Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file Run.cc 26 /// \file Run.cc 27 /// \brief Implementation of the Run class 27 /// \brief Implementation of the Run class 28 // 28 // 29 // << 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "Run.hh" 33 #include "Run.hh" 34 << 35 #include "DetectorConstruction.hh" 34 #include "DetectorConstruction.hh" 36 #include "HistoManager.hh" << 37 #include "PrimaryGeneratorAction.hh" 35 #include "PrimaryGeneratorAction.hh" >> 36 #include "HistoManager.hh" 38 37 39 #include "G4SystemOfUnits.hh" << 40 #include "G4UnitsTable.hh" 38 #include "G4UnitsTable.hh" >> 39 #include "G4SystemOfUnits.hh" 41 40 42 //....oooOO0OOooo........oooOO0OOooo........oo 41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 43 42 44 Run::Run(DetectorConstruction* det) : fDetecto << 43 Run::Run(DetectorConstruction* det) >> 44 : G4Run(), >> 45 fDetector(det), fParticle(0), fEkin(0.) >> 46 { >> 47 fEnergyDeposit = fEnergyDeposit2 = 0.; >> 48 fEnergyFlow = fEnergyFlow2 = 0.; >> 49 } >> 50 >> 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 52 >> 53 Run::~Run() >> 54 { } 45 55 46 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 47 57 48 void Run::SetPrimary(G4ParticleDefinition* par 58 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy) 49 { << 59 { 50 fParticle = particle; 60 fParticle = particle; 51 fEkin = energy; 61 fEkin = energy; 52 } 62 } 53 << 63 54 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 65 56 void Run::CountProcesses(const G4VProcess* pro << 66 void Run::CountProcesses(const G4VProcess* process) 57 { 67 { 58 if (process == nullptr) return; << 59 G4String procName = process->GetProcessName( 68 G4String procName = process->GetProcessName(); 60 std::map<G4String, G4int>::iterator it = fPr << 69 std::map<G4String,G4int>::iterator it = fProcCounter.find(procName); 61 if (it == fProcCounter.end()) { << 70 if ( it == fProcCounter.end()) { 62 fProcCounter[procName] = 1; 71 fProcCounter[procName] = 1; 63 } 72 } 64 else { 73 else { 65 fProcCounter[procName]++; << 74 fProcCounter[procName]++; 66 } 75 } 67 } 76 } 68 << 77 69 //....oooOO0OOooo........oooOO0OOooo........oo 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 79 71 void Run::ParticleCount(G4String name, G4doubl << 80 void Run::ParticleCount(G4String name, G4double Ekin) 72 { 81 { 73 std::map<G4String, ParticleData>::iterator i 82 std::map<G4String, ParticleData>::iterator it = fParticleDataMap1.find(name); 74 if (it == fParticleDataMap1.end()) { << 83 if ( it == fParticleDataMap1.end()) { 75 fParticleDataMap1[name] = ParticleData(1, << 84 fParticleDataMap1[name] = ParticleData(1, Ekin, Ekin, Ekin); 76 } 85 } 77 else { 86 else { 78 ParticleData& data = it->second; 87 ParticleData& data = it->second; 79 data.fCount++; 88 data.fCount++; 80 data.fEmean += Ekin; 89 data.fEmean += Ekin; 81 // update min max << 90 //update min max 82 G4double emin = data.fEmin; 91 G4double emin = data.fEmin; 83 if (Ekin < emin) data.fEmin = Ekin; 92 if (Ekin < emin) data.fEmin = Ekin; 84 G4double emax = data.fEmax; 93 G4double emax = data.fEmax; 85 if (Ekin > emax) data.fEmax = Ekin; << 94 if (Ekin > emax) data.fEmax = Ekin; 86 data.fTmean = meanLife; << 95 } 87 } << 88 } 96 } 89 << 97 90 //....oooOO0OOooo........oooOO0OOooo........oo 98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 91 99 92 void Run::SumEnergies(G4double edep, G4double << 100 void Run::AddEdep(G4double edep) 93 { << 101 { 94 fEnergyDeposit += edep; 102 fEnergyDeposit += edep; 95 fEnergyDeposit2 += edep * edep; << 103 fEnergyDeposit2 += edep*edep; 96 << 97 fEnergyFlow += eflow; << 98 fEnergyFlow2 += eflow * eflow; << 99 << 100 fEnergyTotal += etot; << 101 fEnergyTotal2 += etot * etot; << 102 } 104 } >> 105 >> 106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 103 107 >> 108 void Run::AddEflow(G4double eflow) >> 109 { >> 110 fEnergyFlow += eflow; >> 111 fEnergyFlow2 += eflow*eflow; >> 112 } 104 //....oooOO0OOooo........oooOO0OOooo........oo 113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 105 114 106 void Run::ParticleFlux(G4String name, G4double 115 void Run::ParticleFlux(G4String name, G4double Ekin) 107 { 116 { 108 std::map<G4String, ParticleData>::iterator i 117 std::map<G4String, ParticleData>::iterator it = fParticleDataMap2.find(name); 109 if (it == fParticleDataMap2.end()) { << 118 if ( it == fParticleDataMap2.end()) { 110 fParticleDataMap2[name] = ParticleData(1, << 119 fParticleDataMap2[name] = ParticleData(1, Ekin, Ekin, Ekin); 111 } 120 } 112 else { 121 else { 113 ParticleData& data = it->second; 122 ParticleData& data = it->second; 114 data.fCount++; 123 data.fCount++; 115 data.fEmean += Ekin; 124 data.fEmean += Ekin; 116 // update min max << 125 //update min max 117 G4double emin = data.fEmin; 126 G4double emin = data.fEmin; 118 if (Ekin < emin) data.fEmin = Ekin; 127 if (Ekin < emin) data.fEmin = Ekin; 119 G4double emax = data.fEmax; 128 G4double emax = data.fEmax; 120 if (Ekin > emax) data.fEmax = Ekin; << 129 if (Ekin > emax) data.fEmax = Ekin; 121 data.fTmean = -1 * ns; << 130 } 122 } << 123 } 131 } 124 132 125 //....oooOO0OOooo........oooOO0OOooo........oo 133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 126 134 127 void Run::Merge(const G4Run* run) 135 void Run::Merge(const G4Run* run) 128 { 136 { 129 const Run* localRun = static_cast<const Run* 137 const Run* localRun = static_cast<const Run*>(run); 130 << 138 131 // primary particle info << 139 //primary particle info 132 // 140 // 133 fParticle = localRun->fParticle; 141 fParticle = localRun->fParticle; 134 fEkin = localRun->fEkin; << 142 fEkin = localRun->fEkin; 135 << 143 136 // accumulate sums 144 // accumulate sums 137 // 145 // 138 fEnergyDeposit += localRun->fEnergyDeposit; << 146 fEnergyDeposit += localRun->fEnergyDeposit; 139 fEnergyDeposit2 += localRun->fEnergyDeposit2 << 147 fEnergyDeposit2 += localRun->fEnergyDeposit2; 140 fEnergyFlow += localRun->fEnergyFlow; << 148 fEnergyFlow += localRun->fEnergyFlow; 141 fEnergyFlow2 += localRun->fEnergyFlow2; << 149 fEnergyFlow2 += localRun->fEnergyFlow2; 142 fEnergyTotal += localRun->fEnergyTotal; << 150 143 fEnergyTotal2 += localRun->fEnergyTotal2; << 151 //map: processes count 144 << 152 std::map<G4String,G4int>::const_iterator itp; 145 // map: processes count << 153 for ( itp = localRun->fProcCounter.begin(); 146 std::map<G4String, G4int>::const_iterator it << 154 itp != localRun->fProcCounter.end(); ++itp ) { 147 for (itp = localRun->fProcCounter.begin(); i << 155 148 G4String procName = itp->first; 156 G4String procName = itp->first; 149 G4int localCount = itp->second; 157 G4int localCount = itp->second; 150 if (fProcCounter.find(procName) == fProcCo << 158 if ( fProcCounter.find(procName) == fProcCounter.end()) { 151 fProcCounter[procName] = localCount; 159 fProcCounter[procName] = localCount; 152 } 160 } 153 else { 161 else { 154 fProcCounter[procName] += localCount; 162 fProcCounter[procName] += localCount; 155 } << 163 } 156 } 164 } 157 << 165 158 // map: created particles count << 166 //map: created particles count 159 std::map<G4String, ParticleData>::const_iter << 167 std::map<G4String,ParticleData>::const_iterator itc; 160 for (itc = localRun->fParticleDataMap1.begin << 168 for (itc = localRun->fParticleDataMap1.begin(); >> 169 itc != localRun->fParticleDataMap1.end(); ++itc) { >> 170 161 G4String name = itc->first; 171 G4String name = itc->first; 162 const ParticleData& localData = itc->secon << 172 const ParticleData& localData = itc->second; 163 if (fParticleDataMap1.find(name) == fParti << 173 if ( fParticleDataMap1.find(name) == fParticleDataMap1.end()) { 164 fParticleDataMap1[name] = ParticleData(l << 174 fParticleDataMap1[name] 165 l << 175 = ParticleData(localData.fCount, >> 176 localData.fEmean, >> 177 localData.fEmin, >> 178 localData.fEmax); 166 } 179 } 167 else { 180 else { 168 ParticleData& data = fParticleDataMap1[n << 181 ParticleData& data = fParticleDataMap1[name]; 169 data.fCount += localData.fCount; 182 data.fCount += localData.fCount; 170 data.fEmean += localData.fEmean; 183 data.fEmean += localData.fEmean; 171 G4double emin = localData.fEmin; 184 G4double emin = localData.fEmin; 172 if (emin < data.fEmin) data.fEmin = emin 185 if (emin < data.fEmin) data.fEmin = emin; 173 G4double emax = localData.fEmax; 186 G4double emax = localData.fEmax; 174 if (emax > data.fEmax) data.fEmax = emax << 187 if (emax > data.fEmax) data.fEmax = emax; 175 data.fTmean = localData.fTmean; << 188 } 176 } << 177 } 189 } 178 << 190 179 // map: particles flux count << 191 //map: particles flux count 180 std::map<G4String, ParticleData>::const_iter << 192 std::map<G4String,ParticleData>::const_iterator itn; 181 for (itn = localRun->fParticleDataMap2.begin << 193 for (itn = localRun->fParticleDataMap2.begin(); >> 194 itn != localRun->fParticleDataMap2.end(); ++itn) { >> 195 182 G4String name = itn->first; 196 G4String name = itn->first; 183 const ParticleData& localData = itn->secon << 197 const ParticleData& localData = itn->second; 184 if (fParticleDataMap2.find(name) == fParti << 198 if ( fParticleDataMap2.find(name) == fParticleDataMap2.end()) { 185 fParticleDataMap2[name] = ParticleData(l << 199 fParticleDataMap2[name] 186 l << 200 = ParticleData(localData.fCount, >> 201 localData.fEmean, >> 202 localData.fEmin, >> 203 localData.fEmax); 187 } 204 } 188 else { 205 else { 189 ParticleData& data = fParticleDataMap2[n << 206 ParticleData& data = fParticleDataMap2[name]; 190 data.fCount += localData.fCount; 207 data.fCount += localData.fCount; 191 data.fEmean += localData.fEmean; 208 data.fEmean += localData.fEmean; 192 G4double emin = localData.fEmin; 209 G4double emin = localData.fEmin; 193 if (emin < data.fEmin) data.fEmin = emin 210 if (emin < data.fEmin) data.fEmin = emin; 194 G4double emax = localData.fEmax; 211 G4double emax = localData.fEmax; 195 if (emax > data.fEmax) data.fEmax = emax << 212 if (emax > data.fEmax) data.fEmax = emax; 196 data.fTmean = localData.fTmean; << 213 } 197 } << 198 } 214 } 199 215 200 G4Run::Merge(run); << 216 G4Run::Merge(run); 201 } << 217 } 202 218 203 //....oooOO0OOooo........oooOO0OOooo........oo 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 204 220 205 void Run::EndOfRun() << 221 void Run::EndOfRun() 206 { 222 { 207 G4int prec = 5, wid = prec + 2; << 223 G4int prec = 5, wid = prec + 2; 208 G4int dfprec = G4cout.precision(prec); 224 G4int dfprec = G4cout.precision(prec); 209 << 225 210 // run condition << 226 //run condition 211 // 227 // 212 G4Material* material = fDetector->GetMateria 228 G4Material* material = fDetector->GetMaterial(); 213 G4double density = material->GetDensity(); 229 G4double density = material->GetDensity(); 214 << 230 215 G4String Particle = fParticle->GetParticleNa << 231 G4String Particle = fParticle->GetParticleName(); 216 G4cout << "\n The run is " << numberOfEvent << 232 G4cout << "\n The run is " << numberOfEvent << " "<< Particle << " of " 217 << G4BestUnit(fEkin, "Energy") << " t << 233 << G4BestUnit(fEkin,"Energy") << " through " 218 << G4BestUnit(fDetector->GetRadius(), << 234 << G4BestUnit(fDetector->GetRadius(),"Length") << " of " 219 << " (density: " << G4BestUnit(densit << 235 << material->GetName() << " (density: " 220 << 236 << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; 221 if (numberOfEvent == 0) { << 237 222 G4cout.precision(dfprec); << 238 if (numberOfEvent == 0) { G4cout.precision(dfprec); return;} 223 return; << 239 224 } << 240 //frequency of processes 225 << 226 // frequency of processes << 227 // 241 // 228 G4cout << "\n Process calls frequency :" << 242 G4cout << "\n Process calls frequency :" << G4endl; 229 G4int index = 0; 243 G4int index = 0; 230 std::map<G4String, G4int>::iterator it; << 244 std::map<G4String,G4int>::iterator it; 231 for (it = fProcCounter.begin(); it != fProcC 245 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 232 G4String procName = it->first; << 246 G4String procName = it->first; 233 G4int count = it->second; << 247 G4int count = it->second; 234 G4String space = " "; << 248 G4String space = " "; if (++index%3 == 0) space = "\n"; 235 if (++index % 3 == 0) space = "\n"; << 249 G4cout << " " << std::setw(20) << procName << "="<< std::setw(7) << count 236 G4cout << " " << std::setw(20) << procName << 250 << space; 237 } 251 } 238 G4cout << G4endl; 252 G4cout << G4endl; 239 << 253 >> 254 //particles count >> 255 // >> 256 G4cout << "\n List of generated particles:" << G4endl; >> 257 >> 258 std::map<G4String,ParticleData>::iterator itc; >> 259 for (itc = fParticleDataMap1.begin(); itc != fParticleDataMap1.end(); itc++) { >> 260 G4String name = itc->first; >> 261 ParticleData data = itc->second; >> 262 G4int count = data.fCount; >> 263 G4double eMean = data.fEmean/count; >> 264 G4double eMin = data.fEmin; >> 265 G4double eMax = data.fEmax; >> 266 >> 267 G4cout << " " << std::setw(13) << name << ": " << std::setw(7) << count >> 268 << " Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") >> 269 << "\t( " << G4BestUnit(eMin, "Energy") >> 270 << " --> " << G4BestUnit(eMax, "Energy") >> 271 << ")" << G4endl; >> 272 } >> 273 240 // compute mean Energy deposited and rms 274 // compute mean Energy deposited and rms 241 // 275 // 242 G4int TotNbofEvents = numberOfEvent; 276 G4int TotNbofEvents = numberOfEvent; 243 fEnergyDeposit /= TotNbofEvents; << 277 fEnergyDeposit /= TotNbofEvents; fEnergyDeposit2 /= TotNbofEvents; 244 fEnergyDeposit2 /= TotNbofEvents; << 278 G4double rmsEdep = fEnergyDeposit2 - fEnergyDeposit*fEnergyDeposit; 245 G4double rmsEdep = fEnergyDeposit2 - fEnergy << 279 if (rmsEdep>0.) rmsEdep = std::sqrt(rmsEdep); 246 if (rmsEdep > 0.) << 280 else rmsEdep = 0.; 247 rmsEdep = std::sqrt(rmsEdep); << 281 248 else << 282 G4cout << "\n Mean energy deposit per event = " 249 rmsEdep = 0.; << 283 << G4BestUnit(fEnergyDeposit,"Energy") << "; rms = " 250 << 284 << G4BestUnit(rmsEdep, "Energy") 251 G4cout << "\n Mean energy deposit per event << 285 << G4endl; 252 << "; rms = " << G4BestUnit(rmsEdep, << 286 253 << 287 // compute mean Energy flow and rms 254 // compute mean Energy leakage and rms << 255 // 288 // 256 fEnergyFlow /= TotNbofEvents; << 289 fEnergyFlow /= TotNbofEvents; fEnergyFlow2 /= TotNbofEvents; 257 fEnergyFlow2 /= TotNbofEvents; << 290 G4double rmsEflow = fEnergyFlow2 - fEnergyFlow*fEnergyFlow; 258 G4double rmsEflow = fEnergyFlow2 - fEnergyFl << 291 if (rmsEflow>0.) rmsEflow = std::sqrt(rmsEflow); 259 if (rmsEflow > 0.) << 292 else rmsEflow = 0.; 260 rmsEflow = std::sqrt(rmsEflow); << 293 261 else << 294 G4cout << " Mean energy flow per event = " 262 rmsEflow = 0.; << 295 << G4BestUnit(fEnergyFlow,"Energy") << "; rms = " 263 << 296 << G4BestUnit(rmsEflow, "Energy") 264 G4cout << " Mean energy leakage per event = << 297 << G4endl; 265 << "; rms = " << G4BestUnit(rmsEflow << 298 266 << 299 //particles flux 267 // energy balance << 300 // 268 // << 301 G4cout << "\n List of particles emerging from the absorber :" << G4endl; 269 fEnergyTotal /= TotNbofEvents; << 302 270 fEnergyTotal2 /= TotNbofEvents; << 303 std::map<G4String,ParticleData>::iterator itn; 271 G4double rmsEtotal = fEnergyTotal2 - fEnergy << 304 for (itn = fParticleDataMap2.begin(); itn != fParticleDataMap2.end(); itn++) { 272 if (rmsEtotal > 0.) << 273 rmsEtotal = std::sqrt(rmsEtotal); << 274 else << 275 rmsEflow = 0.; << 276 << 277 G4cout << "\n Mean energy total per event << 278 << "; rms = " << G4BestUnit(rmsEtota << 279 << 280 // particles at creation << 281 // << 282 if (fParticleDataMap1.size() > 0) { << 283 G4cout << "\n List of particles at creatio << 284 std::map<G4String, ParticleData>::iterator << 285 for (itc = fParticleDataMap1.begin(); itc << 286 G4String name = itc->first; << 287 ParticleData data = itc->second; << 288 G4int count = data.fCount; << 289 G4double eMean = data.fEmean / count; << 290 G4double eMin = data.fEmin; << 291 G4double eMax = data.fEmax; << 292 G4double meanLife = data.fTmean; << 293 << 294 G4cout << " " << std::setw(13) << name << 295 << " Emean = " << std::setw(wid) << 296 << G4BestUnit(eMin, "Energy") << << 297 if (meanLife >= 0.) << 298 G4cout << "\tmean life = " << G4BestUn << 299 else << 300 G4cout << "\tstable" << G4endl; << 301 } << 302 } << 303 << 304 // emerging particles << 305 // << 306 G4cout << "\n List of particles emerging fro << 307 << 308 std::map<G4String, ParticleData>::iterator i << 309 for (itn = fParticleDataMap2.begin(); itn != << 310 G4String name = itn->first; 305 G4String name = itn->first; 311 ParticleData data = itn->second; 306 ParticleData data = itn->second; 312 G4int count = data.fCount; 307 G4int count = data.fCount; 313 G4double eMean = data.fEmean / count; << 308 G4double eMean = data.fEmean/count; 314 G4double eMin = data.fEmin; 309 G4double eMin = data.fEmin; 315 G4double eMax = data.fEmax; 310 G4double eMax = data.fEmax; 316 G4double Eflow = data.fEmean / TotNbofEven << 311 G4double Eflow = data.fEmean/TotNbofEvents; 317 << 312 318 G4cout << " " << std::setw(13) << name << 313 G4cout << " " << std::setw(13) << name << ": " << std::setw(7) << count 319 << " Emean = " << std::setw(wid) < << 314 << " Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") 320 << G4BestUnit(eMin, "Energy") << " << 315 << "\t( " << G4BestUnit(eMin, "Energy") 321 << ") \tEleak/event = " << G4BestUn << 316 << " --> " << G4BestUnit(eMax, "Energy") 322 } << 317 << ") \tEflow/event = " << G4BestUnit(Eflow, "Energy") << G4endl; 323 << 318 } 324 // normalize histograms << 319 325 G4AnalysisManager* analysisManager = G4Analy << 320 //normalize histograms >> 321 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 326 322 327 G4int ih = 2; 323 G4int ih = 2; 328 G4double binWidth = analysisManager->GetH1Wi 324 G4double binWidth = analysisManager->GetH1Width(ih); 329 G4double fac = (1. / (numberOfEvent * binWid << 325 G4double fac = (1./(numberOfEvent*binWidth))*(mm/MeV); 330 analysisManager->ScaleH1(ih, fac); << 326 analysisManager->ScaleH1(ih,fac); 331 327 332 // remove all contents in fProcCounter, fCou << 328 //remove all contents in fProcCounter, fCount 333 fProcCounter.clear(); 329 fProcCounter.clear(); 334 fParticleDataMap2.clear(); 330 fParticleDataMap2.clear(); 335 << 331 336 // restore default format << 332 //restore default format 337 G4cout.precision(dfprec); << 333 G4cout.precision(dfprec); 338 } 334 } 339 335 340 //....oooOO0OOooo........oooOO0OOooo........oo 336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 341 337