Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // This example is provided by the Geant4-DNA << 27 // Any report or published results obtained us << 28 // shall cite the following Geant4-DNA collabo << 29 // Med. Phys. 45 (2018) e722-e739 << 30 // Phys. Med. 31 (2015) 861-874 << 31 // Med. Phys. 37 (2010) 4692-4708 << 32 // Int. J. Model. Simul. Sci. Comput. 1 (2010) << 33 // << 34 // The Geant4-DNA web site is available at htt << 35 // << 36 /// \file Run.cc 26 /// \file Run.cc 37 /// \brief Implementation of the Run class 27 /// \brief Implementation of the Run class 38 28 39 #include "Run.hh" 29 #include "Run.hh" 40 << 30 #include "DetectorConstruction.hh" 41 #include "PrimaryGeneratorAction.hh" 31 #include "PrimaryGeneratorAction.hh" 42 32 43 #include "G4Material.hh" 33 #include "G4Material.hh" 44 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 45 #include "G4UnitsTable.hh" 35 #include "G4UnitsTable.hh" 46 36 47 //....oooOO0OOooo........oooOO0OOooo........oo 37 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 48 38 49 Run::Run(const DetectorConstruction* detector) 39 Run::Run(const DetectorConstruction* detector) 50 : G4Run(), << 40 : G4Run(), 51 fDetector(detector), << 41 fDetector(detector), 52 fParticle(0), << 42 fParticle(0), fEkin(0.), 53 fEkin(0.), << 43 fTotalCount(0), fSumTrack(0.), fSumTrack2(0.), fEnTransfer(0.) 54 fTotalCount(0), << 55 fSumTrack(0.), << 56 fSumTrack2(0.), << 57 fEnTransfer(0.) << 58 {} 44 {} 59 45 60 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 61 47 62 Run::~Run() {} << 48 Run::~Run() >> 49 {} 63 50 64 //....oooOO0OOooo........oooOO0OOooo........oo 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 52 66 void Run::SetPrimary(G4ParticleDefinition* par << 53 void Run::SetPrimary (G4ParticleDefinition* particle, G4double energy) 67 { << 54 { 68 fParticle = particle; 55 fParticle = particle; 69 fEkin = energy; << 56 fEkin = energy; 70 } 57 } 71 58 72 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 73 60 74 void Run::CountProcesses(G4String procName) << 61 void Run::CountProcesses(G4String procName) 75 { 62 { 76 std::map<G4String, G4int>::iterator it = fPr << 63 std::map<G4String,G4int>::iterator it = fProcCounter.find(procName); 77 if (it == fProcCounter.end()) { << 64 if ( it == fProcCounter.end()) { 78 fProcCounter[procName] = 1; 65 fProcCounter[procName] = 1; 79 } 66 } 80 else { 67 else { 81 fProcCounter[procName]++; << 68 fProcCounter[procName]++; 82 } 69 } 83 } 70 } 84 71 85 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 86 73 87 void Run::SumTrack(G4double track) << 74 void Run::SumTrack (G4double track) 88 { 75 { 89 fTotalCount++; 76 fTotalCount++; 90 fSumTrack += track; 77 fSumTrack += track; 91 fSumTrack2 += track * track; << 78 fSumTrack2 += track*track; 92 } 79 } 93 80 94 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 95 82 96 void Run::SumeTransf(G4double energy) << 83 void Run::SumeTransf (G4double energy) 97 { 84 { 98 fEnTransfer += energy; 85 fEnTransfer += energy; 99 } 86 } 100 87 101 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 102 89 103 void Run::Merge(const G4Run* run) 90 void Run::Merge(const G4Run* run) 104 { 91 { 105 const Run* localRun = static_cast<const Run* 92 const Run* localRun = static_cast<const Run*>(run); 106 << 93 107 // Pass information about primary particle << 94 // pass information about primary particle 108 fParticle = localRun->fParticle; 95 fParticle = localRun->fParticle; 109 fEkin = localRun->fEkin; << 96 fEkin = localRun->fEkin; 110 97 111 // map: processes count 98 // map: processes count 112 std::map<G4String, G4int>::const_iterator it << 99 std::map<G4String,G4int>::const_iterator it; 113 for (it = localRun->fProcCounter.begin(); it << 100 for (it = localRun->fProcCounter.begin(); >> 101 it !=localRun->fProcCounter.end(); ++it) { >> 102 114 G4String procName = it->first; 103 G4String procName = it->first; 115 G4int localCount = it->second; << 104 G4int localCount = it->second; 116 << 105 if ( fProcCounter.find(procName) == fProcCounter.end()) { 117 if (fProcCounter.find(procName) == fProcCo << 118 fProcCounter[procName] = localCount; 106 fProcCounter[procName] = localCount; 119 } 107 } 120 else { 108 else { 121 fProcCounter[procName] += localCount; 109 fProcCounter[procName] += localCount; 122 } 110 } 123 } 111 } 124 << 112 125 fTotalCount += localRun->fTotalCount; 113 fTotalCount += localRun->fTotalCount; 126 fSumTrack += localRun->fSumTrack; << 114 fSumTrack += localRun->fSumTrack; 127 fSumTrack2 += localRun->fSumTrack2; << 115 fSumTrack2 += localRun->fSumTrack2; 128 fEnTransfer += localRun->fEnTransfer; 116 fEnTransfer += localRun->fEnTransfer; 129 117 130 G4Run::Merge(run); << 118 G4Run::Merge(run); 131 } << 119 } 132 120 133 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 134 122 135 void Run::EndOfRun() << 123 void Run::EndOfRun() 136 { 124 { 137 std::ios::fmtflags mode = G4cout.flags(); 125 std::ios::fmtflags mode = G4cout.flags(); 138 G4cout.setf(std::ios::fixed, std::ios::float << 126 G4cout.setf(std::ios::fixed,std::ios::floatfield); 139 G4int prec = G4cout.precision(2); 127 G4int prec = G4cout.precision(2); 140 << 128 141 // Run conditions << 129 // run conditions 142 G4Material* material = fDetector->GetAbsorMa 130 G4Material* material = fDetector->GetAbsorMaterial(); 143 G4double density = material->GetDensity(); << 131 G4double density = material->GetDensity(); 144 G4String partName = fParticle->GetParticleNa 132 G4String partName = fParticle->GetParticleName(); 145 << 133 146 G4cout << "\n ======================== run s << 134 G4cout << 147 G4cout << "\n The run is " << numberOfEvent << 135 "\n ======================== run summary =====================\n"; 148 << G4BestUnit(fEkin, "Energy") << " t << 136 G4cout 149 << G4BestUnit(fDetector->GetAbsorRadi << 137 << "\n The run is " << numberOfEvent << " "<< partName << " of " 150 << " (density: " << G4BestUnit(densit << 138 << G4BestUnit(fEkin,"Energy") << " through a sphere of radius " >> 139 << G4BestUnit(fDetector->GetAbsorRadius(),"Length") << "of " >> 140 << material->GetName() << " (density: " >> 141 << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; 151 142 152 if (numberOfEvent == 0) { 143 if (numberOfEvent == 0) { 153 G4cout.setf(mode, std::ios::floatfield); << 144 G4cout.setf(mode,std::ios::floatfield); 154 G4cout.precision(prec); << 145 G4cout.precision(prec); 155 return; 146 return; 156 } 147 } 157 << 148 158 // Frequency of processes << 149 // frequency of processes 159 G4int survive = 0; << 150 G4int survive = 0; 160 G4cout << "\n Process calls frequency --->"; 151 G4cout << "\n Process calls frequency --->"; 161 std::map<G4String, G4int>::iterator it; << 152 std::map<G4String,G4int>::iterator it; 162 for (it = fProcCounter.begin(); it != fProcC 153 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 163 G4String procName = it->first; << 154 G4String procName = it->first; 164 G4int count = it->second; << 155 G4int count = it->second; 165 G4cout << "\t" << procName << " = " << cou << 156 G4cout << "\t" << procName << " = " << count; 166 if (procName == "Transportation") survive << 157 if (procName == "Transportation") survive = count; 167 } 158 } 168 159 169 if (survive > 0) { 160 if (survive > 0) { 170 G4cout << "\n\n Nb of incident particles s 161 G4cout << "\n\n Nb of incident particles surviving after " 171 << "a radius of " << G4BestUnit(fDe << 162 << "a radius of " >> 163 << G4BestUnit(fDetector->GetAbsorRadius(),"Length") << " of " 172 << material->GetName() << " : " << 164 << material->GetName() << " : " << survive << G4endl; 173 } 165 } 174 166 175 if (fTotalCount == 0) fTotalCount = 1; // f << 167 if (fTotalCount == 0) fTotalCount = 1; //force printing anyway 176 << 177 // Compute mean free path and related quanti << 178 G4double MeanFreePath = fSumTrack / fTotalCo << 179 G4double MeanTrack2 = fSumTrack2 / fTotalCou << 180 G4double rmsBis = std::sqrt(std::fabs(MeanTr << 181 G4double CrossSection = 1. / MeanFreePath; << 182 G4double massicMFP = MeanFreePath * density; << 183 G4double massicCS = 1. / massicMFP; << 184 << 185 G4cout << "\n\n MeanFreePath:\t" << G4BestUn << 186 << G4BestUnit(rmsBis, "Length") << 187 << "\t\t\tmassic: " << G4BestUnit(mas << 188 << CrossSection * cm << " cm^-1 " << 189 << "\t\t\tmassic: " << G4BestUnit(mas << 190 << 191 // Compute energy transfer coefficient << 192 G4double MeanTransfer = fEnTransfer / fTotal << 193 G4double massTransfCoef = massicCS * MeanTra << 194 168 195 G4cout << "\n mean energy of charged seconda << 169 // compute mean free path and related quantities 196 << "\tmass_energy_transfer coef: " << << 170 G4double MeanFreePath = fSumTrack /fTotalCount; >> 171 G4double MeanTrack2 = fSumTrack2/fTotalCount; >> 172 G4double rmsBis = >> 173 std::sqrt(std::fabs(MeanTrack2 - MeanFreePath*MeanFreePath)); >> 174 G4double CrossSection = 1./MeanFreePath; >> 175 G4double massicMFP = MeanFreePath*density; >> 176 G4double massicCS = 1./massicMFP; >> 177 >> 178 G4cout << "\n\n MeanFreePath:\t" << G4BestUnit(MeanFreePath,"Length") >> 179 << " +- " << G4BestUnit(rmsBis,"Length") >> 180 << "\t\t\tmassic: " << G4BestUnit(massicMFP, "Mass/Surface") >> 181 << "\n CrossSection:\t" << CrossSection*cm << " cm^-1 " >> 182 << "\t\t\tmassic: " << G4BestUnit(massicCS, "Surface/Mass") >> 183 << G4endl; >> 184 >> 185 // compute energy transfer coefficient >> 186 G4double MeanTransfer = fEnTransfer/fTotalCount; >> 187 G4double massTransfCoef = massicCS*MeanTransfer/fEkin; >> 188 >> 189 G4cout << "\n mean energy of charged secondaries: " >> 190 << G4BestUnit(MeanTransfer, "Energy") >> 191 << "\tmass_energy_transfer coef: " >> 192 << G4BestUnit(massTransfCoef, "Surface/Mass") >> 193 << G4endl; 197 194 198 // Output file << 195 //output file >> 196 // 199 FILE* myFile; 197 FILE* myFile; 200 myFile = fopen("mfp.txt", "a"); << 198 myFile=fopen("mfp.txt","a"); 201 fprintf(myFile, "%e %e %e \n", fEkin / eV, M << 199 fprintf(myFile,"%e %e %e \n", >> 200 fEkin/eV, >> 201 MeanFreePath/nm, >> 202 rmsBis/nm); 202 fclose(myFile); 203 fclose(myFile); 203 204 204 // Remove all contents in fProcCounter << 205 // remove all contents in fProcCounter 205 fProcCounter.clear(); 206 fProcCounter.clear(); 206 207 207 // Reset default formats << 208 //reset default formats 208 G4cout.setf(mode, std::ios::floatfield); << 209 // >> 210 G4cout.setf(mode,std::ios::floatfield); 209 G4cout.precision(prec); 211 G4cout.precision(prec); >> 212 210 } 213 } 211 214