Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/fanoCavity/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/medical/fanoCavity/src/Run.cc (Version 11.3.0) and /examples/extended/medical/fanoCavity/src/Run.cc (Version 10.2.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 /// \file medical/fanoCavity/src/Run.cc        <<  26 /// \file medical/fanoCavity2/src/Run.cc
 27 /// \brief Implementation of the Run class         27 /// \brief Implementation of the Run class
 28 //                                                 28 //
 29 //                                             <<  29 // $Id: Run.cc 71035 2013-06-10 09:17:35Z gcosmo $
                                                   >>  30 // 
 30 //....oooOO0OOooo........oooOO0OOooo........oo     31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oo     32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32                                                    33 
 33 #include "Run.hh"                                  34 #include "Run.hh"
 34                                                << 
 35 #include "DetectorConstruction.hh"                 35 #include "DetectorConstruction.hh"
 36 #include "HistoManager.hh"                     << 
 37 #include "PrimaryGeneratorAction.hh"               36 #include "PrimaryGeneratorAction.hh"
                                                   >>  37 #include "HistoManager.hh"
 38                                                    38 
 39 #include "G4Electron.hh"                       << 
 40 #include "G4EmCalculator.hh"                   << 
 41 #include "G4Run.hh"                                39 #include "G4Run.hh"
 42 #include "G4RunManager.hh"                         40 #include "G4RunManager.hh"
 43 #include "G4SystemOfUnits.hh"                  << 
 44 #include "G4UnitsTable.hh"                         41 #include "G4UnitsTable.hh"
 45 #include "Randomize.hh"                        <<  42 #include "G4EmCalculator.hh"
                                                   >>  43 #include "G4Electron.hh"
 46                                                    44 
                                                   >>  45 #include "G4SystemOfUnits.hh"
                                                   >>  46 #include "Randomize.hh"
 47 #include <iomanip>                                 47 #include <iomanip>
 48                                                    48 
 49 //....oooOO0OOooo........oooOO0OOooo........oo << 
 50                                                << 
 51 Run::Run(DetectorConstruction* det, PrimaryGen << 
 52   : fDetector(det), fKinematic(kin), fProcCoun << 
 53                                                << 
 54 {                                              << 
 55   // geometry                                  << 
 56   //                                           << 
 57   fWallThickness = fDetector->GetWallThickness << 
 58   fWallRadius = fDetector->GetWallRadius();    << 
 59   fMateWall = fDetector->GetWallMaterial();    << 
 60   fDensityWall = fMateWall->GetDensity();      << 
 61                                                << 
 62   fCavityThickness = fDetector->GetCavityThick << 
 63   fCavityRadius = fDetector->GetCavityRadius() << 
 64   fSurfaceCavity = CLHEP::pi * fCavityRadius * << 
 65   fVolumeCavity = fSurfaceCavity * fCavityThic << 
 66   fMateCavity = fDetector->GetCavityMaterial() << 
 67   fDensityCavity = fMateCavity->GetDensity();  << 
 68   fMassCavity = fVolumeCavity * fDensityCavity << 
 69                                                << 
 70   // process counter                           << 
 71   //                                           << 
 72   fProcCounter = new ProcessesCount;           << 
 73                                                    49 
 74   // kinetic energy of charged secondary a cre << 
 75   //                                           << 
 76   fEsecondary = fEsecondary2 = 0.;             << 
 77   fNbSec = 0;                                  << 
 78                                                    50 
 79   // charged particles and energy flow in cavi << 
 80   //                                           << 
 81   fPartFlowCavity[0] = fPartFlowCavity[1] = 0; << 
 82   fEnerFlowCavity[0] = fEnerFlowCavity[1] = 0. << 
 83                                                    51 
 84   // total energy deposit and charged track se <<  52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85   //                                           << 
 86   fEdepCavity = fEdepCavity2 = fTrkSegmCavity  << 
 87   fNbEventCavity = 0;                          << 
 88                                                    53 
 89   // survey convergence                        <<  54 Run::Run(DetectorConstruction* det,PrimaryGeneratorAction *kin )
 90   //                                           <<  55 :fDetector(det),fKinematic(kin), fProcCounter(0), fMateWall(0),fMateCavity(0)
 91   fOldEmean = fOldDose = 0.;                   << 
 92                                                    56 
 93   // stepLenth of charged particles            <<  57 {
 94   //                                           << 
 95   fStepWall = fStepWall2 = fStepCavity = fStep << 
 96   fNbStepWall = fNbStepCavity = 0;             << 
 97                                                    58 
 98   // histograms                                <<  59     //geometry
 99   //                                           <<  60     //
100   G4AnalysisManager* analysisManager = G4Analy <<  61     fWallThickness = fDetector->GetWallThickness();
101   if (analysisManager->IsActive()) {           <<  62     fWallRadius    = fDetector->GetWallRadius();
102     analysisManager->OpenFile();               <<  63     fMateWall      = fDetector->GetWallMaterial();
103   }                                            <<  64     fDensityWall   = fMateWall->GetDensity();
                                                   >>  65 
                                                   >>  66     fCavityThickness = fDetector->GetCavityThickness();
                                                   >>  67     fCavityRadius    = fDetector->GetCavityRadius();
                                                   >>  68     fSurfaceCavity   = CLHEP::pi*fCavityRadius*fCavityRadius;
                                                   >>  69     fVolumeCavity    = fSurfaceCavity*fCavityThickness;
                                                   >>  70     fMateCavity      = fDetector->GetCavityMaterial();
                                                   >>  71     fDensityCavity   = fMateCavity->GetDensity();
                                                   >>  72     fMassCavity      = fVolumeCavity*fDensityCavity;
                                                   >>  73 
                                                   >>  74     //process counter
                                                   >>  75     //
                                                   >>  76     fProcCounter = new ProcessesCount;
                                                   >>  77 
                                                   >>  78     //kinetic energy of charged secondary a creation
                                                   >>  79     //
                                                   >>  80     fEsecondary = fEsecondary2 = 0.;
                                                   >>  81     fNbSec = 0;
                                                   >>  82 
                                                   >>  83     //charged particles and energy flow in cavity
                                                   >>  84     //
                                                   >>  85     fPartFlowCavity[0] = fPartFlowCavity[1] = 0;
                                                   >>  86     fEnerFlowCavity[0] = fEnerFlowCavity[1] = 0.;
                                                   >>  87 
                                                   >>  88     //total energy deposit and charged track segment in cavity
                                                   >>  89     //
                                                   >>  90     fEdepCavity = fEdepCavity2 = fTrkSegmCavity = 0.;
                                                   >>  91     fNbEventCavity = 0;
                                                   >>  92 
                                                   >>  93     //survey convergence
                                                   >>  94     //
                                                   >>  95     fOldEmean = fOldDose = 0.;
                                                   >>  96 
                                                   >>  97     //stepLenth of charged particles
                                                   >>  98     //
                                                   >>  99     fStepWall = fStepWall2 = fStepCavity = fStepCavity2 =0.;
                                                   >> 100     fNbStepWall = fNbStepCavity = 0;
                                                   >> 101 
                                                   >> 102     //histograms
                                                   >> 103     //
                                                   >> 104     G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
                                                   >> 105     if ( analysisManager->IsActive() ) {
                                                   >> 106       analysisManager->OpenFile();
                                                   >> 107     }
104 }                                                 108 }
105                                                   109 
106 //....oooOO0OOooo........oooOO0OOooo........oo    110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107                                                   111 
108 Run::~Run() {}                                 << 112 Run::~Run()
                                                   >> 113 {
                                                   >> 114 }
109                                                   115 
110 //....oooOO0OOooo........oooOO0OOooo........oo    116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111                                                   117 
112 void Run::EndOfRun()                              118 void Run::EndOfRun()
113 {  // Only call by Master thread               << 119 { // Only call by Master thread
114   std::ios::fmtflags mode = G4cout.flags();    << 120     std::ios::fmtflags mode = G4cout.flags();
115   G4cout.setf(std::ios::fixed, std::ios::float << 121     G4cout.setf(std::ios::fixed,std::ios::floatfield);
116                                                << 122 
117   if (numberOfEvent == 0) return;              << 123 
118                                                << 124     if (numberOfEvent == 0) return;
119   // run conditions                            << 125 
120   //                                           << 126     //run conditions
121   G4ParticleDefinition* particle = fKinematic- << 127     //
122   G4String partName = particle->GetParticleNam << 128     G4ParticleDefinition* particle = fKinematic->GetParticleGun()
123   G4double energy = fKinematic->GetParticleGun << 129                                             ->GetParticleDefinition();
124                                                << 130     G4String partName = particle->GetParticleName();
125   G4cout << "\n ======================== run s << 131     G4double energy = fKinematic->GetParticleGun()->GetParticleEnergy();
126                                                << 132 
127   G4int prec = G4cout.precision(3);            << 133     G4cout <<"\n ======================== run summary ======================\n";
128                                                << 134 
129   G4cout << "\n The run consists of " << numbe << 135     G4int prec = G4cout.precision(3);
130          << G4BestUnit(energy, "Energy") << "  << 136 
131          << " of " << fMateWall->GetName()     << 137     G4cout <<"\n The run consists of "<<numberOfEvent<<" "<< partName << " of "
132          << " (density: " << G4BestUnit(fDensi << 138            << G4BestUnit(energy,"Energy") << " through 2*"
133                                                << 139            << G4BestUnit(fWallThickness,"Length") << " of "
134   G4cout << "\n the cavity is " << G4BestUnit( << 140            << fMateWall->GetName() << " (density: "
135          << fMateCavity->GetName() << " (densi << 141            << G4BestUnit(fDensityWall,"Volumic Mass") << ")" << G4endl;
136          << "); Mass = " << G4BestUnit(fMassCa << 142 
137                                                << 143     G4cout << "\n the cavity is "
138   G4cout << "\n ============================== << 144            << G4BestUnit(fCavityThickness,"Length") << " of "
139                                                << 145            << fMateCavity->GetName() << " (density: "
140   // frequency of processes                    << 146            << G4BestUnit(fDensityCavity,"Volumic Mass") << "); Mass = "
141   //                                           << 147            << G4BestUnit(fMassCavity,"Mass") << G4endl;
142   G4cout << "\n Process calls frequency --->"; << 148 
143   for (size_t i = 0; i < fProcCounter->size(); << 149     G4cout<<"\n ============================================================\n";
144     G4String procName = (*fProcCounter)[i]->Ge << 150 
145     G4int count = (*fProcCounter)[i]->GetCount << 151     //frequency of processes
146     G4cout << "  " << procName << "= " << coun << 152     //
147   }                                            << 153     G4cout << "\n Process calls frequency --->";
148   G4cout << G4endl;                            << 154     for (size_t i=0; i< fProcCounter->size();i++) {
149                                                << 155        G4String procName = (*fProcCounter)[i]->GetName();
150   // extract cross sections with G4EmCalculato << 156        G4int    count    = (*fProcCounter)[i]->GetCounter();
151   //                                           << 157        G4cout << "  " << procName << "= " << count;
152   G4EmCalculator emCalculator;                 << 
153   G4cout << "\n Gamma crossSections in wall ma << 
154   G4double sumc = 0.0;                         << 
155   for (size_t i = 0; i < fProcCounter->size(); << 
156     G4String procName = (*fProcCounter)[i]->Ge << 
157     G4double massSigma =                       << 
158       emCalculator.ComputeCrossSectionPerVolum << 
159       / fDensityWall;                          << 
160     if (massSigma > 0.) {                      << 
161       sumc += massSigma;                       << 
162       G4cout << "  " << procName << "= " << G4 << 
163     }                                             158     }
164   }                                            << 159     G4cout << G4endl;
165   G4cout << "   --> total= " << G4BestUnit(sum << 
166                                                << 
167   // mean kinetic energy of secondary electron << 
168   //                                           << 
169   if (fNbSec == 0) return;                     << 
170   G4double meanEsecond = fEsecondary / fNbSec, << 
171   G4double varianceEsec = meanEsecond2 - meanE << 
172   G4double dToverT = 0.;                       << 
173   if (varianceEsec > 0.) dToverT = std::sqrt(v << 
174   G4double csdaRange = emCalculator.GetCSDARan << 
175                                                << 
176   G4cout.precision(4);                         << 
177   G4cout << "\n Mean energy of secondary e- =  << 
178          << 100 * dToverT << " %"              << 
179          << "  (--> range in wall material = " << 
180                                                << 
181   // compute mass energy transfer coefficient  << 
182   //                                           << 
183   G4double massTransfCoef = sumc * meanEsecond << 
184                                                << 
185   G4cout << " Mass_energy_transfer coef: " <<  << 
186                                                << 
187   // stopping power from EmCalculator          << 
188   //                                           << 
189   G4double dedxWall = emCalculator.GetDEDX(mea << 
190   dedxWall /= fDensityWall;                    << 
191   G4double dedxCavity = emCalculator.GetDEDX(m << 
192   dedxCavity /= fDensityCavity;                << 
193                                                << 
194   G4cout << "\n StoppingPower in wall   = " << << 
195          << "\n               in cavity = " << << 
196          << G4endl;                            << 
197                                                << 
198   // charged particle flow in cavity           << 
199   //                                           << 
200   G4cout << "\n Charged particle flow in cavit << 
201          << "\n      Enter --> nbParticles = " << 
202          << "\t Energy = " << G4BestUnit(fEner << 
203          << "\n      Exit  --> nbParticles = " << 
204          << "\t Energy = " << G4BestUnit(fEner << 
205                                                << 
206   if (fPartFlowCavity[0] == 0) return;         << 
207                                                << 
208   // beam energy fluence                       << 
209   //                                           << 
210   G4double rBeam = fWallRadius * (fKinematic-> << 
211   G4double surfaceBeam = CLHEP::pi * rBeam * r << 
212                                                << 
213   // error on Edep in cavity                   << 
214   //                                           << 
215   if (fNbEventCavity == 0) return;             << 
216   G4double meanEdep = fEdepCavity / fNbEventCa << 
217   G4double meanEdep2 = fEdepCavity2 / fNbEvent << 
218   G4double varianceEdep = meanEdep2 - meanEdep << 
219   G4double dEoverE = 0.;                       << 
220   if (varianceEdep > 0.) dEoverE = std::sqrt(v << 
221                                                << 
222   // total dose in cavity                      << 
223   //                                           << 
224   G4double doseCavity = fEdepCavity / fMassCav << 
225   G4double doseOverBeam = doseCavity * surface << 
226                                                << 
227   // track length in cavity                    << 
228   G4double meantrack = fTrkSegmCavity / fPartF << 
229                                                << 
230   G4cout.precision(4);                         << 
231   G4cout << "\n Total edep in cavity = " << G4 << 
232          << 100 * dEoverE << " %"              << 
233          << "\t Total charged trackLength = "  << 
234          << "   (mean value = " << G4BestUnit( << 
235          << "\n Total dose in cavity = " << do << 
236          << "\n Dose/EnergyFluence   = " << G4 << 
237                                                << 
238   // ratio simulation/theory                   << 
239   //                                           << 
240   G4double ratio = doseOverBeam / massTransfCo << 
241   G4double error = ratio * std::sqrt(dEoverE * << 
242                                                << 
243   G4cout.precision(5);                         << 
244   G4cout << "\n (Dose/EnergyFluence)/Mass_ener << 
245                                                   160 
246   // compute mean step size of charged particl << 161     //extract cross sections with G4EmCalculator
247   //                                           << 162     //
248   fStepWall /= fNbStepWall;                    << 163     G4EmCalculator emCalculator;
249   fStepWall2 /= fNbStepWall;                   << 164     G4cout << "\n Gamma crossSections in wall material :";
250   G4double rms = fStepWall2 - fStepWall * fSte << 165     G4double sumc = 0.0;
251   if (rms > 0.)                                << 166     for (size_t i=0; i< fProcCounter->size();i++) {
252     rms = std::sqrt(rms);                      << 167       G4String procName = (*fProcCounter)[i]->GetName();
253   else                                         << 168       G4double massSigma =
254     rms = 0.;                                  << 169       emCalculator.ComputeCrossSectionPerVolume(energy,particle,
255                                                << 170                                                procName,fMateWall)/fDensityWall;
256   G4cout.precision(4);                         << 171       if (massSigma > 0.) {
257   G4cout << "\n StepSize of ch. tracks in wall << 172         sumc += massSigma;
258          << G4BestUnit(rms, "Length") << "\t ( << 173         G4cout << "  " << procName << "= "
259          << ")";                               << 174                << G4BestUnit(massSigma, "Surface/Mass");
260                                                << 175       }
261   fStepCavity /= fNbStepCavity;                << 176     }
262   fStepCavity2 /= fNbStepCavity;               << 177     G4cout << "   --> total= "
263   rms = fStepCavity2 - fStepCavity * fStepCavi << 178            << G4BestUnit(sumc, "Surface/Mass") << G4endl;
264   if (rms > 0.)                                << 
265     rms = std::sqrt(rms);                      << 
266   else                                         << 
267     rms = 0.;                                  << 
268                                                << 
269   G4cout << "\n StepSize of ch. tracks in cavi << 
270          << G4BestUnit(rms, "Length")          << 
271          << "\t (nbSteps/track = " << double(f << 
272                                                   179 
273   G4cout << G4endl;                            << 180     //mean kinetic energy of secondary electrons
                                                   >> 181     //
                                                   >> 182     if (fNbSec == 0) return;
                                                   >> 183     G4double meanEsecond = fEsecondary/fNbSec,meanEsecond2= fEsecondary2/fNbSec;
                                                   >> 184     G4double varianceEsec = meanEsecond2 - meanEsecond*meanEsecond;
                                                   >> 185     G4double dToverT = 0.;
                                                   >> 186     if (varianceEsec>0.) dToverT = std::sqrt(varianceEsec/fNbSec)/meanEsecond;
                                                   >> 187     G4double csdaRange =
                                                   >> 188         emCalculator.GetCSDARange(meanEsecond,G4Electron::Electron(),fMateWall);
                                                   >> 189 
                                                   >> 190     G4cout.precision(4);
                                                   >> 191     G4cout
                                                   >> 192       << "\n Mean energy of secondary e- = " << G4BestUnit(meanEsecond,"Energy")
                                                   >> 193       << " +- " << 100*dToverT << " %"
                                                   >> 194       << "  (--> range in wall material = "  << G4BestUnit(csdaRange,"Length")
                                                   >> 195       << ")"
                                                   >> 196       << G4endl;
                                                   >> 197 
                                                   >> 198     //compute mass energy transfer coefficient
                                                   >> 199     //
                                                   >> 200     G4double massTransfCoef = sumc*meanEsecond/energy;
                                                   >> 201 
                                                   >> 202     G4cout << " Mass_energy_transfer coef: "
                                                   >> 203            << G4BestUnit(massTransfCoef, "Surface/Mass")
                                                   >> 204            << G4endl;
                                                   >> 205 
                                                   >> 206     //stopping power from EmCalculator
                                                   >> 207     //
                                                   >> 208     G4double dedxWall =
                                                   >> 209         emCalculator.GetDEDX(meanEsecond,G4Electron::Electron(),fMateWall);
                                                   >> 210     dedxWall /= fDensityWall;
                                                   >> 211     G4double dedxCavity =
                                                   >> 212         emCalculator.GetDEDX(meanEsecond,G4Electron::Electron(),fMateCavity);
                                                   >> 213     dedxCavity /= fDensityCavity;
                                                   >> 214 
                                                   >> 215     G4cout
                                                   >> 216       << "\n StoppingPower in wall   = "
                                                   >> 217       << G4BestUnit(dedxWall,"Energy*Surface/Mass")
                                                   >> 218       << "\n               in cavity = "
                                                   >> 219       << G4BestUnit(dedxCavity,"Energy*Surface/Mass")
                                                   >> 220       << G4endl;
                                                   >> 221 
                                                   >> 222     //charged particle flow in cavity
                                                   >> 223     //
                                                   >> 224     G4cout
                                                   >> 225       << "\n Charged particle flow in cavity :"
                                                   >> 226       << "\n      Enter --> nbParticles = " << fPartFlowCavity[0]
                                                   >> 227       << "\t Energy = " << G4BestUnit (fEnerFlowCavity[0], "Energy")
                                                   >> 228       << "\n      Exit  --> nbParticles = " << fPartFlowCavity[1]
                                                   >> 229       << "\t Energy = " << G4BestUnit (fEnerFlowCavity[1], "Energy")
                                                   >> 230       << G4endl;
                                                   >> 231 
                                                   >> 232     if (fPartFlowCavity[0] == 0) return;
                                                   >> 233 
                                                   >> 234     //beam energy fluence
                                                   >> 235     //
                                                   >> 236     G4double rBeam = fWallRadius*(fKinematic->GetBeamRadius());
                                                   >> 237     G4double surfaceBeam = CLHEP::pi*rBeam*rBeam;
                                                   >> 238 
                                                   >> 239     //error on Edep in cavity
                                                   >> 240     //
                                                   >> 241     if (fNbEventCavity == 0) return;
                                                   >> 242     G4double meanEdep  = fEdepCavity/fNbEventCavity;
                                                   >> 243     G4double meanEdep2 = fEdepCavity2/fNbEventCavity;
                                                   >> 244     G4double varianceEdep = meanEdep2 - meanEdep*meanEdep;
                                                   >> 245     G4double dEoverE = 0.;
                                                   >> 246     if(varianceEdep>0.) dEoverE=std::sqrt(varianceEdep/fNbEventCavity)/meanEdep;
                                                   >> 247 
                                                   >> 248     //total dose in cavity
                                                   >> 249     //
                                                   >> 250     G4double doseCavity = fEdepCavity/fMassCavity;
                                                   >> 251     G4double doseOverBeam = doseCavity*surfaceBeam/(numberOfEvent*energy);
                                                   >> 252 
                                                   >> 253     //track length in cavity
                                                   >> 254     G4double meantrack = fTrkSegmCavity/fPartFlowCavity[0];
                                                   >> 255 
                                                   >> 256     G4cout.precision(4);
                                                   >> 257     G4cout
                                                   >> 258       << "\n Total edep in cavity = "      << G4BestUnit(fEdepCavity,"Energy")
                                                   >> 259       << " +- " << 100*dEoverE << " %"
                                                   >> 260       << "\t Total charged trackLength = " <<G4BestUnit(fTrkSegmCavity,"Length")
                                                   >> 261       << "   (mean value = " << G4BestUnit(meantrack,"Length") << ")"
                                                   >> 262       << "\n Total dose in cavity = " << doseCavity/(MeV/mg) << " MeV/mg"
                                                   >> 263       << "\n Dose/EnergyFluence   = " << G4BestUnit(doseOverBeam,"Surface/Mass")
                                                   >> 264       << G4endl;
                                                   >> 265 
                                                   >> 266     //ratio simulation/theory
                                                   >> 267     //
                                                   >> 268     G4double ratio = doseOverBeam/massTransfCoef;
                                                   >> 269     G4double error = ratio*std::sqrt(dEoverE*dEoverE + dToverT*dToverT);
                                                   >> 270 
                                                   >> 271     G4cout.precision(5);
                                                   >> 272     G4cout
                                                   >> 273       << "\n (Dose/EnergyFluence)/Mass_energy_transfer = " << ratio
                                                   >> 274       << " +- " << error << G4endl;
                                                   >> 275 
                                                   >> 276     //compute mean step size of charged particles
                                                   >> 277     //
                                                   >> 278     fStepWall /= fNbStepWall; fStepWall2 /= fNbStepWall;
                                                   >> 279     G4double rms = fStepWall2 - fStepWall*fStepWall;
                                                   >> 280     if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
                                                   >> 281 
                                                   >> 282     G4cout.precision(4);
                                                   >> 283     G4cout
                                                   >> 284       << "\n StepSize of ch. tracks in wall   = "
                                                   >> 285       << G4BestUnit(fStepWall,"Length") << " +- " << G4BestUnit( rms,"Length")
                                                   >> 286       << "\t (nbSteps/track = " << double(fNbStepWall)/fNbSec << ")";
                                                   >> 287 
                                                   >> 288     fStepCavity /= fNbStepCavity; fStepCavity2 /= fNbStepCavity;
                                                   >> 289     rms = fStepCavity2 - fStepCavity*fStepCavity;
                                                   >> 290     if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
                                                   >> 291 
                                                   >> 292     G4cout
                                                   >> 293      << "\n StepSize of ch. tracks in cavity = "
                                                   >> 294      << G4BestUnit(fStepCavity,"Length") << " +- " << G4BestUnit( rms,"Length")
                                                   >> 295      << "\t (nbSteps/track = "<<double(fNbStepCavity)/fPartFlowCavity[0] << ")";
                                                   >> 296 
                                                   >> 297     G4cout << G4endl;
                                                   >> 298 
                                                   >> 299      // reset default formats
                                                   >> 300     G4cout.setf(mode,std::ios::floatfield);
                                                   >> 301     G4cout.precision(prec);
                                                   >> 302 
                                                   >> 303     // delete and remove all contents in fProcCounter
                                                   >> 304     while (fProcCounter->size()>0){
                                                   >> 305       OneProcessCount* aProcCount=fProcCounter->back();
                                                   >> 306       fProcCounter->pop_back();
                                                   >> 307       delete aProcCount;
                                                   >> 308     }
                                                   >> 309     delete fProcCounter;
274                                                   310 
275   // reset default formats                     << 
276   G4cout.setf(mode, std::ios::floatfield);     << 
277   G4cout.precision(prec);                      << 
278                                                   311 
279   // delete and remove all contents in fProcCo << 
280   while (fProcCounter->size() > 0) {           << 
281     OneProcessCount* aProcCount = fProcCounter << 
282     fProcCounter->pop_back();                  << 
283     delete aProcCount;                         << 
284   }                                            << 
285   delete fProcCounter;                         << 
286 }                                                 312 }
287                                                   313 
288 //....oooOO0OOooo........oooOO0OOooo........oo    314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
289                                                << 
290 void Run::SurveyConvergence(G4int NbofEvents)     315 void Run::SurveyConvergence(G4int NbofEvents)
291 {                                                 316 {
292   if (NbofEvents == 0) return;                    317   if (NbofEvents == 0) return;
293                                                   318 
294   // mean kinetic energy of secondary electron << 319   //mean kinetic energy of secondary electrons
295   //                                              320   //
296   G4double meanEsecond = 0.;                      321   G4double meanEsecond = 0.;
297   if (fNbSec > 0) meanEsecond = fEsecondary /  << 322   if (fNbSec > 0) meanEsecond = fEsecondary/fNbSec;
298   G4double rateEmean = 0.;                        323   G4double rateEmean = 0.;
299   // compute variation rate (%), iteration to     324   // compute variation rate (%), iteration to iteration
300   if (fOldEmean > 0.) rateEmean = 100 * (meanE << 325   if (fOldEmean > 0.) rateEmean = 100*(meanEsecond/fOldEmean - 1.);
301   fOldEmean = meanEsecond;                        326   fOldEmean = meanEsecond;
302                                                   327 
303   // beam energy fluence                       << 328   //beam energy fluence
304   //                                              329   //
305   G4double rBeam = fWallRadius * (fKinematic-> << 330   G4double rBeam = fWallRadius*(fKinematic->GetBeamRadius());
306   G4double surfaceBeam = CLHEP::pi * rBeam * r << 331   G4double surfaceBeam = CLHEP::pi*rBeam*rBeam;
307   G4double beamEnergy = fKinematic->GetParticl    332   G4double beamEnergy = fKinematic->GetParticleGun()->GetParticleEnergy();
308                                                   333 
309   // total dose in cavity                      << 334   //total dose in cavity
310   //                                              335   //
311   G4double doseCavity = fEdepCavity / fMassCav << 336   G4double doseCavity = fEdepCavity/fMassCavity;
312   G4double doseOverBeam = doseCavity * surface << 337   G4double doseOverBeam = doseCavity*surfaceBeam/(NbofEvents*beamEnergy);
313   G4double rateDose = 0.;                         338   G4double rateDose = 0.;
314   // compute variation rate (%), iteration to     339   // compute variation rate (%), iteration to iteration
315   if (fOldDose > 0.) rateDose = 100 * (doseOve << 340   if (fOldDose > 0.) rateDose = 100*(doseOverBeam/fOldDose - 1.);
316   fOldDose = doseOverBeam;                        341   fOldDose = doseOverBeam;
317                                                   342 
318   std::ios::fmtflags mode = G4cout.flags();       343   std::ios::fmtflags mode = G4cout.flags();
319   G4cout.setf(std::ios::fixed, std::ios::float << 344   G4cout.setf(std::ios::fixed,std::ios::floatfield);
320   G4int prec = G4cout.precision(3);               345   G4int prec = G4cout.precision(3);
321                                                   346 
322   G4cout << " ---> NbofEvents= " << NbofEvents << 347   G4cout << "\n ---> NbofEvents= " << NbofEvents
323          << "   Tkin= " << G4BestUnit(meanEsec << 348          << "   NbOfelectr= " << fNbSec
                                                   >> 349          << "   Tkin= " << G4BestUnit(meanEsecond,"Energy")
                                                   >> 350          << " (" << rateEmean << " %)"
324          << "   NbOfelec in cav= " << fPartFlo    351          << "   NbOfelec in cav= " << fPartFlowCavity[0]
325          << "   Dose/EnFluence= " << G4BestUni << 352          << "   Dose/EnFluence= " << G4BestUnit(doseOverBeam,"Surface/Mass")
326          << " %) \n"                           << 353          << " (" << rateDose << " %)"
327          << G4endl;                               354          << G4endl;
328                                                   355 
329   // reset default formats                        356   // reset default formats
330   G4cout.setf(mode, std::ios::floatfield);     << 357   G4cout.setf(mode,std::ios::floatfield);
331   G4cout.precision(prec);                         358   G4cout.precision(prec);
332 }                                                 359 }
333                                                   360 
334 //....oooOO0OOooo........oooOO0OOooo........oo    361 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
335                                                   362 
336 void Run::Merge(const G4Run* run)              << 363 void Run::Merge(const G4Run* run) {
337 {                                              << 364 
338   const Run* localRun = static_cast<const Run* << 365    const Run* localRun = static_cast<const Run*>(run);
                                                   >> 366 
                                                   >> 367   fPartFlowCavity[0]+= localRun->fPartFlowCavity[0];
                                                   >> 368   fPartFlowCavity[1]+= localRun->fPartFlowCavity[1];
                                                   >> 369   fEnerFlowCavity[0]+= localRun->fEnerFlowCavity[0];
                                                   >> 370   fEnerFlowCavity[1]+= localRun->fEnerFlowCavity[1];
                                                   >> 371     fEdepCavity     += localRun->fEdepCavity;
                                                   >> 372     fEdepCavity2      += localRun->fEdepCavity2;
                                                   >> 373     fTrkSegmCavity    += localRun->fTrkSegmCavity;
                                                   >> 374     fNbEventCavity    += localRun->fNbEventCavity;
339                                                   375 
340   fPartFlowCavity[0] += localRun->fPartFlowCav << 376     fStepWall       += localRun->fStepWall;
341   fPartFlowCavity[1] += localRun->fPartFlowCav << 377     fStepWall2      += localRun->fStepWall2;
342   fEnerFlowCavity[0] += localRun->fEnerFlowCav << 378   fStepCavity     += localRun->fStepCavity;
343   fEnerFlowCavity[1] += localRun->fEnerFlowCav << 379   fStepCavity2    += localRun->fStepCavity2;
344   fEdepCavity += localRun->fEdepCavity;        << 380   fNbStepWall       += localRun->fNbStepWall;
345   fEdepCavity2 += localRun->fEdepCavity2;      << 381   fNbStepCavity     += localRun->fNbStepCavity;
346   fTrkSegmCavity += localRun->fTrkSegmCavity;  << 
347   fNbEventCavity += localRun->fNbEventCavity;  << 
348                                                << 
349   fStepWall += localRun->fStepWall;            << 
350   fStepWall2 += localRun->fStepWall2;          << 
351   fStepCavity += localRun->fStepCavity;        << 
352   fStepCavity2 += localRun->fStepCavity2;      << 
353   fNbStepWall += localRun->fNbStepWall;        << 
354   fNbStepCavity += localRun->fNbStepCavity;    << 
355                                                   382 
356   fEsecondary += localRun->fEsecondary;        << 
357   fEsecondary2 += localRun->fEsecondary2;      << 
358                                                   383 
359   fNbSec += localRun->fNbSec;                  << 384   fEsecondary      += localRun->fEsecondary;
                                                   >> 385   fEsecondary2     += localRun->fEsecondary2;
360                                                   386 
361   // ???  G4double                fOldEmean    << 387   fNbSec       += localRun->fNbSec;
                                                   >> 388 
                                                   >> 389     // ???  G4double                fOldEmean
362   // ??? G4Double         fOldDose;               390   // ??? G4Double         fOldDose;
363                                                   391 
364   // Merge ProcessCount varaibles                 392   // Merge ProcessCount varaibles
365   std::vector<OneProcessCount*>::iterator it;     393   std::vector<OneProcessCount*>::iterator it;
366   for (it = localRun->fProcCounter->begin(); i << 394   for ( it = localRun->fProcCounter->begin();it !=localRun->fProcCounter->end();
                                                   >> 395        it++  )
                                                   >> 396   {
367     OneProcessCount* process = *it;               397     OneProcessCount* process = *it;
368     for (G4int i = 0; i < process->GetCounter( << 398     for ( G4int i = 0; i < process->GetCounter() ; i++)
369       this->CountProcesses(process->GetName())    399       this->CountProcesses(process->GetName());
370   }                                               400   }
371                                                   401 
                                                   >> 402 
                                                   >> 403 
                                                   >> 404 
372   G4Run::Merge(run);                              405   G4Run::Merge(run);
                                                   >> 406 
373 }                                                 407 }
374                                                   408 
375 //....oooOO0OOooo........oooOO0OOooo........oo    409 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
376                                                   410 
377 void Run::CountProcesses(G4String procName)       411 void Run::CountProcesses(G4String procName)
378 {                                                 412 {
379   // does the process  already encounted ?     << 413    //does the process  already encounted ?
380   size_t nbProc = fProcCounter->size();        << 414    size_t nbProc = fProcCounter->size();
381   size_t i = 0;                                << 415    size_t i = 0;
382   while ((i < nbProc) && ((*fProcCounter)[i]-> << 416    while ((i<nbProc)&&((*fProcCounter)[i]->GetName()!=procName)) i++;
383     i++;                                       << 417    if (i == nbProc) fProcCounter->push_back( new OneProcessCount(procName));
384   if (i == nbProc) fProcCounter->push_back(new << 
385                                                   418 
386   (*fProcCounter)[i]->Count();                 << 419    (*fProcCounter)[i]->Count();
387 }                                                 420 }
388                                                   421 
389 //....oooOO0OOooo........oooOO0OOooo........oo    422 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
390                                                   423