Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // << 26 // 7 // >> 8 // $Id: G3Division.cc,v 1.6 2000/03/02 17:54:06 gcosmo Exp $ >> 9 // GEANT4 tag $Name: geant4-02-00 $ 27 // 10 // 28 // by I.Hrivnacova, V.Berejnoi 13.10.99 11 // by I.Hrivnacova, V.Berejnoi 13.10.99 29 12 30 #include <assert.h> << 31 << 32 #include "G3Division.hh" 13 #include "G3Division.hh" 33 #include "G3VolTableEntry.hh" 14 #include "G3VolTableEntry.hh" 34 #include "G3toG4MakeSolid.hh" 15 #include "G3toG4MakeSolid.hh" 35 #include "G4Para.hh" << 36 #include "G3Pos.hh" 16 #include "G3Pos.hh" 37 #include "G4SystemOfUnits.hh" << 17 #include "G3toG4Debug.hh" 38 #include "G4LogicalVolume.hh" 18 #include "G4LogicalVolume.hh" 39 #include "G4VPhysicalVolume.hh" 19 #include "G4VPhysicalVolume.hh" 40 #include "G4PVPlacement.hh" 20 #include "G4PVPlacement.hh" 41 #include "G4PVReplica.hh" 21 #include "G4PVReplica.hh" 42 #ifndef G3G4_NO_REFLECTION << 43 #include "G4ReflectionFactory.hh" << 44 #endif << 45 22 46 G3VolTableEntry* G4CreateVTE(G4String vname, G 23 G3VolTableEntry* G4CreateVTE(G4String vname, G4String shape, G4int nmed, 47 G4double Rpar[] 24 G4double Rpar[], G4int npar); 48 25 49 G3Division::G3Division(G3DivType type, G3VolTa 26 G3Division::G3Division(G3DivType type, G3VolTableEntry* vte, 50 G3VolTableEntry* mvte, G4int n 27 G3VolTableEntry* mvte, G4int nofDivisions, 51 G4int iaxis, G4int nmed, G4double c0, G4do 28 G4int iaxis, G4int nmed, G4double c0, G4double step) 52 : fType(type), 29 : fType(type), 53 fVTE(vte), 30 fVTE(vte), 54 fMVTE(mvte), 31 fMVTE(mvte), 55 fNofDivisions(nofDivisions), 32 fNofDivisions(nofDivisions), 56 fIAxis(iaxis), 33 fIAxis(iaxis), 57 fNmed(nmed), 34 fNmed(nmed), 58 fC0(c0), 35 fC0(c0), 59 fStep(step), 36 fStep(step), 60 fLowRange(0.), 37 fLowRange(0.), 61 fHighRange(0.), 38 fHighRange(0.), 62 fWidth(0.), 39 fWidth(0.), 63 fOffset(0.), 40 fOffset(0.), 64 fAxis(kXAxis) 41 fAxis(kXAxis) 65 { 42 { 66 fVTE->SetHasNegPars(true); 43 fVTE->SetHasNegPars(true); 67 } 44 } 68 45 69 G3Division::G3Division(G3VolTableEntry* vte, G 46 G3Division::G3Division(G3VolTableEntry* vte, G3VolTableEntry* mvte, 70 const G3Division& divis 47 const G3Division& division) 71 : fVTE(vte), 48 : fVTE(vte), 72 fMVTE(mvte) 49 fMVTE(mvte) 73 { 50 { 74 // only "input" parameters are copied from d 51 // only "input" parameters are copied from division 75 fType = division.fType; 52 fType = division.fType; 76 fNofDivisions = division.fNofDivisions; 53 fNofDivisions = division.fNofDivisions; 77 fIAxis = division.fIAxis; 54 fIAxis = division.fIAxis; 78 fNmed = division.fNmed; 55 fNmed = division.fNmed; 79 fC0 = division.fC0; 56 fC0 = division.fC0; 80 fStep = division.fStep; 57 fStep = division.fStep; 81 58 82 // other parameters are set as in standard c 59 // other parameters are set as in standard constructor 83 fLowRange = 0.; 60 fLowRange = 0.; 84 fHighRange = 0.; 61 fHighRange = 0.; 85 fWidth = 0.; 62 fWidth = 0.; 86 fOffset = 0.; 63 fOffset = 0.; 87 fAxis = kXAxis; 64 fAxis = kXAxis; 88 fVTE->SetHasNegPars(true); 65 fVTE->SetHasNegPars(true); 89 } 66 } 90 67 91 G3Division::~G3Division() 68 G3Division::~G3Division() 92 {} 69 {} 93 70 94 // public methods 71 // public methods 95 72 96 void G3Division::UpdateVTE() 73 void G3Division::UpdateVTE() 97 { 74 { 98 if (fVTE->HasNegPars() && !(fMVTE->HasNegPar 75 if (fVTE->HasNegPars() && !(fMVTE->HasNegPars())) { 99 76 100 // set nmed from mother 77 // set nmed from mother 101 if (fNmed == 0) fNmed = fMVTE->GetNmed(); 78 if (fNmed == 0) fNmed = fMVTE->GetNmed(); 102 fVTE->SetNmed(fNmed); 79 fVTE->SetNmed(fNmed); 103 80 104 SetRangeAndAxis(); 81 SetRangeAndAxis(); 105 82 106 // create envelope (if necessary) 83 // create envelope (if necessary) 107 // and solid 84 // and solid 108 G3VolTableEntry* envVTE = 0; 85 G3VolTableEntry* envVTE = 0; 109 if (fType == kDvn) envVTE = Dvn(); 86 if (fType == kDvn) envVTE = Dvn(); 110 else if (fType == kDvn2) envVTE = Dvn2(); 87 else if (fType == kDvn2) envVTE = Dvn2(); 111 else if (fType == kDvt) envVTE = Dvt(); 88 else if (fType == kDvt) envVTE = Dvt(); 112 else if (fType == kDvt2) envVTE = Dvt2(); 89 else if (fType == kDvt2) envVTE = Dvt2(); 113 90 114 if (envVTE) { 91 if (envVTE) { 115 // reset mother <-> daughter 92 // reset mother <-> daughter 116 fMVTE->ReplaceDaughter(fVTE, envVTE); << 93 fMVTE->ReplaceDaughter(fVTE, envVTE); 117 fVTE->ReplaceMother(fMVTE, envVTE); 94 fVTE->ReplaceMother(fMVTE, envVTE); 118 envVTE->AddDaughter(fVTE); 95 envVTE->AddDaughter(fVTE); 119 envVTE->AddMother(fMVTE); 96 envVTE->AddMother(fMVTE); 120 97 121 // replace mother with envelope 98 // replace mother with envelope 122 fMVTE = envVTE; 99 fMVTE = envVTE; 123 } 100 } 124 } 101 } 125 } 102 } 126 103 127 void G3Division::CreatePVReplica() << 104 G4VPhysicalVolume* G3Division::CreatePVReplica() 128 { 105 { 129 G4String name = fVTE->GetName(); 106 G4String name = fVTE->GetName(); 130 G4LogicalVolume* lv = fVTE->GetLV(); 107 G4LogicalVolume* lv = fVTE->GetLV(); 131 G4LogicalVolume* mlv = fMVTE->GetLV(); 108 G4LogicalVolume* mlv = fMVTE->GetLV(); 132 109 133 G4String shape = fMVTE->GetShape(); << 110 G4PVReplica* pvol 134 if (shape == "PARA") { << 111 = new G4PVReplica(name, lv, mlv, fAxis, fNofDivisions, fWidth, fOffset); 135 // The para volume cannot be replicated us << 112 if (G3toG4Debug() != 0) { 136 // (Replicating a volume along a cartesian << 137 // with slices -perpendicular- to that axi << 138 << 139 // position the replicated elements << 140 for (G4int i=0; i<fNofDivisions; i++) { << 141 G4ThreeVector position = G4ThreeVector( << 142 position[fIAxis-1] = fLowRange + fWidth << 143 if (position.y()!=0.) << 144 position.setX(position.y()*((G4Para*) << 145 << 146 #ifndef G3G4_NO_REFLECTION << 147 G4ReflectionFactory::Instance() << 148 ->Place(G4Translate3D(position), name << 149 << 150 #else << 151 new G4PVPlacement(0, position, lv, name << 152 << 153 #endif << 154 } << 155 << 156 // G4PVReplica cannot be created << 157 return; << 158 } << 159 << 160 #ifdef G3G4DEBUG << 161 G4cout << "Create G4PVReplica name " << na 113 G4cout << "Create G4PVReplica name " << name << " logical volume name " 162 << lv->GetName() << " mother logical volm 114 << lv->GetName() << " mother logical volme name " 163 << mlv->GetName() << " axis " << fAxis << 115 << mlv->GetName() << " axis " << fAxis << " ndivisions " 164 << fNofDivisions << " width " << fWidth < 116 << fNofDivisions << " width " << fWidth << " Offset " 165 << fOffset << G4endl; 117 << fOffset << G4endl; 166 #endif << 118 } 167 << 119 return pvol; 168 #ifndef G3G4_NO_REFLECTION << 169 G4ReflectionFactory::Instance() << 170 ->Replicate(name, lv, mlv, fAxis, fNofDivi << 171 << 172 #else << 173 new G4PVReplica(name, lv, mlv, fAxis, fNofDi << 174 << 175 #endif << 176 } 120 } 177 121 178 // private methods 122 // private methods 179 123 180 void G3Division::Exception(G4String where, G4S << 124 void G3Division::Exception(G4String where, G4String what) { 181 { << 125 G4Exception("G3Division::" + where + " for " + what + " is not implemented"); 182 G4String err_message = "G3Division::" + wher << 183 + what + " is not imple << 184 G4Exception("G3Division::Exception()", "G3to << 185 FatalException, err_message); << 186 return; << 187 } 126 } 188 127 189 void G3Division::SetRangeAndAxis() 128 void G3Division::SetRangeAndAxis() 190 // set fHighRange, fLowRange, fAxis 129 // set fHighRange, fLowRange, fAxis 191 { 130 { 192 G4String shape = fMVTE->GetShape(); 131 G4String shape = fMVTE->GetShape(); 193 G4double *Rpar = fMVTE->GetRpar(); 132 G4double *Rpar = fMVTE->GetRpar(); 194 133 195 switch (fIAxis) { 134 switch (fIAxis) { 196 case 1: fAxis = kXAxis; 135 case 1: fAxis = kXAxis; 197 break; 136 break; 198 case 2: fAxis = kYAxis; 137 case 2: fAxis = kYAxis; 199 break; 138 break; 200 case 3: fAxis = kZAxis; 139 case 3: fAxis = kZAxis; 201 break; 140 break; 202 default: G4Exception("G3Division::SetRan << 141 default: G4Exception("G3Division: wrong iaxis defenition"); 203 FatalException, "W << 204 } 142 } 205 143 206 if ( shape == "BOX" ) { 144 if ( shape == "BOX" ) { 207 fHighRange = Rpar[fIAxis-1]*cm; 145 fHighRange = Rpar[fIAxis-1]*cm; 208 fLowRange = -fHighRange; 146 fLowRange = -fHighRange; 209 } 147 } 210 else if ( shape == "TRD1" ) { 148 else if ( shape == "TRD1" ) { 211 if (fIAxis == 1){ 149 if (fIAxis == 1){ 212 fHighRange = std::max(Rpar[0]*cm, Rpar << 150 fHighRange = G4std::max(Rpar[0]*cm, Rpar[1]*cm); 213 } 151 } 214 else if( fIAxis == 2) { 152 else if( fIAxis == 2) { 215 fHighRange = Rpar[2]*cm; 153 fHighRange = Rpar[2]*cm; 216 } 154 } 217 else if( fIAxis == 3) { 155 else if( fIAxis == 3) { 218 fHighRange = Rpar[3]*cm; 156 fHighRange = Rpar[3]*cm; 219 } 157 } 220 fLowRange = - fHighRange; 158 fLowRange = - fHighRange; 221 } 159 } 222 else if ( shape == "TRD2" ) { 160 else if ( shape == "TRD2" ) { 223 if (fIAxis == 1){ 161 if (fIAxis == 1){ 224 fHighRange = std::max(Rpar[0]*cm, Rpar << 162 fHighRange = G4std::max(Rpar[0]*cm, Rpar[1]*cm); 225 } 163 } 226 else if( fIAxis == 2) { 164 else if( fIAxis == 2) { 227 fHighRange = std::max(Rpar[2]*cm, Rpar << 165 fHighRange = G4std::max(Rpar[2]*cm, Rpar[3]*cm); 228 } 166 } 229 else if( fIAxis == 3) { 167 else if( fIAxis == 3) { 230 fHighRange = Rpar[4]*cm; 168 fHighRange = Rpar[4]*cm; 231 } 169 } 232 } 170 } 233 else if ( shape == "TRAP" ) { 171 else if ( shape == "TRAP" ) { 234 if ( fIAxis == 3 ) fHighRange = Rpar[0]* 172 if ( fIAxis == 3 ) fHighRange = Rpar[0]*cm; 235 else fHighRange = 0.; 173 else fHighRange = 0.; 236 fLowRange = -fHighRange; 174 fLowRange = -fHighRange; 237 } 175 } 238 else if ( shape == "TUBE" ) { 176 else if ( shape == "TUBE" ) { 239 if (fIAxis == 1){ 177 if (fIAxis == 1){ 240 fHighRange = Rpar[1]*cm; 178 fHighRange = Rpar[1]*cm; 241 fLowRange = Rpar[0]*cm; 179 fLowRange = Rpar[0]*cm; 242 fAxis = kRho; 180 fAxis = kRho; 243 } 181 } 244 else if( fIAxis == 2) { 182 else if( fIAxis == 2) { 245 fHighRange = 360.*deg; 183 fHighRange = 360.*deg; 246 fLowRange = 0.; 184 fLowRange = 0.; 247 fAxis = kPhi; 185 fAxis = kPhi; 248 } 186 } 249 else if( fIAxis == 3) { 187 else if( fIAxis == 3) { 250 fHighRange = Rpar[2]*cm; 188 fHighRange = Rpar[2]*cm; 251 fLowRange = -fHighRange; 189 fLowRange = -fHighRange; 252 } 190 } 253 } 191 } 254 else if ( shape == "TUBS" ) { 192 else if ( shape == "TUBS" ) { 255 if (fIAxis == 1){ 193 if (fIAxis == 1){ 256 fHighRange = Rpar[1]*cm; 194 fHighRange = Rpar[1]*cm; 257 fLowRange = Rpar[0]*cm; 195 fLowRange = Rpar[0]*cm; 258 fAxis = kRho; 196 fAxis = kRho; 259 } 197 } 260 else if( fIAxis == 2) { 198 else if( fIAxis == 2) { 261 199 262 fLowRange = Rpar[3]*deg; 200 fLowRange = Rpar[3]*deg; 263 fHighRange = Rpar[4]*deg - fLowRange; 201 fHighRange = Rpar[4]*deg - fLowRange; 264 if ( Rpar[4]*deg <= fLowRange )fHighRan 202 if ( Rpar[4]*deg <= fLowRange )fHighRange = fHighRange + 360.*deg; 265 fHighRange = fHighRange + fLowRange; 203 fHighRange = fHighRange + fLowRange; 266 fAxis = kPhi; 204 fAxis = kPhi; 267 } 205 } 268 else if( fIAxis == 3) { 206 else if( fIAxis == 3) { 269 fHighRange = Rpar[2]*cm; 207 fHighRange = Rpar[2]*cm; 270 fLowRange = -fHighRange; 208 fLowRange = -fHighRange; 271 } 209 } 272 } 210 } 273 else if ( shape == "CONE" ) { 211 else if ( shape == "CONE" ) { 274 if (fIAxis == 1){ 212 if (fIAxis == 1){ 275 fHighRange = std::max(Rpar[2]*cm,Rpar[ << 213 fHighRange = G4std::max(Rpar[2]*cm,Rpar[4]*cm); 276 fLowRange = std::max(Rpar[1]*cm,Rpar[3 << 214 fLowRange = G4std::max(Rpar[1]*cm,Rpar[3]*cm); 277 fAxis = kRho; 215 fAxis = kRho; 278 } 216 } 279 else if( fIAxis == 2) { 217 else if( fIAxis == 2) { 280 218 281 fLowRange = 0.; 219 fLowRange = 0.; 282 fHighRange = 360.*deg; 220 fHighRange = 360.*deg; 283 fAxis = kPhi; 221 fAxis = kPhi; 284 } 222 } 285 else if( fIAxis == 3) { 223 else if( fIAxis == 3) { 286 fHighRange = Rpar[0]*cm; 224 fHighRange = Rpar[0]*cm; 287 fLowRange = -fHighRange; 225 fLowRange = -fHighRange; 288 } 226 } 289 } 227 } 290 else if ( shape == "CONS" ) { 228 else if ( shape == "CONS" ) { 291 if (fIAxis == 1){ 229 if (fIAxis == 1){ 292 fHighRange = std::max(Rpar[2]*cm,Rpar[ << 230 fHighRange = G4std::max(Rpar[2]*cm,Rpar[4]*cm); 293 fLowRange = std::max(Rpar[1]*cm,Rpar[3 << 231 fLowRange = G4std::max(Rpar[1]*cm,Rpar[3]*cm); 294 fAxis = kRho; 232 fAxis = kRho; 295 } 233 } 296 else if( fIAxis == 2) { 234 else if( fIAxis == 2) { 297 235 298 fLowRange = Rpar[5]*deg; 236 fLowRange = Rpar[5]*deg; 299 fHighRange = Rpar[6]*deg - fLowRange; 237 fHighRange = Rpar[6]*deg - fLowRange; 300 if ( Rpar[6]*deg <= fLowRange )fHighRan 238 if ( Rpar[6]*deg <= fLowRange )fHighRange = fHighRange + 360.*deg; 301 fHighRange = fHighRange + fLowRange; 239 fHighRange = fHighRange + fLowRange; 302 fAxis = kPhi; 240 fAxis = kPhi; 303 } 241 } 304 else if( fIAxis == 3) { 242 else if( fIAxis == 3) { 305 fHighRange = Rpar[2]*cm; 243 fHighRange = Rpar[2]*cm; 306 fLowRange = -fHighRange; 244 fLowRange = -fHighRange; 307 } 245 } 308 } 246 } 309 else if ( shape == "SPHE" ) { 247 else if ( shape == "SPHE" ) { 310 if (fIAxis == 1){ 248 if (fIAxis == 1){ 311 fHighRange = Rpar[1]*cm; 249 fHighRange = Rpar[1]*cm; 312 fLowRange = Rpar[0]*cm; 250 fLowRange = Rpar[0]*cm; 313 fAxis = kRho; 251 fAxis = kRho; 314 } 252 } 315 else if( fIAxis == 2) { 253 else if( fIAxis == 2) { 316 fLowRange = std::min(Rpar[2]*deg,Rpar[3 << 254 fLowRange = G4std::min(Rpar[2]*deg,Rpar[3]*deg); 317 fHighRange = std::max(Rpar[2]*deg,Rpar[ << 255 fHighRange = G4std::max(Rpar[2]*deg,Rpar[3]*deg); 318 fAxis = kPhi; 256 fAxis = kPhi; 319 } 257 } 320 else if( fIAxis == 3) { 258 else if( fIAxis == 3) { 321 fLowRange = std::min(Rpar[4]*deg,Rpar[5 << 259 fLowRange = G4std::min(Rpar[4]*deg,Rpar[5]*deg); 322 fHighRange = std::max(Rpar[4]*deg,Rpar[ << 260 fHighRange = G4std::max(Rpar[4]*deg,Rpar[5]*deg); 323 fAxis = kPhi; // ?????? 261 fAxis = kPhi; // ?????? 324 } 262 } 325 } 263 } 326 else if ( shape == "PARA" ) { 264 else if ( shape == "PARA" ) { 327 fHighRange = Rpar[fIAxis-1]*cm; 265 fHighRange = Rpar[fIAxis-1]*cm; 328 fLowRange = -fHighRange; 266 fLowRange = -fHighRange; 329 } 267 } 330 else if ( shape == "PGON" ) { 268 else if ( shape == "PGON" ) { 331 G4int i; 269 G4int i; 332 G4int nz = G4int(Rpar[3]); << 270 G4int npdv = int(Rpar[2]); >> 271 G4int nz = int(Rpar[3]); 333 272 334 G4double pPhi1 = Rpar[0]*deg; 273 G4double pPhi1 = Rpar[0]*deg; 335 G4double dPhi = Rpar[1]*deg; 274 G4double dPhi = Rpar[1]*deg; 336 275 337 G4double *DzArray = new G4double[nz]; 276 G4double *DzArray = new G4double[nz]; 338 G4double *Rmax = new G4double[nz]; 277 G4double *Rmax = new G4double[nz]; 339 G4double *Rmin = new G4double[nz]; 278 G4double *Rmin = new G4double[nz]; 340 G4double rangehi[3], rangelo[3]; 279 G4double rangehi[3], rangelo[3]; 341 rangehi[0] = -kInfinity ; 280 rangehi[0] = -kInfinity ; 342 rangelo[0] = kInfinity ; 281 rangelo[0] = kInfinity ; 343 rangehi[2] = -kInfinity ; 282 rangehi[2] = -kInfinity ; 344 rangelo[2] = kInfinity ; 283 rangelo[2] = kInfinity ; 345 284 346 for(i=0; i<nz; i++) 285 for(i=0; i<nz; i++) 347 { 286 { 348 G4int i4=3*i+4; << 287 int i4=3*i+4; 349 G4int i5=i4+1; << 288 int i5=i4+1; 350 G4int i6=i4+2; << 289 int i6=i4+2; 351 290 352 DzArray[i] = Rpar[i4]*cm; 291 DzArray[i] = Rpar[i4]*cm; 353 Rmin[i] = Rpar[i5]*cm; 292 Rmin[i] = Rpar[i5]*cm; 354 Rmax[i] = Rpar[i6]*cm; 293 Rmax[i] = Rpar[i6]*cm; 355 rangelo[0] = std::min(rangelo[0], << 294 rangelo[0] = G4std::min(rangelo[0], Rmin[i]); 356 rangehi[0] = std::max(rangehi[0], << 295 rangehi[0] = G4std::max(rangehi[0], Rmax[i]); 357 rangelo[2] = std::min(rangelo[2], << 296 rangelo[2] = G4std::min(rangelo[2], DzArray[i]); 358 rangehi[2] = std::max(rangehi[2], << 297 rangehi[2] = G4std::max(rangehi[2], DzArray[i]); 359 } 298 } 360 for (i=0;i<nz;i++){ 299 for (i=0;i<nz;i++){ 361 assert(Rmin[i]>=0 && Rmax[i]>=Rmin 300 assert(Rmin[i]>=0 && Rmax[i]>=Rmin[i]); 362 } 301 } 363 rangehi[1] = pPhi1 + dPhi; 302 rangehi[1] = pPhi1 + dPhi; 364 rangelo[1] = pPhi1; 303 rangelo[1] = pPhi1; 365 fHighRange = rangehi[fIAxis-1]; 304 fHighRange = rangehi[fIAxis-1]; 366 fLowRange = rangelo[fIAxis-1]; 305 fLowRange = rangelo[fIAxis-1]; 367 if (fIAxis == 1)fAxis = kRho; 306 if (fIAxis == 1)fAxis = kRho; 368 else if (fIAxis == 2)fAxis = kPhi; 307 else if (fIAxis == 2)fAxis = kPhi; 369 else if (fIAxis == 3)fAxis = kZAxis; 308 else if (fIAxis == 3)fAxis = kZAxis; 370 309 371 delete [] DzArray; 310 delete [] DzArray; 372 delete [] Rmin; 311 delete [] Rmin; 373 delete [] Rmax; 312 delete [] Rmax; 374 313 375 } 314 } 376 else if ( shape == "PCON" ) { 315 else if ( shape == "PCON" ) { 377 316 378 G4int i; 317 G4int i; 379 G4double pPhi1 = Rpar[0]*deg; 318 G4double pPhi1 = Rpar[0]*deg; 380 G4double dPhi = Rpar[1]*deg; 319 G4double dPhi = Rpar[1]*deg; 381 G4int nz = G4int(Rpar[2]); << 320 G4int nz = int(Rpar[2]); 382 321 383 G4double *DzArray = new G4double[nz]; 322 G4double *DzArray = new G4double[nz]; 384 G4double *Rmax = new G4double[nz]; 323 G4double *Rmax = new G4double[nz]; 385 G4double *Rmin = new G4double[nz]; 324 G4double *Rmin = new G4double[nz]; 386 G4double rangehi[3],rangelo[3]; 325 G4double rangehi[3],rangelo[3]; 387 326 388 rangehi[0] = -kInfinity ; 327 rangehi[0] = -kInfinity ; 389 rangelo[0] = kInfinity ; 328 rangelo[0] = kInfinity ; 390 rangehi[2] = -kInfinity ; 329 rangehi[2] = -kInfinity ; 391 rangelo[2] = kInfinity ; 330 rangelo[2] = kInfinity ; 392 331 393 for(i=0; i<nz; i++){ 332 for(i=0; i<nz; i++){ 394 G4int i4=3*i+3; << 333 int i4=3*i+3; 395 G4int i5=i4+1; << 334 int i5=i4+1; 396 G4int i6=i4+2; << 335 int i6=i4+2; 397 336 398 DzArray[i] = Rpar[i4]*cm; 337 DzArray[i] = Rpar[i4]*cm; 399 Rmin[i] = Rpar[i5]*cm; 338 Rmin[i] = Rpar[i5]*cm; 400 Rmax[i] = Rpar[i6]*cm; 339 Rmax[i] = Rpar[i6]*cm; 401 rangelo[0] = std::min(rangelo[0], << 340 rangelo[0] = G4std::min(rangelo[0], Rmin[i]); 402 rangehi[0] = std::max(rangehi[0], << 341 rangehi[0] = G4std::max(rangehi[0], Rmax[i]); 403 rangelo[2] = std::min(rangelo[2], << 342 rangelo[2] = G4std::min(rangelo[2], DzArray[i]); 404 rangehi[2] = std::max(rangehi[2], << 343 rangehi[2] = G4std::max(rangehi[2], DzArray[i]); 405 } 344 } 406 for (i=0;i<nz;i++){ 345 for (i=0;i<nz;i++){ 407 assert(Rmin[i]>=0 && Rmax[i]>=Rmin 346 assert(Rmin[i]>=0 && Rmax[i]>=Rmin[i]); 408 } 347 } 409 rangehi[1] = pPhi1 + dPhi; 348 rangehi[1] = pPhi1 + dPhi; 410 rangelo[1] = pPhi1; 349 rangelo[1] = pPhi1; 411 fHighRange = rangehi[fIAxis-1]; 350 fHighRange = rangehi[fIAxis-1]; 412 fLowRange = rangelo[fIAxis-1]; 351 fLowRange = rangelo[fIAxis-1]; 413 if (fIAxis == 1)fAxis = kRho; 352 if (fIAxis == 1)fAxis = kRho; 414 else if (fIAxis == 2)fAxis = kPhi; 353 else if (fIAxis == 2)fAxis = kPhi; 415 else if (fIAxis == 3)fAxis = kZAxis; 354 else if (fIAxis == 3)fAxis = kZAxis; 416 355 417 356 418 delete [] DzArray; 357 delete [] DzArray; 419 delete [] Rmin; 358 delete [] Rmin; 420 delete [] Rmax; 359 delete [] Rmax; 421 } 360 } 422 else if ( shape == "ELTU" || shape == "HY 361 else if ( shape == "ELTU" || shape == "HYPE" || shape == "GTRA" || 423 shape == "CTUB") { 362 shape == "CTUB") { 424 Exception("SetRangeAndAxis", shape); 363 Exception("SetRangeAndAxis", shape); 425 } 364 } 426 else { 365 else { 427 Exception("SetRangeAndAxis", "Unknown s 366 Exception("SetRangeAndAxis", "Unknown shape" + shape); 428 } 367 } 429 368 430 // verbose 369 // verbose 431 #ifdef G3G4DEBUG << 370 if (G3toG4Debug() != 0) { 432 G4cout << "Shape " << shape << " SetRang 371 G4cout << "Shape " << shape << " SetRangeAndAxis: " 433 << fLowRange << " " << fHighRange << " 372 << fLowRange << " " << fHighRange << " " << fAxis << G4endl; 434 #endif << 373 } 435 } 374 } 436 375 437 G3VolTableEntry* G3Division::CreateEnvelope(G4 376 G3VolTableEntry* G3Division::CreateEnvelope(G4String shape, G4double hi, 438 G4double lo, G4 377 G4double lo, G4double par[], G4int npar) 439 // create new VTE with G3Pos corresponding to 378 // create new VTE with G3Pos corresponding to the 440 // envelope of divided volume 379 // envelope of divided volume 441 { 380 { 442 // verbose 381 // verbose 443 // G4cout << " G3Division::CreateEnvelope 382 // G4cout << " G3Division::CreateEnvelope " << "fIAaxis= " << fIAxis 444 // << " hi= " << hi 383 // << " hi= " << hi 445 // << " lo= " << lo 384 // << " lo= " << lo 446 // << G4endl; 385 // << G4endl; 447 386 448 G4double *Rpar = new G4double[npar+2]; 387 G4double *Rpar = new G4double[npar+2]; 449 for (G4int i=0; i<npar; ++i){ Rpar[i] = pa 388 for (G4int i=0; i<npar; ++i){ Rpar[i] = par[i];} 450 G4double pos[3] = {0.,0.,0.}; 389 G4double pos[3] = {0.,0.,0.}; 451 390 452 if ( shape == "BOX" ) { 391 if ( shape == "BOX" ) { 453 Rpar[fIAxis-1] = (hi - lo)/2./cm; 392 Rpar[fIAxis-1] = (hi - lo)/2./cm; 454 pos [fIAxis-1] = (hi + lo)/2.; 393 pos [fIAxis-1] = (hi + lo)/2.; 455 } 394 } 456 else if ( shape == "TRD1" ) { 395 else if ( shape == "TRD1" ) { 457 if ( fIAxis == 1 || fIAxis == 2 ) { 396 if ( fIAxis == 1 || fIAxis == 2 ) { 458 Exception("CreateEnvelope","TRD1-x,y") 397 Exception("CreateEnvelope","TRD1-x,y"); 459 } 398 } 460 else if ( fIAxis == 3 ) { 399 else if ( fIAxis == 3 ) { 461 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 400 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 462 G4double tn, x1, z1; 401 G4double tn, x1, z1; 463 tn = (Rpar[1] - Rpar[0])/(2.* Rpar[3]) 402 tn = (Rpar[1] - Rpar[0])/(2.* Rpar[3]); 464 x1 = Rpar[0]; z1 = -Rpar[3]; 403 x1 = Rpar[0]; z1 = -Rpar[3]; 465 Rpar[0] = x1 + tn * (lo/cm - z1); 404 Rpar[0] = x1 + tn * (lo/cm - z1); 466 Rpar[1] = x1 + tn * (hi/cm - z1); 405 Rpar[1] = x1 + tn * (hi/cm - z1); 467 Rpar[3] = (hi - lo)/2./cm; 406 Rpar[3] = (hi - lo)/2./cm; 468 pos[2] = (hi + lo)/2.; 407 pos[2] = (hi + lo)/2.; 469 } 408 } 470 } 409 } 471 else if ( shape == "TRD2" ) { 410 else if ( shape == "TRD2" ) { 472 if ( fIAxis == 1 || fIAxis == 2) { 411 if ( fIAxis == 1 || fIAxis == 2) { 473 Exception("CreateEnvelope","TRD2-x,y") 412 Exception("CreateEnvelope","TRD2-x,y"); 474 } 413 } 475 else if ( fIAxis == 3 ) { 414 else if ( fIAxis == 3 ) { 476 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 415 // x = x1 + (c-z1)(x2 -x1)/(z2-z1) 477 // y = y1 + (c-z1)(y2 -y1)/(z2-z1) 416 // y = y1 + (c-z1)(y2 -y1)/(z2-z1) 478 G4double tn1, tn2, x1, y1, z1; 417 G4double tn1, tn2, x1, y1, z1; 479 tn1 = (Rpar[1] - Rpar[0])/(2.* Rpar[4] 418 tn1 = (Rpar[1] - Rpar[0])/(2.* Rpar[4]); 480 tn2 = (Rpar[3] - Rpar[2])/(2.* Rpar[4] 419 tn2 = (Rpar[3] - Rpar[2])/(2.* Rpar[4]); 481 x1 = Rpar[0]; y1 = Rpar[2]; z1 = -Rpar 420 x1 = Rpar[0]; y1 = Rpar[2]; z1 = -Rpar[3]; 482 Rpar[0] = x1 + tn1 * (lo/cm - z1); 421 Rpar[0] = x1 + tn1 * (lo/cm - z1); 483 Rpar[1] = x1 + tn1 * (hi/cm - z1); 422 Rpar[1] = x1 + tn1 * (hi/cm - z1); 484 Rpar[2] = y1 + tn2 * (lo/cm - z1); 423 Rpar[2] = y1 + tn2 * (lo/cm - z1); 485 Rpar[3] = y1 + tn2 * (hi/cm - z1); 424 Rpar[3] = y1 + tn2 * (hi/cm - z1); 486 Rpar[4] = (hi - lo)/2./cm; 425 Rpar[4] = (hi - lo)/2./cm; 487 pos[2] = (hi + lo)/2.; 426 pos[2] = (hi + lo)/2.; 488 } 427 } 489 } 428 } 490 else if ( shape == "TRAP" ) { 429 else if ( shape == "TRAP" ) { 491 Exception("CreateEnvelope","TRAP-x,y,z") 430 Exception("CreateEnvelope","TRAP-x,y,z"); 492 } 431 } 493 else if ( shape == "TUBE" ) { 432 else if ( shape == "TUBE" ) { 494 if ( fIAxis == 1 ) { 433 if ( fIAxis == 1 ) { 495 Rpar[0] = lo/cm; 434 Rpar[0] = lo/cm; 496 Rpar[1] = hi/cm; 435 Rpar[1] = hi/cm; 497 } 436 } 498 else if ( fIAxis == 2 ) { 437 else if ( fIAxis == 2 ) { 499 Rpar[3] = lo/deg; 438 Rpar[3] = lo/deg; 500 Rpar[4] = hi/deg; 439 Rpar[4] = hi/deg; 501 npar = npar + 2; 440 npar = npar + 2; 502 shape = "TUBS"; 441 shape = "TUBS"; 503 } 442 } 504 else if ( fIAxis == 3 ) { 443 else if ( fIAxis == 3 ) { 505 Rpar[2] = (hi - lo)/2./cm; 444 Rpar[2] = (hi - lo)/2./cm; 506 pos [2] = (hi + lo)/2.; 445 pos [2] = (hi + lo)/2.; 507 } 446 } 508 } 447 } 509 else if ( shape == "TUBS" ) { 448 else if ( shape == "TUBS" ) { 510 if ( fIAxis == 1 ) { 449 if ( fIAxis == 1 ) { 511 Rpar[0] = lo/cm; 450 Rpar[0] = lo/cm; 512 Rpar[1] = hi/cm; 451 Rpar[1] = hi/cm; 513 } 452 } 514 else if ( fIAxis == 2 ) { 453 else if ( fIAxis == 2 ) { 515 Rpar[3] = lo/deg; 454 Rpar[3] = lo/deg; 516 Rpar[4] = hi/deg; 455 Rpar[4] = hi/deg; 517 } 456 } 518 else if ( fIAxis == 3 ) { 457 else if ( fIAxis == 3 ) { 519 Rpar[2] = (hi - lo)/2./cm; 458 Rpar[2] = (hi - lo)/2./cm; 520 pos [2] = (hi + lo)/2.; 459 pos [2] = (hi + lo)/2.; 521 } 460 } 522 } 461 } 523 else if ( shape == "CONE" ) { 462 else if ( shape == "CONE" ) { 524 if ( fIAxis == 1) { 463 if ( fIAxis == 1) { 525 Exception("CreateEnvelope","CONE-x,z") 464 Exception("CreateEnvelope","CONE-x,z"); 526 } 465 } 527 else if ( fIAxis == 2 ) { 466 else if ( fIAxis == 2 ) { 528 Rpar[5] = lo/deg; 467 Rpar[5] = lo/deg; 529 Rpar[6] = hi/deg; 468 Rpar[6] = hi/deg; 530 npar = npar + 2; 469 npar = npar + 2; 531 shape = "CONS"; 470 shape = "CONS"; 532 } 471 } 533 else if ( fIAxis == 3 ) { 472 else if ( fIAxis == 3 ) { 534 G4double tn1, tn2, rmin, rmax, z1; 473 G4double tn1, tn2, rmin, rmax, z1; 535 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0] 474 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0]); 536 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0] 475 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0]); 537 rmin = Rpar[1]; rmax = Rpar[2]; z1 = - 476 rmin = Rpar[1]; rmax = Rpar[2]; z1 = -Rpar[0]; 538 Rpar[1] = rmin + tn1 * (lo/cm - z1); 477 Rpar[1] = rmin + tn1 * (lo/cm - z1); 539 Rpar[3] = rmin + tn1 * (hi/cm - z1); 478 Rpar[3] = rmin + tn1 * (hi/cm - z1); 540 Rpar[2] = rmax + tn2 * (lo/cm - z1); 479 Rpar[2] = rmax + tn2 * (lo/cm - z1); 541 Rpar[4] = rmax + tn2 * (hi/cm - z1); 480 Rpar[4] = rmax + tn2 * (hi/cm - z1); 542 Rpar[0] = (hi - lo)/2./cm; 481 Rpar[0] = (hi - lo)/2./cm; 543 pos[2] = (hi + lo)/2.; 482 pos[2] = (hi + lo)/2.; 544 } 483 } 545 } 484 } 546 else if ( shape == "CONS" ) { 485 else if ( shape == "CONS" ) { 547 if ( fIAxis == 1 ) { 486 if ( fIAxis == 1 ) { 548 Exception("CreateEnvelope","CONS-x"); 487 Exception("CreateEnvelope","CONS-x"); 549 } 488 } 550 else if ( fIAxis == 2 ) { 489 else if ( fIAxis == 2 ) { 551 Rpar[5] = lo/deg; 490 Rpar[5] = lo/deg; 552 Rpar[6] = hi/deg; 491 Rpar[6] = hi/deg; 553 } 492 } 554 else if ( fIAxis == 3 ) { 493 else if ( fIAxis == 3 ) { 555 G4double tn1, tn2, rmin, rmax, z1; 494 G4double tn1, tn2, rmin, rmax, z1; 556 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0] 495 tn1 = (Rpar[3] - Rpar[1])/(2.* Rpar[0]); 557 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0] 496 tn2 = (Rpar[4] - Rpar[2])/(2.* Rpar[0]); 558 rmin = Rpar[1]; rmax = Rpar[2]; z1 = - 497 rmin = Rpar[1]; rmax = Rpar[2]; z1 = -Rpar[0]; 559 Rpar[1] = rmin + tn1 * (lo/cm - z1); 498 Rpar[1] = rmin + tn1 * (lo/cm - z1); 560 Rpar[3] = rmin + tn1 * (hi/cm - z1); 499 Rpar[3] = rmin + tn1 * (hi/cm - z1); 561 Rpar[2] = rmax + tn2 * (lo/cm - z1); 500 Rpar[2] = rmax + tn2 * (lo/cm - z1); 562 Rpar[4] = rmax + tn2 * (hi/cm - z1); 501 Rpar[4] = rmax + tn2 * (hi/cm - z1); 563 Rpar[0] = (hi - lo)/2./cm; 502 Rpar[0] = (hi - lo)/2./cm; 564 pos[2] = (hi + lo)/2.; 503 pos[2] = (hi + lo)/2.; 565 } 504 } 566 } 505 } 567 else if ( shape == "SPHE" ) { 506 else if ( shape == "SPHE" ) { 568 Exception("CreateEnvelope","SPHE-x,y,z") 507 Exception("CreateEnvelope","SPHE-x,y,z"); 569 } 508 } 570 else if ( shape == "PARA" ) { 509 else if ( shape == "PARA" ) { 571 Exception("CreateEnvelope","PARA-x,y,z") 510 Exception("CreateEnvelope","PARA-x,y,z"); 572 } 511 } 573 else if ( shape == "PGON" ) { 512 else if ( shape == "PGON" ) { 574 if ( fIAxis == 2) { 513 if ( fIAxis == 2) { 575 Rpar[0] = lo/deg; 514 Rpar[0] = lo/deg; 576 Rpar[1] = hi/deg; 515 Rpar[1] = hi/deg; 577 // rotm = ??? 516 // rotm = ??? 578 } 517 } 579 else { 518 else { 580 Exception("CreateEnvelope","PGON-x,z") 519 Exception("CreateEnvelope","PGON-x,z"); 581 } 520 } 582 } 521 } 583 else if ( shape == "PCON" ) { 522 else if ( shape == "PCON" ) { 584 if ( fIAxis == 2) { 523 if ( fIAxis == 2) { 585 Rpar[0] = lo/deg; 524 Rpar[0] = lo/deg; 586 Rpar[1] = hi/deg; 525 Rpar[1] = hi/deg; 587 // rotm = ??? 526 // rotm = ??? 588 } 527 } 589 else { 528 else { 590 Exception("CreateEnvelope","PCON-x,z") 529 Exception("CreateEnvelope","PCON-x,z"); 591 } 530 } 592 } 531 } 593 else { 532 else { 594 Exception("CreateEnvelope", "Unknown sh 533 Exception("CreateEnvelope", "Unknown shape" + shape); 595 } 534 } 596 535 597 // create new VTE corresponding to envelop 536 // create new VTE corresponding to envelope 598 G4String envName = fVTE->GetName() + "_ENV 537 G4String envName = fVTE->GetName() + "_ENV"; 599 G3VolTableEntry* envVTE 538 G3VolTableEntry* envVTE 600 = G4CreateVTE(envName, shape, fNmed, Rpa 539 = G4CreateVTE(envName, shape, fNmed, Rpar, npar); 601 540 602 // create a G3Pos object and add it to env 541 // create a G3Pos object and add it to envVTE 603 G4String motherName = fMVTE->GetMasterClon 542 G4String motherName = fMVTE->GetMasterClone()->GetName(); 604 G4ThreeVector* offset = new G4ThreeVector( 543 G4ThreeVector* offset = new G4ThreeVector(pos[0],pos[1],pos[2]); 605 G4String only = "ONLY"; 544 G4String only = "ONLY"; 606 G3Pos* aG3Pos = new G3Pos(motherName, 1, o 545 G3Pos* aG3Pos = new G3Pos(motherName, 1, offset, 0, only); 607 envVTE->AddG3Pos(aG3Pos); 546 envVTE->AddG3Pos(aG3Pos); 608 547 609 delete [] Rpar; 548 delete [] Rpar; 610 549 611 return envVTE; 550 return envVTE; 612 } 551 } 613 552 614 void G3Division::CreateSolid(G4String shape, G 553 void G3Division::CreateSolid(G4String shape, G4double par[], G4int npar) 615 // create the solid corresponding to divided v 554 // create the solid corresponding to divided volume 616 // and set the fOffset for replica 555 // and set the fOffset for replica 617 { 556 { 618 G4double *Rpar = new G4double[npar+2]; 557 G4double *Rpar = new G4double[npar+2]; 619 for (G4int i=0; i<npar; ++i){ Rpar[i] = pa 558 for (G4int i=0; i<npar; ++i){ Rpar[i] = par[i];} 620 559 621 // verbose 560 // verbose 622 // G4cout << "G3Division::CreateSolid volu 561 // G4cout << "G3Division::CreateSolid volume before: " 623 // << fVTE->GetName() << " " << sha 562 // << fVTE->GetName() << " " << shape << G4endl; 624 // G4cout << " npar,Rpar: " << npar; 563 // G4cout << " npar,Rpar: " << npar; 625 // for (G4int ii = 0; ii < npar; ++ii) G4c 564 // for (G4int ii = 0; ii < npar; ++ii) G4cout << " " << Rpar[ii]; 626 // G4cout << G4endl; 565 // G4cout << G4endl; 627 566 628 if ( shape == "BOX" ) { 567 if ( shape == "BOX" ) { 629 if ( fIAxis == 1 ) Rpar[0] = fWidth 568 if ( fIAxis == 1 ) Rpar[0] = fWidth/2./cm; 630 else if ( fIAxis == 2 ) Rpar[1] = fWidth 569 else if ( fIAxis == 2 ) Rpar[1] = fWidth/2./cm; 631 else if ( fIAxis == 3 ) Rpar[2] = fWidth 570 else if ( fIAxis == 3 ) Rpar[2] = fWidth/2./cm; 632 } 571 } 633 else if ( shape == "TRD1" ) { 572 else if ( shape == "TRD1" ) { 634 if ( fIAxis == 1 || fIAxis == 2 ) { 573 if ( fIAxis == 1 || fIAxis == 2 ) { 635 Exception("CreateSolid", "TRD1-x,y"); 574 Exception("CreateSolid", "TRD1-x,y"); 636 } 575 } 637 else if ( fIAxis == 3 ) { 576 else if ( fIAxis == 3 ) { 638 Rpar[3] = fWidth/2./cm; 577 Rpar[3] = fWidth/2./cm; 639 } 578 } 640 } 579 } 641 else if ( shape == "TRD2" ) { 580 else if ( shape == "TRD2" ) { 642 if ( fIAxis == 1 || fIAxis == 2 ) { 581 if ( fIAxis == 1 || fIAxis == 2 ) { 643 Exception("CreateSolid", "TRD2-x,y"); 582 Exception("CreateSolid", "TRD2-x,y"); 644 } 583 } 645 else if ( fIAxis == 3 ) { 584 else if ( fIAxis == 3 ) { 646 Rpar[4] = fWidth/2./cm; 585 Rpar[4] = fWidth/2./cm; 647 } 586 } 648 } 587 } 649 else if ( shape == "TRAP" ) { 588 else if ( shape == "TRAP" ) { 650 if ( fIAxis == 1 || fIAxis == 2) { 589 if ( fIAxis == 1 || fIAxis == 2) { 651 Exception("CreateSolid", "TRAP-x,y"); 590 Exception("CreateSolid", "TRAP-x,y"); 652 } 591 } 653 else if ( fIAxis == 3 ) { 592 else if ( fIAxis == 3 ) { 654 Rpar[0] = fWidth/2./cm; 593 Rpar[0] = fWidth/2./cm; 655 } 594 } 656 } 595 } 657 else if ( shape == "TUBE" ) { 596 else if ( shape == "TUBE" ) { 658 if ( fIAxis == 1 ) { 597 if ( fIAxis == 1 ) { 659 Rpar[1] = Rpar[0] + fWidth/cm; 598 Rpar[1] = Rpar[0] + fWidth/cm; 660 fOffset = Rpar[0]*cm; 599 fOffset = Rpar[0]*cm; 661 } 600 } 662 else if ( fIAxis == 2 ) { 601 else if ( fIAxis == 2 ) { 663 Rpar[3] = 0.; 602 Rpar[3] = 0.; 664 Rpar[4] = fWidth/deg; 603 Rpar[4] = fWidth/deg; 665 shape = "TUBS"; 604 shape = "TUBS"; 666 npar = npar + 2; 605 npar = npar + 2; 667 } 606 } 668 else if ( fIAxis == 3 ) { 607 else if ( fIAxis == 3 ) { 669 Rpar[2] = fWidth/2./cm; 608 Rpar[2] = fWidth/2./cm; 670 } 609 } 671 } 610 } 672 else if ( shape == "TUBS" ) { 611 else if ( shape == "TUBS" ) { 673 if ( fIAxis == 1 ) { 612 if ( fIAxis == 1 ) { 674 Rpar[1] = Rpar[0] + fWidth/cm; 613 Rpar[1] = Rpar[0] + fWidth/cm; 675 fOffset = Rpar[0]*cm; 614 fOffset = Rpar[0]*cm; 676 } 615 } 677 else if ( fIAxis == 2 ) { 616 else if ( fIAxis == 2 ) { 678 fOffset = Rpar[3]*deg; 617 fOffset = Rpar[3]*deg; 679 Rpar[3] = 0.; 618 Rpar[3] = 0.; 680 Rpar[4] = fWidth/deg; 619 Rpar[4] = fWidth/deg; 681 } 620 } 682 else if ( fIAxis == 3 ) { 621 else if ( fIAxis == 3 ) { 683 Rpar[2] = fWidth/2./cm; 622 Rpar[2] = fWidth/2./cm; 684 } 623 } 685 } 624 } 686 else if ( shape == "CONE" ) { 625 else if ( shape == "CONE" ) { 687 if ( fIAxis == 1 ) { 626 if ( fIAxis == 1 ) { 688 Exception("CreateSolid", "CONE-x"); 627 Exception("CreateSolid", "CONE-x"); 689 } 628 } 690 else if ( fIAxis == 2 ) { 629 else if ( fIAxis == 2 ) { 691 Rpar[5] = 0.; 630 Rpar[5] = 0.; 692 Rpar[6] = fWidth/deg; 631 Rpar[6] = fWidth/deg; 693 shape = "CONS"; 632 shape = "CONS"; 694 npar = npar + 2; 633 npar = npar + 2; 695 } 634 } 696 else if ( fIAxis == 3 ) { 635 else if ( fIAxis == 3 ) { 697 Rpar[0] = fWidth/2./cm; 636 Rpar[0] = fWidth/2./cm; 698 } 637 } 699 } 638 } 700 else if ( shape == "CONS" ) { 639 else if ( shape == "CONS" ) { 701 if ( fIAxis == 1 ) { 640 if ( fIAxis == 1 ) { 702 Exception("CreateSolid", "CONS-x"); 641 Exception("CreateSolid", "CONS-x"); 703 } 642 } 704 else if ( fIAxis == 2 ) { 643 else if ( fIAxis == 2 ) { 705 fOffset = Rpar[5]*deg; 644 fOffset = Rpar[5]*deg; 706 Rpar[5] = 0.; 645 Rpar[5] = 0.; 707 Rpar[6] = fWidth/deg; 646 Rpar[6] = fWidth/deg; 708 } 647 } 709 else if ( fIAxis == 3 ) { 648 else if ( fIAxis == 3 ) { 710 Rpar[0] = fWidth/2./cm; 649 Rpar[0] = fWidth/2./cm; 711 } 650 } 712 } 651 } 713 else if (shape == "PARA") { << 652 else if (shape == "SPHE" || shape == "PARA") { 714 if ( fIAxis == 1 ) { << 715 Rpar[0] = fWidth/2./cm; << 716 } << 717 else if ( Rpar[4] == 0. && Rpar[5] == 0. << 718 // only special case for axis 2,3 is << 719 if ( fIAxis == 2 ) { << 720 Rpar[1] = fWidth/2./cm; << 721 } << 722 else if ( fIAxis == 3) { << 723 Rpar[2] = fWidth/2./cm; << 724 } << 725 } << 726 else << 727 Exception("CreateSolid", shape); << 728 } << 729 else if (shape == "SPHE") { << 730 Exception("CreateSolid", shape); 653 Exception("CreateSolid", shape); 731 } 654 } 732 else if ( shape == "PGON" ) { 655 else if ( shape == "PGON" ) { 733 if ( fIAxis == 2 ) { 656 if ( fIAxis == 2 ) { 734 fOffset = Rpar[0]*deg; 657 fOffset = Rpar[0]*deg; 735 Rpar[0] = 0.; 658 Rpar[0] = 0.; 736 Rpar[1] = fWidth/deg; 659 Rpar[1] = fWidth/deg; 737 Rpar[2] = 1.; 660 Rpar[2] = 1.; 738 } 661 } 739 else 662 else 740 Exception("CreateSolid", shape); 663 Exception("CreateSolid", shape); 741 } 664 } 742 else if ( shape == "PCON" ) { 665 else if ( shape == "PCON" ) { 743 if ( fIAxis == 2 ) { 666 if ( fIAxis == 2 ) { 744 fOffset = Rpar[0]*deg; 667 fOffset = Rpar[0]*deg; 745 Rpar[0] = 0.; 668 Rpar[0] = 0.; 746 Rpar[1] = fWidth/deg; 669 Rpar[1] = fWidth/deg; 747 } 670 } 748 else { 671 else { 749 Exception("CreateSolid", shape); 672 Exception("CreateSolid", shape); 750 } 673 } 751 } 674 } 752 else { 675 else { 753 Exception("CreateSolid", "Unknown shape 676 Exception("CreateSolid", "Unknown shape" + shape); 754 } 677 } 755 678 756 // create solid and set it to fVTE 679 // create solid and set it to fVTE 757 G4bool hasNegPars; 680 G4bool hasNegPars; 758 G4bool deferred; 681 G4bool deferred; 759 G4bool okAxis[3]; 682 G4bool okAxis[3]; 760 G4VSolid* solid 683 G4VSolid* solid 761 = G3toG4MakeSolid(fVTE->GetName(), shape, 684 = G3toG4MakeSolid(fVTE->GetName(), shape, Rpar, npar, hasNegPars, deferred, okAxis); 762 685 763 if (hasNegPars) { 686 if (hasNegPars) { 764 G4String err_message = "CreateSolid VTE << 687 G4String name = fVTE->GetName(); 765 + " has negative p << 688 G4Exception("CreateSolid VTE " + name + " has negative parameters."); 766 G4Exception("G3Division::CreateSolid()" << 767 FatalException, err_message << 768 return; << 769 } 689 } 770 690 771 // update vte 691 // update vte 772 fVTE->SetSolid(solid); 692 fVTE->SetSolid(solid); 773 fVTE->SetNRpar(npar, Rpar); 693 fVTE->SetNRpar(npar, Rpar); 774 fVTE->SetHasNegPars(hasNegPars); 694 fVTE->SetHasNegPars(hasNegPars); 775 695 776 // verbose 696 // verbose 777 // G4cout << "G3Division::CreateSolid volu 697 // G4cout << "G3Division::CreateSolid volume after: " 778 // << fVTE->GetName() << " " << sha 698 // << fVTE->GetName() << " " << shape << G4endl; 779 // G4cout << " npar,Rpar: " << npar; 699 // G4cout << " npar,Rpar: " << npar; 780 // for (G4int iii = 0; iii < npar; ++iii) 700 // for (G4int iii = 0; iii < npar; ++iii) G4cout << " " << Rpar[iii]; 781 // G4cout << G4endl; 701 // G4cout << G4endl; 782 delete [] Rpar; << 783 } 702 } 784 703 785 704 786 G3VolTableEntry* G3Division::Dvn() 705 G3VolTableEntry* G3Division::Dvn() 787 { 706 { 788 // no envelope need to be created 707 // no envelope need to be created 789 708 790 // get parameters from mother 709 // get parameters from mother 791 G4String shape = fMVTE->GetShape(); 710 G4String shape = fMVTE->GetShape(); 792 G4double* Rpar = fMVTE->GetRpar(); 711 G4double* Rpar = fMVTE->GetRpar(); 793 G4int npar = fMVTE->GetNpar(); 712 G4int npar = fMVTE->GetNpar(); 794 713 795 // set width for replica and create solid 714 // set width for replica and create solid 796 fWidth = (fHighRange - fLowRange)/fNofDivisi 715 fWidth = (fHighRange - fLowRange)/fNofDivisions; 797 CreateSolid(shape, Rpar, npar); 716 CreateSolid(shape, Rpar, npar); 798 717 799 return 0; 718 return 0; 800 } 719 } 801 720 802 G3VolTableEntry* G3Division::Dvn2() 721 G3VolTableEntry* G3Division::Dvn2() 803 { 722 { 804 // to be defined as const of this class 723 // to be defined as const of this class 805 G4double Rmin = 0.0001*cm; 724 G4double Rmin = 0.0001*cm; 806 725 807 G4String shape = fMVTE->GetShape(); 726 G4String shape = fMVTE->GetShape(); 808 G4double* Rpar = fMVTE->GetRpar(); 727 G4double* Rpar = fMVTE->GetRpar(); 809 G4int npar = fMVTE->GetNpar(); 728 G4int npar = fMVTE->GetNpar(); 810 729 811 G4double c0 = fC0; 730 G4double c0 = fC0; 812 if (fAxis == kPhi) c0 = c0*deg; 731 if (fAxis == kPhi) c0 = c0*deg; 813 else c0 = c0*cm; 732 else c0 = c0*cm; 814 733 815 // create envelope (if needed) 734 // create envelope (if needed) 816 G3VolTableEntry* envVTE = 0; 735 G3VolTableEntry* envVTE = 0; 817 if( std::abs(c0 - fLowRange) > Rmin) { << 736 if( abs(c0 - fLowRange) > Rmin) { 818 envVTE = CreateEnvelope(shape, fHighRange, 737 envVTE = CreateEnvelope(shape, fHighRange, c0, Rpar, npar); 819 Rpar = envVTE->GetRpar(); 738 Rpar = envVTE->GetRpar(); 820 npar = envVTE->GetNpar(); 739 npar = envVTE->GetNpar(); 821 } 740 } 822 741 823 // set width for replica and create solid 742 // set width for replica and create solid 824 fWidth = (fHighRange - c0)/fNofDivisions; 743 fWidth = (fHighRange - c0)/fNofDivisions; 825 CreateSolid(shape, Rpar, npar); 744 CreateSolid(shape, Rpar, npar); 826 745 827 return envVTE; 746 return envVTE; 828 } 747 } 829 748 830 G3VolTableEntry* G3Division::Dvt() 749 G3VolTableEntry* G3Division::Dvt() 831 { 750 { 832 // to be defined as const of this class 751 // to be defined as const of this class 833 G4double Rmin = 0.0001*cm; 752 G4double Rmin = 0.0001*cm; 834 753 835 // get parameters from mother 754 // get parameters from mother 836 G4String shape = fMVTE->GetShape(); 755 G4String shape = fMVTE->GetShape(); 837 G4double* Rpar = fMVTE->GetRpar(); 756 G4double* Rpar = fMVTE->GetRpar(); 838 G4int npar = fMVTE->GetNpar(); 757 G4int npar = fMVTE->GetNpar(); 839 758 840 // calculate the number of divisions 759 // calculate the number of divisions 841 G4int ndvmx = fNofDivisions; 760 G4int ndvmx = fNofDivisions; 842 G4double step = fStep; 761 G4double step = fStep; 843 762 844 if (fAxis == kPhi) step = step*deg; 763 if (fAxis == kPhi) step = step*deg; 845 else step = step*cm; 764 else step = step*cm; 846 765 847 G4int ndiv = G4int((fHighRange - fLowRange + 766 G4int ndiv = G4int((fHighRange - fLowRange + Rmin)/step); 848 // to be added warning 767 // to be added warning 849 if (ndvmx > 255) ndvmx = 255; 768 if (ndvmx > 255) ndvmx = 255; 850 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx 769 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx; 851 770 852 // create envVTE (if needed) 771 // create envVTE (if needed) 853 G3VolTableEntry* envVTE = 0; 772 G3VolTableEntry* envVTE = 0; 854 G4double delta = std::abs((fHighRange - fLow << 773 G4double delta = abs((fHighRange - fLowRange) - ndiv*step); 855 if (delta > Rmin) { 774 if (delta > Rmin) { 856 envVTE 775 envVTE 857 = CreateEnvelope(shape, fHighRange-delt 776 = CreateEnvelope(shape, fHighRange-delta/2., fLowRange+delta/2., 858 Rpar, npar); 777 Rpar, npar); 859 Rpar = envVTE->GetRpar(); 778 Rpar = envVTE->GetRpar(); 860 npar = envVTE->GetNpar(); 779 npar = envVTE->GetNpar(); 861 } 780 } 862 781 863 // set width for replica and create solid 782 // set width for replica and create solid 864 fWidth = step; 783 fWidth = step; 865 fNofDivisions = ndiv; 784 fNofDivisions = ndiv; 866 CreateSolid(shape, Rpar, npar); 785 CreateSolid(shape, Rpar, npar); 867 786 868 return envVTE; 787 return envVTE; 869 } 788 } 870 789 871 G3VolTableEntry* G3Division::Dvt2() 790 G3VolTableEntry* G3Division::Dvt2() 872 { 791 { 873 // to be defined as const of this class 792 // to be defined as const of this class 874 G4double Rmin = 0.0001*cm; 793 G4double Rmin = 0.0001*cm; 875 794 876 // get parameters from mother 795 // get parameters from mother 877 G4String shape = fMVTE->GetShape(); 796 G4String shape = fMVTE->GetShape(); 878 G4double* Rpar = fMVTE->GetRpar(); 797 G4double* Rpar = fMVTE->GetRpar(); 879 G4int npar = fMVTE->GetNpar(); 798 G4int npar = fMVTE->GetNpar(); 880 799 881 // calculate the number of divisions 800 // calculate the number of divisions 882 G4int ndvmx = fNofDivisions; 801 G4int ndvmx = fNofDivisions; 883 G4double step = fStep; 802 G4double step = fStep; 884 G4double c0 = fC0; 803 G4double c0 = fC0; 885 804 886 if(fAxis == kPhi){ 805 if(fAxis == kPhi){ 887 step = step*deg; 806 step = step*deg; 888 c0 = c0*deg; 807 c0 = c0*deg; 889 } 808 } 890 else { 809 else { 891 step = step*cm; 810 step = step*cm; 892 c0 = c0*cm; 811 c0 = c0*cm; 893 } 812 } 894 813 895 G4int ndiv = G4int((fHighRange - c0 + Rmin)/ 814 G4int ndiv = G4int((fHighRange - c0 + Rmin)/step); 896 // to be added warning 815 // to be added warning 897 if (ndvmx > 255) ndvmx = 255; 816 if (ndvmx > 255) ndvmx = 255; 898 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx 817 if (ndiv > ndvmx && ndvmx > 0 ) ndiv = ndvmx; 899 818 900 // create envelope (if needed) 819 // create envelope (if needed) 901 G3VolTableEntry* envVTE = 0; 820 G3VolTableEntry* envVTE = 0; 902 G4double delta = std::abs((fHighRange - c0) << 821 G4double delta = abs((fHighRange - c0) - ndiv*step); 903 if (std::abs(c0 - fLowRange) > Rmin) { << 822 if (abs(c0 - fLowRange) > Rmin) { 904 envVTE 823 envVTE 905 = CreateEnvelope(shape, fHighRange-delta 824 = CreateEnvelope(shape, fHighRange-delta/2., c0+delta/2., Rpar, npar); 906 Rpar = envVTE->GetRpar(); 825 Rpar = envVTE->GetRpar(); 907 npar = envVTE->GetNpar(); 826 npar = envVTE->GetNpar(); 908 } 827 } 909 828 910 // set with for replica and create solid 829 // set with for replica and create solid 911 fWidth = step; 830 fWidth = step; 912 fNofDivisions = ndiv; 831 fNofDivisions = ndiv; 913 CreateSolid(shape, Rpar, npar); 832 CreateSolid(shape, Rpar, npar); 914 833 915 return envVTE; 834 return envVTE; 916 } 835 } 917 836