Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/dna/wvalue/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/medical/dna/wvalue/src/Run.cc (Version 11.3.0) and /examples/extended/medical/dna/wvalue/src/Run.cc (Version 10.3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // This example is provided by the Geant4-DNA  << 
 27 // Any report or published results obtained us << 
 28 // shall cite the following Geant4-DNA collabo << 
 29 // Med. Phys. 45 (2018) e722-e739              << 
 30 // Phys. Med. 31 (2015) 861-874                << 
 31 // Med. Phys. 37 (2010) 4692-4708              << 
 32 // Int. J. Model. Simul. Sci. Comput. 1 (2010) << 
 33 //                                             << 
 34 // The Geant4-DNA web site is available at htt << 
 35 //                                             << 
 36 /// \file medical/dna/wvalue/src/Run.cc            26 /// \file medical/dna/wvalue/src/Run.cc
 37 /// \brief Implementation of the Run class         27 /// \brief Implementation of the Run class
                                                   >>  28 //
                                                   >>  29 // $Id: Run.cc 71376 2013-06-14 07:44:50Z maire $
                                                   >>  30 // 
                                                   >>  31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 38                                                    33 
 39 #include "Run.hh"                                  34 #include "Run.hh"
 40                                                << 
 41 #include "DetectorConstruction.hh"                 35 #include "DetectorConstruction.hh"
                                                   >>  36 
 42 #include "HistoManager.hh"                         37 #include "HistoManager.hh"
 43 #include "PrimaryGeneratorAction.hh"               38 #include "PrimaryGeneratorAction.hh"
 44                                                    39 
 45 #include "G4Material.hh"                           40 #include "G4Material.hh"
 46 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 47 #include "G4UnitsTable.hh"                         42 #include "G4UnitsTable.hh"
 48                                                    43 
 49 //....oooOO0OOooo........oooOO0OOooo........oo     44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 50                                                    45 
 51 Run::Run(const DetectorConstruction* detector)     46 Run::Run(const DetectorConstruction* detector)
 52   : G4Run(),                                   <<  47 : G4Run(),
 53     fDetector(detector),                       <<  48   fDetector(detector),
 54     fParticle(0),                              <<  49   fParticle(0), fEkin(0.),  
 55     fEkin(0.),                                 <<  50   fNbInelastic(0),  fNbInelastic2(0),
 56     fNbInelastic(0),                           <<  51   fEdeposit(0.),  fEdeposit2(0.),
 57     fNbInelastic2(0),                          <<  52   fTrackLen(0.),  fTrackLen2(0.),
 58     fEdeposit(0.),                             <<  53   fProjRange(0.), fProjRange2(0.),
 59     fEdeposit2(0.),                            <<  54   fNbOfSteps(0), fNbOfSteps2(0),
 60     fTrackLen(0.),                             <<  55   fStepSize(0.),  fStepSize2(0.)
 61     fTrackLen2(0.),                            <<  56 { }
 62     fProjRange(0.),                            << 
 63     fProjRange2(0.),                           << 
 64     fNbOfSteps(0),                             << 
 65     fNbOfSteps2(0),                            << 
 66     fStepSize(0.),                             << 
 67     fStepSize2(0.)                             << 
 68 {}                                             << 
 69                                                    57 
 70 //....oooOO0OOooo........oooOO0OOooo........oo     58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 71                                                    59 
 72 Run::~Run() {}                                 <<  60 Run::~Run()
                                                   >>  61 { }
 73                                                    62 
 74 //....oooOO0OOooo........oooOO0OOooo........oo     63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 75                                                    64 
 76 void Run::SetPrimary(G4ParticleDefinition* par <<  65 void Run::SetPrimary (G4ParticleDefinition* particle, G4double energy)
 77 {                                              <<  66 { 
 78   fParticle = particle;                            67   fParticle = particle;
 79   fEkin = energy;                              <<  68   fEkin     = energy;
 80 }                                                  69 }
 81                                                    70 
 82 //....oooOO0OOooo........oooOO0OOooo........oo     71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 83                                                    72 
 84 void Run::AddInelastic(G4int nb)               <<  73 void Run::AddInelastic (G4int nb)        
 85 {                                                  74 {
 86   fNbInelastic += nb;                          <<  75   fNbInelastic  += nb;
 87   fNbInelastic2 += nb * nb;                    <<  76   fNbInelastic2 += nb*nb;
 88 }                                                  77 }
 89                                                    78 
 90 //....oooOO0OOooo........oooOO0OOooo........oo     79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 91                                                    80 
 92 void Run::AddEdep(G4double e)                  <<  81 void Run::AddEdep (G4double e)        
 93 {                                                  82 {
 94   fEdeposit += e;                              <<  83   fEdeposit  += e;
 95   fEdeposit2 += e * e;                         <<  84   fEdeposit2 += e*e;
 96 }                                                  85 }
 97                                                    86 
 98 //....oooOO0OOooo........oooOO0OOooo........oo     87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 99                                                <<  88     
100 void Run::AddTrackLength(G4double t)           <<  89 void Run::AddTrackLength (G4double t) 
101 {                                                  90 {
102   fTrackLen += t;                              <<  91   fTrackLen  += t;
103   fTrackLen2 += t * t;                         <<  92   fTrackLen2 += t*t;
104 }                                                  93 }
105                                                    94 
106 //....oooOO0OOooo........oooOO0OOooo........oo     95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107                                                <<  96     
108 void Run::AddProjRange(G4double x)             <<  97 void Run::AddProjRange (G4double x) 
109 {                                                  98 {
110   fProjRange += x;                             <<  99   fProjRange  += x;
111   fProjRange2 += x * x;                        << 100   fProjRange2 += x*x;
112 }                                                 101 }
113                                                   102 
114 //....oooOO0OOooo........oooOO0OOooo........oo    103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
115                                                << 104     
116 void Run::AddStepSize(G4int nb, G4double st)   << 105 void Run::AddStepSize (G4int nb, G4double st)
117 {                                                 106 {
118   fNbOfSteps += nb;                            << 107   fNbOfSteps  += nb; 
119   fNbOfSteps2 += nb * nb;                      << 108   fNbOfSteps2 += nb*nb;
120   fStepSize += st;                             << 109   fStepSize   += st ; 
121   fStepSize2 += st * st;                       << 110   fStepSize2  += st*st;  
122 }                                                 111 }
123                                                   112 
124 //....oooOO0OOooo........oooOO0OOooo........oo    113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
125                                                   114 
126 void Run::Merge(const G4Run* run)                 115 void Run::Merge(const G4Run* run)
127 {                                                 116 {
128   const Run* localRun = static_cast<const Run*    117   const Run* localRun = static_cast<const Run*>(run);
129                                                << 118   
130   // Pass information about primary particle   << 119   // pass information about primary particle
131                                                << 
132   fParticle = localRun->fParticle;                120   fParticle = localRun->fParticle;
133   fEkin = localRun->fEkin;                     << 121   fEkin     = localRun->fEkin;
134                                                << 
135   // Accumulate sums                           << 
136                                                   122 
137   fNbInelastic += localRun->fNbInelastic;      << 123   // accumulate sums
138   fNbInelastic2 += localRun->fNbInelastic2;    << 124   fNbInelastic   += localRun->fNbInelastic;
139   fEdeposit += localRun->fEdeposit;            << 125   fNbInelastic2  += localRun->fNbInelastic2;
140   fEdeposit2 += localRun->fEdeposit2;          << 126   fEdeposit   += localRun->fEdeposit;
141   fTrackLen += localRun->fTrackLen;            << 127   fEdeposit2  += localRun->fEdeposit2;
142   fTrackLen2 += localRun->fTrackLen2;          << 128   fTrackLen   += localRun->fTrackLen;  
143   fProjRange += localRun->fProjRange;          << 129   fTrackLen2  += localRun->fTrackLen2;
                                                   >> 130   fProjRange  += localRun->fProjRange; 
144   fProjRange2 += localRun->fProjRange2;           131   fProjRange2 += localRun->fProjRange2;
145   fNbOfSteps += localRun->fNbOfSteps;          << 132   fNbOfSteps  += localRun->fNbOfSteps ;
146   fNbOfSteps2 += localRun->fNbOfSteps2;           133   fNbOfSteps2 += localRun->fNbOfSteps2;
147   fStepSize += localRun->fStepSize;            << 134   fStepSize   += localRun->fStepSize;  
148   fStepSize2 += localRun->fStepSize2;          << 135   fStepSize2  += localRun->fStepSize2;
149                                                   136 
150   G4Run::Merge(run);                           << 137   G4Run::Merge(run); 
151 }                                              << 138 } 
152                                                   139 
153 //....oooOO0OOooo........oooOO0OOooo........oo    140 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
154                                                   141 
155 void Run::EndOfRun()                           << 142 void Run::EndOfRun() 
156 {                                                 143 {
157   std::ios::fmtflags mode = G4cout.flags();       144   std::ios::fmtflags mode = G4cout.flags();
158   G4cout.setf(std::ios::fixed, std::ios::float << 145   G4cout.setf(std::ios::fixed,std::ios::floatfield);
159   G4int prec = G4cout.precision(2);               146   G4int prec = G4cout.precision(2);
160                                                << 147   
161   // Run conditions                            << 148   //run conditions  
162                                                << 149   //
163   G4Material* material = fDetector->GetAbsorMa    150   G4Material* material = fDetector->GetAbsorMaterial();
164   G4double density = material->GetDensity();   << 151   G4double density  = material->GetDensity();       
165   G4String partName = fParticle->GetParticleNa    152   G4String partName = fParticle->GetParticleName();
166                                                << 153   
167   G4cout << "\n ======================== run s << 154   G4cout << "\n ======================== run summary =====================\n";  
168   G4cout << "\n The run is " << numberOfEvent  << 155   G4cout 
169          << G4BestUnit(fEkin, "Energy") << " t << 156     << "\n The run is " << numberOfEvent << " "<< partName << " of "
170          << G4BestUnit(fDetector->GetAbsorRadi << 157     << G4BestUnit(fEkin,"Energy") << " through a sphere of radius "
171          << " (density: " << G4BestUnit(densit << 158     << G4BestUnit(fDetector->GetAbsorRadius(),"Length") << "of "
                                                   >> 159     << material->GetName() << " (density: " 
                                                   >> 160     << G4BestUnit(density,"Volumic Mass") << ")" << G4endl;    
172                                                   161 
173   if (numberOfEvent == 0) {                       162   if (numberOfEvent == 0) {
174     G4cout.setf(mode, std::ios::floatfield);   << 163     G4cout.setf(mode,std::ios::floatfield);
175     G4cout.precision(prec);                    << 164     G4cout.precision(prec);  
176     return;                                       165     return;
177   }                                               166   }
178                                                   167 
179   fNbInelastic /= numberOfEvent;               << 168   fNbInelastic /= numberOfEvent; fNbInelastic2 /= numberOfEvent;
180   fNbInelastic2 /= numberOfEvent;              << 169 
                                                   >> 170   G4double rms = fNbInelastic2 - fNbInelastic*fNbInelastic;        
                                                   >> 171   if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
181                                                   172 
182   G4double rms = fNbInelastic2 - fNbInelastic  << 173   G4cout.precision(3);       
183   if (rms > 0.)                                << 174   G4cout 
184     rms = std::sqrt(rms);                      << 175     << "\n Nb of ionisations = " << fNbInelastic
185   else                                         << 176     << " +- "                    << rms
186     rms = 0.;                                  << 177     << G4endl;
187                                                << 178 
188   G4cout.precision(3);                         << 179   G4cout.precision(3);       
189   G4cout << "\n Nb of ionisations = " << fNbIn << 180   G4cout 
190                                                << 181     << "\n w = " << G4BestUnit((fEkin)/fNbInelastic,"Energy")
191   G4cout.precision(3);                         << 182     << " +- "    << G4BestUnit((fEkin)*rms/(fNbInelastic*fNbInelastic),"Energy")
192   G4cout << "\n w = " << G4BestUnit((fEkin) /  << 183     << G4endl;
193          << G4BestUnit((fEkin)*rms / (fNbInela << 184 
194                                                << 185   //output file
195   // Output file                               << 186   if(fNbInelastic>0.)
196                                                << 187   {
197   if (fNbInelastic > 0.) {                     << 188     FILE *myFile;
198     FILE* myFile;                              << 189     myFile = fopen ("wvalue.txt","a");
199     myFile = fopen("wvalue.txt", "a");         << 190     fprintf (myFile, "%e %e %e %e %e \n", fEkin/eV, fNbInelastic, rms, fEkin/eV/fNbInelastic, 
200     fprintf(myFile, "%e %e %e %e %e \n", fEkin << 191       (fEkin/eV)*rms/(fNbInelastic*fNbInelastic) );
201             (fEkin / eV) * rms / (fNbInelastic << 192     fclose (myFile);
202     fclose(myFile);                            << 
203   }                                               193   }
204   //                                              194   //
205                                                   195 
206   fEdeposit /= numberOfEvent;                  << 196   fEdeposit /= numberOfEvent; fEdeposit2 /= numberOfEvent;
207   fEdeposit2 /= numberOfEvent;                 << 197   rms = fEdeposit2 - fEdeposit*fEdeposit;        
208   rms = fEdeposit2 - fEdeposit * fEdeposit;    << 198   if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
209   if (rms > 0.)                                << 199 
210     rms = std::sqrt(rms);                      << 200   G4cout.precision(3);       
211   else                                         << 201   G4cout 
212     rms = 0.;                                  << 202     << "\n Total Energy deposited        = " << G4BestUnit(fEdeposit,"Energy")
213                                                << 203     << " +- "                                << G4BestUnit( rms,"Energy")
214   G4cout.precision(3);                         << 204     << G4endl;
215   G4cout << "\n Total Energy deposited         << 205                     
216          << G4BestUnit(rms, "Energy") << G4end << 206   //compute track length of primary track
217                                                << 207   //
218   // Compute track length of primary track     << 208   fTrackLen /= numberOfEvent; fTrackLen2 /= numberOfEvent;
219                                                << 209   rms = fTrackLen2 - fTrackLen*fTrackLen;        
220   fTrackLen /= numberOfEvent;                  << 210   if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
221   fTrackLen2 /= numberOfEvent;                 << 211 
222   rms = fTrackLen2 - fTrackLen * fTrackLen;    << 212   G4cout.precision(3);       
223   if (rms > 0.)                                << 213   G4cout 
224     rms = std::sqrt(rms);                      << 214     << "\n Track length of primary track = " << G4BestUnit(fTrackLen,"Length")
225   else                                         << 215     << " +- "                                << G4BestUnit( rms,"Length");
226     rms = 0.;                                  << 216     
227                                                << 217   //compute projected range of primary track
228   G4cout.precision(3);                         << 218   //
229   G4cout << "\n Track length of primary track  << 219   fProjRange /= numberOfEvent; fProjRange2 /= numberOfEvent;
230          << G4BestUnit(rms, "Length");         << 220   rms = fProjRange2 - fProjRange*fProjRange;        
231                                                << 221   if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
232   // Compute projected range of primary track  << 222    
233                                                << 223   G4cout 
234   fProjRange /= numberOfEvent;                 << 224     << "\n Projected range               = " << G4BestUnit(fProjRange,"Length")
235   fProjRange2 /= numberOfEvent;                << 225     << " +- "                                << G4BestUnit( rms,"Length")    
236   rms = fProjRange2 - fProjRange * fProjRange; << 226     << G4endl;
237   if (rms > 0.)                                << 227     
238     rms = std::sqrt(rms);                      << 228   //nb of steps and step size of primary track
239   else                                         << 229   //
240     rms = 0.;                                  << 
241                                                << 
242   G4cout << "\n Projected range                << 
243          << G4BestUnit(rms, "Length") << G4end << 
244                                                << 
245   // Nb of steps and step size of primary trac << 
246                                                << 
247   G4double dNofEvents = double(numberOfEvent);    230   G4double dNofEvents = double(numberOfEvent);
248   G4double fNbSteps = fNbOfSteps / dNofEvents, << 231   G4double fNbSteps  = fNbOfSteps/dNofEvents, 
249   rms = fNbSteps2 - fNbSteps * fNbSteps;       << 232            fNbSteps2 = fNbOfSteps2/dNofEvents;
250   if (rms > 0.)                                << 233   rms = fNbSteps2 - fNbSteps*fNbSteps;       
251     rms = std::sqrt(rms);                      << 234   if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
252   else                                         << 235 
253     rms = 0.;                                  << 236   G4cout.precision(2);       
254                                                << 237   G4cout << "\n Nb of steps of primary track  = " << fNbSteps << " +- " << rms
255   G4cout.precision(2);                         << 238   << G4endl;
256   G4cout << "\n Nb of steps of primary track   << 239     
257                                                << 240   fStepSize /= numberOfEvent; fStepSize2 /= numberOfEvent;
258   fStepSize /= numberOfEvent;                  << 241   rms = fStepSize2 - fStepSize*fStepSize;        
259   fStepSize2 /= numberOfEvent;                 << 242   if (rms>0.) rms = std::sqrt(rms); else rms = 0.;
260   rms = fStepSize2 - fStepSize * fStepSize;    << 243 
261   if (rms > 0.)                                << 244   G4cout.precision(3);       
262     rms = std::sqrt(rms);                      << 245   G4cout 
263   else                                         << 246     << "\n Step size                     = " << G4BestUnit(fStepSize,"Length")
264     rms = 0.;                                  << 247     << " +- "           << G4BestUnit( rms,"Length")
265                                                << 248     << G4endl;
266   G4cout.precision(3);                         << 
267   G4cout << "\n Step size                      << 
268          << G4BestUnit(rms, "Length") << G4end << 
269                                                << 
270   // Normalize histograms of longitudinal ener << 
271                                                   249 
                                                   >> 250   // normalize histograms of longitudinal energy profile
                                                   >> 251   //
272   G4AnalysisManager* analysisManager = G4Analy    252   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
273   G4int ih = 1;                                   253   G4int ih = 1;
274   G4double binWidth = analysisManager->GetH1Wi    254   G4double binWidth = analysisManager->GetH1Width(ih);
275   G4double fac = (1. / (numberOfEvent * binWid << 255   G4double fac = (1./(numberOfEvent*binWidth))*(mm/MeV);
276   analysisManager->ScaleH1(ih, fac);           << 256   analysisManager->ScaleH1(ih,fac);
277                                                << 257     
278   // Reset default formats                     << 258   // reset default formats
279                                                << 259   G4cout.setf(mode,std::ios::floatfield);
280   G4cout.setf(mode, std::ios::floatfield);     << 
281   G4cout.precision(prec);                         260   G4cout.precision(prec);
                                                   >> 261     
282 }                                                 262 }
                                                   >> 263 
                                                   >> 264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
283                                                   265