[5] = 0.; 681 Rpar[5] = 0.; 692 Rpar[6] = fWidth/deg; 682 Rpar[6] = fWidth/deg; 693 shape = "CONS"; 683 shape = "CONS"; 694 npar = npar + 2; 684 npar = npar + 2; 695 } 685 } 696 else if ( fIAxis == 3 ) { 686 else if ( fIAxis == 3 ) { 697 Rpar[0] = fWidth/2./cm; 687 Rpar[0] = fWidth/2./cm; 698 } 688 } 699 } 689 } 700 else if ( shape == "CONS" ) { 690 else if ( shape == "CONS" ) { 701 if ( fIAxis == 1 ) { 691 if ( fIAxis == 1 ) { 702 Exception("CreateSolid", "CONS-x"); 692 Exception("CreateSolid", "CONS-x"); 703 } 693 } 704 else if ( fIAxis == 2 ) { 694 else if ( fIAxis == 2 ) { 705 fOffset = Rpar[5]*deg; 695 fOffset = Rpar[5]*deg; 706 Rpar[5] = 0.; 696 Rpar[5] = 0.; 707 Rpar[6] = fWidth/deg; 697 Rpar[6] = fWidth/deg; 708 } 698 } 709 else if ( fIAxis == 3 ) { 699 else if ( fIAxis == 3 ) { 710 Rpar[0] = fWidth/2./cm; 700 Rpar[0] = fWidth/2./cm; 711 } 701 } 712 } 702 } 713 else if (shape == "PARA") { 703 else if (shape == "PARA") { 714 if ( fIAxis == 1 ) { 704 if ( fIAxis == 1 ) { 715 Rpar[0] = fWidth/2./cm; 705 Rpar[0] = fWidth/2./cm; 716 } 706 } 717 else if ( Rpar[4] == 0. && Rpar[5] == 0. 707 else if ( Rpar[4] == 0. && Rpar[5] == 0. ) { 718 // only special case for axis 2,3 is 708 // only special case for axis 2,3 is supported 719 if ( fIAxis == 2 ) { 709 if ( fIAxis == 2 ) { 720 Rpar[1] = fWidth/2./cm; 710 Rpar[1] = fWidth/2./cm; 721 } 711 } 722 else if ( fIAxis == 3) { 712 else if ( fIAxis == 3) { 723 Rpar[2] = fWidth/2./cm; 713 Rpar[2] = fWidth/2./cm; 724 } 714 } 725 } 715 } 726 else 716 else 727 Exception("CreateSolid", shape); 717 Exception("CreateSolid", shape); 728 } 718 } 729 else if (shape == "SPHE") { 719 else if (shape == "SPHE") { 730 Exception("CreateSolid", shape); 720 Exception("CreateSolid", shape); 731 } 721 } 732 else if ( shape == "PGON" ) { 722 else if ( shape == "PGON" ) { 733 if ( fIAxis == 2 ) { 723 if ( fIAxis == 2 ) { 734 fOffset = Rpar[0]*deg; 724 fOffset = Rpar[0]*deg; 735 Rpar[0] = 0.; 725 Rpar[0] = 0.; 736 Rpar[1] = fWidth/deg; 726 Rpar[1] = fWidth/deg; 737 Rpar[2] = 1.; 727 Rpar[2] = 1.; 738 } 728 } 739 else 729 else 740 Exception("CreateSolid", shape); 730 Exception("CreateSolid", shape); 741 } 731 } 742 else if ( shape == "PCON" ) { 732 else if ( shape == "PCON" ) { 743 if ( fIAxis == 2 ) { 733 if ( fIAxis == 2 ) { 744 fOffset = Rpar[0]*deg; 734 fOffset = Rpar[0]*deg; 745 Rpar[0] = 0.; 735 Rpar[0] = 0.; 746 Rpar[1] = fWidth/deg; 736 Rpar[1] = fWidth/deg; 747 } 737 } 748 else { 738 else { 749 Exception("CreateSolid", shape); 739 Exception("CreateSolid", shape); 750 } 740 } 751 } 741 } 752 else { 742 else { 753 Exception("CreateSolid", "Unknown shape 743 Exception("CreateSolid", "Unknown shape" + shape); 754 } 744 } 755 745 756 // create solid and set it to fVTE 746 // create solid and set it to fVTE 757 G4bool hasNegPars; 747 G4bool hasNegPars; 758 G4bool deferred; 748 G4bool deferred; 759 G4bool okAxis[3]; 749 G4bool okAxis[3]; 760 G4VSolid* solid 750 G4VSolid* solid 761 = G3toG4MakeSolid(fVTE->GetName(), shape, 751 = G3toG4MakeSolid(fVTE->GetName(), shape, Rpar, npar, hasNegPars, deferred, okAxis); 762 752 763 if (hasNegPars) { 753 if (hasNegPars) { 764 G4String err_message = "CreateSolid VTE << 754 G4String name = fVTE->GetName(); 765 + " has negative p << 755 G4Exception("CreateSolid VTE " + name + " has negative parameters."); 766 G4Exception("G3Division::CreateSolid()" << 767 FatalException, err_message << 768 return; << 769 } 756 } 770 757 771 // update vte 758 // update vte 772 fVTE->SetSolid(solid); 759 fVTE->SetSolid(solid); 773 fVTE->SetNRpar(npar, Rpar); 760 fVTE->SetNRpar(npar, Rpar); 774 fVTE->SetHasNegPars(hasNegPars); 761 fVTE->SetHasNegPars(hasNegPars); 775 762 776 // verbose 763 // verbose 777 // G4cout << "G3Division::CreateSolid volu 764 // G4cout << "G3Division::CreateSolid volume after: " 778 // << fVTE->GetName() << " " << sha 765 // << fVTE->GetName() << " " << shape << G4endl; 779 // G4cout << " npar,Rpar: " << npar; 766 // G4cout << " npar,Rpar: " << npar; 780 // for (G4int iii = 0; iii < npar; ++iii) 767 // for (G4int iii = 0; iii < npar; ++iii) G4cout << " " << Rpar[iii]; 781 // G4cout << G4endl; 768 // G4cout << G4endl; 782 delete [] Rpar; << 783 } 769 } 784 770 785 771 786 G3VolTableEntry* G3Division::Dvn() 772 G3VolTableEntry* G3Division::Dvn() 787 { 773 { 788 // no envelope need to be created 774 // no envelope need to be created 789 775 790 // get parameters from mother 776 // get parameters from mother 791 G4String shape = fMVTE->GetShape(); 777 G4String shape = fMVTE->GetShape(); 792 G4double* Rpar = fMVTE->GetRpar(); 778 G4double* Rpar = fMVTE->GetRpar(); 793 G4int npar = fMVTE->GetNpar(); 779 G4int npar = fMVTE->GetNpar(); 794 780 795 // set width for replica and create solid 781 // set width for replica and create solid 796 fWidth = (fHighRange - fLowRange)/fNofDivisi 782 fWidth = (fHighRange - fLowRange)/fNofDivisions; 797 CreateSolid(shape, Rpar, npar); 783 CreateSolid(shape, Rpar, npar); 798 784 799 return 0; 785 return 0; 800 } 786 } 801 787 802 G3VolTableEntry* G3Division::Dvn2() 788 G3VolTableEntry* G3Division::Dvn2() 803 { 789 { 804 // to be defined as const of this class 790 // to be defined as const of this class 805 G4double Rmin = 0.0001*cm; 791 G4double Rmin = 0.0001*cm; 806 792 807 G4String shape = fMVTE->GetShape(); 793 G4String shape = fMVTE->GetShape(); 808 G4double* Rpar = fMVTE->GetRpar(); 794 G4double* Rpar = fMVTE->GetRpar(); 809 G4int npar = fMVTE->GetNpar(); 795 G4int npar = fMVTE->GetNpar(); 810 796 811 G4double c0 = fC0; 797 G4double c0 = fC0; 812 if (fAxis == kPhi) c0 = c0*deg; 798 if (fAxis == kPhi) c0 = c0*deg; 813 else c0 = c0*cm; 799 else c0 = c0*cm; 814 800 815 // create envelope (if needed) 801 // create envelope (if needed) 816 G3VolTableEntry* envVTE = 0; 802 G3VolTableEntry* envVTE = 0; 817 if( std::abs(c0 - fLowRange) > Rmin) { 803 if( std::abs(c0 - fLowRange) > Rmin) { 818 envVTE = CreateEnvelope(shape, fHighRange, 804 envVTE = CreateEnvelope(shape, fHighRange, c0, Rpar, npar); 819 Rpar = envVTE->GetRpar(); 805 Rpar = envVTE->GetRpar(); 820 npar = envVTE->GetNpar(); 806 npar = envVTE->GetNpar(); 821 } 807 } 822 808 823 // set width for replica and create solid 809 // set width for replica and create solid 824 fWidth = (fHighRange - c0)/fNofDivisions; 810 fWidth = (fHighRange - c0)/fNofDivisions; 825 CreateSolid(shape, Rpar, npar); 811 CreateSolid(shape, Rpar, npar); 826 812 827 return envVTE; 813 return envVTE; 828 } 814 } 829 815 830 G3VolTableEntry* G3Division::Dvt() 816 G3VolTableEntry* G3Division::Dvt() 831 { 817 { 832 // to be defined as const of this class 818 // to be defined as const of this class 833 G4double Rmin = 0.0001*cm; 819 G4double Rmin = 0.0001*cm; 834 820 835 // get parameters from mother 821 // get parameters from mother 836 G4String shape = fMVTE->GetShape(); 822 G4String shape = fMVTE->GetShape(); 837 G4double* Rpar = fMVTE->GetRpar(); 823 G4double* Rpar = fMVTE->GetRpar(); 838 G4int npar = fMVTE->GetNpar(); 824 G4int npar = fMVTE->GetNpar(); 839 825 840 // calculate the number of divisions 826 // calculate the number of divisions 841 G4int ndvmx = fNofDivisions; 827 G4int ndvmx = fNofDivisions; 842 G4double step = fStep; 828 G4double step = fStep; 843 829 844 if (fAxis == kPhi) step = step*deg; 830 if (fAxis == kPhi) step = step*deg; 845 else step = step*cm; 831 else step = step*cm; 846 832 847 G4int ndiv = G4int((fHighRange - fLowRange + 833 G4int ndiv = G4int((fHighRange - fLowRange + Rmin)/step); 848 // to be added warning 834 // to be added warning 849 if (ndvmx > 255) ndvmx = 255; 835 if (ndvmx > 255) ndvmx = 255; 850 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx 836 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx; 851 837 852 // create envVTE (if needed) 838 // create envVTE (if needed) 853 G3VolTableEntry* envVTE = 0; 839 G3VolTableEntry* envVTE = 0; 854 G4double delta = std::abs((fHighRange - fLow 840 G4double delta = std::abs((fHighRange - fLowRange) - ndiv*step); 855 if (delta > Rmin) { 841 if (delta > Rmin) { 856 envVTE 842 envVTE 857 = CreateEnvelope(shape, fHighRange-delt 843 = CreateEnvelope(shape, fHighRange-delta/2., fLowRange+delta/2., 858 Rpar, npar); 844 Rpar, npar); 859 Rpar = envVTE->GetRpar(); 845 Rpar = envVTE->GetRpar(); 860 npar = envVTE->GetNpar(); 846 npar = envVTE->GetNpar(); 861 } 847 } 862 848 863 // set width for replica and create solid 849 // set width for replica and create solid 864 fWidth = step; 850 fWidth = step; 865 fNofDivisions = ndiv; 851 fNofDivisions = ndiv; 866 CreateSolid(shape, Rpar, npar); 852 CreateSolid(shape, Rpar, npar); 867 853 868 return envVTE; 854 return envVTE; 869 } 855 } 870 856 871 G3VolTableEntry* G3Division::Dvt2() 857 G3VolTableEntry* G3Division::Dvt2() 872 { 858 { 873 // to be defined as const of this class 859 // to be defined as const of this class 874 G4double Rmin = 0.0001*cm; 860 G4double Rmin = 0.0001*cm; 875 861 876 // get parameters from mother 862 // get parameters from mother 877 G4String shape = fMVTE->GetShape(); 863 G4String shape = fMVTE->GetShape(); 878 G4double* Rpar = fMVTE->GetRpar(); 864 G4double* Rpar = fMVTE->GetRpar(); 879 G4int npar = fMVTE->GetNpar(); 865 G4int npar = fMVTE->GetNpar(); 880 866 881 // calculate the number of divisions 867 // calculate the number of divisions 882 G4int ndvmx = fNofDivisions; 868 G4int ndvmx = fNofDivisions; 883 G4double step = fStep; 869 G4double step = fStep; 884 G4double c0 = fC0; 870 G4double c0 = fC0; 885 871 886 if(fAxis == kPhi){ 872 if(fAxis == kPhi){ 887 step = step*deg; 873 step = step*deg; 888 c0 = c0*deg; 874 c0 = c0*deg; 889 } 875 } 890 else { 876 else { 891 step = step*cm; 877 step = step*cm; 892 c0 = c0*cm; 878 c0 = c0*cm; 893 } 879 } 894 880 895 G4int ndiv = G4int((fHighRange - c0 + Rmin)/ 881 G4int ndiv = G4int((fHighRange - c0 + Rmin)/step); 896 // to be added warning 882 // to be added warning 897 if (ndvmx > 255) ndvmx = 255; 883 if (ndvmx > 255) ndvmx = 255; 898 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx 884 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx; 899 885 900 // create envelope (if needed) 886 // create envelope (if needed) 901 G3VolTableEntry* envVTE = 0; 887 G3VolTableEntry* envVTE = 0; 902 G4double delta = std::abs((fHighRange - c0) 888 G4double delta = std::abs((fHighRange - c0) - ndiv*step); 903 if (std::abs(c0 - fLowRange) > Rmin) { 889 if (std::abs(c0 - fLowRange) > Rmin) { 904 envVTE 890 envVTE 905 = CreateEnvelope(shape, fHighRange-delta 891 = CreateEnvelope(shape, fHighRange-delta/2., c0+delta/2., Rpar, npar); 906 Rpar = envVTE->GetRpar(); 892 Rpar = envVTE->GetRpar(); 907 npar = envVTE->GetNpar(); 893 npar = envVTE->GetNpar(); 908 } 894 } 909 895 910 // set with for replica and create solid 896 // set with for replica and create solid 911 fWidth = step; 897 fWidth = step; 912 fNofDivisions = ndiv; 898 fNofDivisions = ndiv; 913 CreateSolid(shape, Rpar, npar); 899 CreateSolid(shape, Rpar, npar); 914 900 915 return envVTE; 901 return envVTE; 916 } 902 } 917 903