Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file Run.cc 26 /// \file Run.cc 27 /// \brief Implementation of the Run class 27 /// \brief Implementation of the Run class 28 // 28 // 29 // << 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "Run.hh" 33 #include "Run.hh" 34 << 35 #include "DetectorConstruction.hh" 34 #include "DetectorConstruction.hh" 36 #include "HistoManager.hh" << 37 #include "PrimaryGeneratorAction.hh" 35 #include "PrimaryGeneratorAction.hh" >> 36 #include "HistoManager.hh" 38 37 39 #include "G4SystemOfUnits.hh" << 40 #include "G4UnitsTable.hh" 38 #include "G4UnitsTable.hh" >> 39 #include "G4SystemOfUnits.hh" 41 40 42 //....oooOO0OOooo........oooOO0OOooo........oo 41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 43 42 44 Run::Run(DetectorConstruction* det) : fDetecto << 43 Run::Run(DetectorConstruction* det) >> 44 : fDetector(det) >> 45 { } 45 46 46 //....oooOO0OOooo........oooOO0OOooo........oo 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 47 48 48 void Run::SetPrimary(G4ParticleDefinition* par 49 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy) 49 { << 50 { 50 fParticle = particle; 51 fParticle = particle; 51 fEkin = energy; 52 fEkin = energy; 52 } << 53 } 53 54 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 56 56 void Run::CountProcesses(const G4VProcess* pro << 57 void Run::CountProcesses(const G4VProcess* process) 57 { 58 { 58 if (process == nullptr) return; 59 if (process == nullptr) return; 59 G4String procName = process->GetProcessName( 60 G4String procName = process->GetProcessName(); 60 std::map<G4String, G4int>::iterator it = fPr << 61 std::map<G4String,G4int>::iterator it = fProcCounter.find(procName); 61 if (it == fProcCounter.end()) { << 62 if ( it == fProcCounter.end()) { 62 fProcCounter[procName] = 1; 63 fProcCounter[procName] = 1; 63 } 64 } 64 else { 65 else { 65 fProcCounter[procName]++; << 66 fProcCounter[procName]++; 66 } 67 } 67 } << 68 } 68 << 69 69 //....oooOO0OOooo........oooOO0OOooo........oo 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 71 71 void Run::ParticleCount(G4String name, G4doubl 72 void Run::ParticleCount(G4String name, G4double Ekin) 72 { 73 { 73 std::map<G4String, ParticleData>::iterator i 74 std::map<G4String, ParticleData>::iterator it = fParticleDataMap.find(name); 74 if (it == fParticleDataMap.end()) { << 75 if ( it == fParticleDataMap.end()) { 75 fParticleDataMap[name] = ParticleData(1, E 76 fParticleDataMap[name] = ParticleData(1, Ekin, Ekin, Ekin); 76 } 77 } 77 else { 78 else { 78 ParticleData& data = it->second; 79 ParticleData& data = it->second; 79 data.fCount++; 80 data.fCount++; 80 data.fEmean += Ekin; 81 data.fEmean += Ekin; 81 // update min max << 82 //update min max 82 G4double emin = data.fEmin; 83 G4double emin = data.fEmin; 83 if (Ekin < emin) data.fEmin = Ekin; 84 if (Ekin < emin) data.fEmin = Ekin; 84 G4double emax = data.fEmax; 85 G4double emax = data.fEmax; 85 if (Ekin > emax) data.fEmax = Ekin; << 86 if (Ekin > emax) data.fEmax = Ekin; 86 } << 87 } 87 } 88 } 88 89 89 //....oooOO0OOooo........oooOO0OOooo........oo 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 90 91 91 void Run::SumTrackLength(G4int nstep1, G4int n << 92 void Run::SumTrackLength(G4int nstep1, G4int nstep2, >> 93 G4double trackl1, G4double trackl2, 92 G4double time1, G4dou 94 G4double time1, G4double time2) 93 { 95 { 94 fNbStep1 += nstep1; << 96 fNbStep1 += nstep1; fNbStep2 += nstep2; 95 fNbStep2 += nstep2; << 97 fTrackLen1 += trackl1; fTrackLen2 += trackl2; 96 fTrackLen1 += trackl1; << 98 fTime1 += time1; fTime2 += time2; 97 fTrackLen2 += trackl2; << 98 fTime1 += time1; << 99 fTime2 += time2; << 100 } 99 } 101 100 102 //....oooOO0OOooo........oooOO0OOooo........oo 101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 103 102 104 void Run::Merge(const G4Run* run) 103 void Run::Merge(const G4Run* run) 105 { 104 { 106 const Run* localRun = static_cast<const Run* 105 const Run* localRun = static_cast<const Run*>(run); 107 << 106 108 // primary particle info << 107 //primary particle info 109 // 108 // 110 fParticle = localRun->fParticle; 109 fParticle = localRun->fParticle; 111 fEkin = localRun->fEkin; << 110 fEkin = localRun->fEkin; 112 << 111 113 // accumulate sums 112 // accumulate sums 114 // 113 // 115 fNbStep1 += localRun->fNbStep1; << 114 fNbStep1 += localRun->fNbStep1; 116 fNbStep2 += localRun->fNbStep2; << 115 fNbStep2 += localRun->fNbStep2; 117 fTrackLen1 += localRun->fTrackLen1; << 116 fTrackLen1 += localRun->fTrackLen1; 118 fTrackLen2 += localRun->fTrackLen2; 117 fTrackLen2 += localRun->fTrackLen2; 119 fTime1 += localRun->fTime1; << 118 fTime1 += localRun->fTime1; 120 fTime2 += localRun->fTime2; << 119 fTime2 += localRun->fTime2; >> 120 >> 121 //map: processes count >> 122 std::map<G4String,G4int>::const_iterator itp; >> 123 for ( itp = localRun->fProcCounter.begin(); >> 124 itp != localRun->fProcCounter.end(); ++itp ) { 121 125 122 // map: processes count << 123 std::map<G4String, G4int>::const_iterator it << 124 for (itp = localRun->fProcCounter.begin(); i << 125 G4String procName = itp->first; 126 G4String procName = itp->first; 126 G4int localCount = itp->second; 127 G4int localCount = itp->second; 127 if (fProcCounter.find(procName) == fProcCo << 128 if ( fProcCounter.find(procName) == fProcCounter.end()) { 128 fProcCounter[procName] = localCount; 129 fProcCounter[procName] = localCount; 129 } 130 } 130 else { 131 else { 131 fProcCounter[procName] += localCount; 132 fProcCounter[procName] += localCount; 132 } << 133 } 133 } 134 } 134 << 135 135 // map: created particles count << 136 //map: created particles count 136 std::map<G4String, ParticleData>::const_iter << 137 std::map<G4String,ParticleData>::const_iterator itn; 137 for (itn = localRun->fParticleDataMap.begin( << 138 for (itn = localRun->fParticleDataMap.begin(); >> 139 itn != localRun->fParticleDataMap.end(); ++itn) { >> 140 138 G4String name = itn->first; 141 G4String name = itn->first; 139 const ParticleData& localData = itn->secon << 142 const ParticleData& localData = itn->second; 140 if (fParticleDataMap.find(name) == fPartic << 143 if ( fParticleDataMap.find(name) == fParticleDataMap.end()) { 141 fParticleDataMap[name] = << 144 fParticleDataMap[name] 142 ParticleData(localData.fCount, localDa << 145 = ParticleData(localData.fCount, >> 146 localData.fEmean, >> 147 localData.fEmin, >> 148 localData.fEmax); 143 } 149 } 144 else { 150 else { 145 ParticleData& data = fParticleDataMap[na << 151 ParticleData& data = fParticleDataMap[name]; 146 data.fCount += localData.fCount; 152 data.fCount += localData.fCount; 147 data.fEmean += localData.fEmean; 153 data.fEmean += localData.fEmean; 148 G4double emin = localData.fEmin; 154 G4double emin = localData.fEmin; 149 if (emin < data.fEmin) data.fEmin = emin 155 if (emin < data.fEmin) data.fEmin = emin; 150 G4double emax = localData.fEmax; 156 G4double emax = localData.fEmax; 151 if (emax > data.fEmax) data.fEmax = emax << 157 if (emax > data.fEmax) data.fEmax = emax; 152 } << 158 } 153 } 159 } 154 160 155 G4Run::Merge(run); << 161 G4Run::Merge(run); 156 } << 162 } 157 163 158 //....oooOO0OOooo........oooOO0OOooo........oo 164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 159 165 160 void Run::EndOfRun() << 166 void Run::EndOfRun() 161 { 167 { 162 G4int prec = 5, wid = prec + 2; << 168 G4int prec = 5, wid = prec + 2; 163 G4int dfprec = G4cout.precision(prec); 169 G4int dfprec = G4cout.precision(prec); 164 << 170 165 // run condition << 171 //run condition 166 // 172 // 167 G4Material* material = fDetector->GetMateria 173 G4Material* material = fDetector->GetMaterial(); 168 G4double density = material->GetDensity(); 174 G4double density = material->GetDensity(); 169 << 175 170 G4String Particle = fParticle->GetParticleNa << 176 G4String Particle = fParticle->GetParticleName(); 171 G4cout << "\n The run is " << numberOfEvent << 177 G4cout << "\n The run is " << numberOfEvent << " "<< Particle << " of " 172 << G4BestUnit(fEkin, "Energy") << " t << 178 << G4BestUnit(fEkin,"Energy") << " through " 173 << G4BestUnit(0.5 * (fDetector->GetSi << 179 << G4BestUnit(0.5*(fDetector->GetSize()),"Length") << " of " 174 << " (density: " << G4BestUnit(densit << 180 << material->GetName() << " (density: " 175 << 181 << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; 176 if (numberOfEvent == 0) { << 182 177 G4cout.precision(dfprec); << 183 if (numberOfEvent == 0) { G4cout.precision(dfprec); return;} 178 return; << 184 179 } << 185 //frequency of processes 180 << 181 // frequency of processes << 182 // 186 // 183 G4cout << "\n Process calls frequency :" << << 187 G4cout << "\n Process calls frequency :" << G4endl; 184 G4int survive = 0; 188 G4int survive = 0; 185 std::map<G4String, G4int>::iterator it; << 189 std::map<G4String,G4int>::iterator it; 186 for (it = fProcCounter.begin(); it != fProcC 190 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 187 G4String procName = it->first; << 191 G4String procName = it->first; 188 G4int count = it->second; << 192 G4int count = it->second; 189 G4cout << "\t" << procName << "= " << coun << 193 G4cout << "\t" << procName << "= " << count; 190 if (procName == "Transportation") survive << 194 if (procName == "Transportation") survive = count; 191 } 195 } 192 G4cout << G4endl; 196 G4cout << G4endl; 193 << 197 194 if (survive > 0) { 198 if (survive > 0) { 195 G4cout << "\n Nb of incident particles sur 199 G4cout << "\n Nb of incident particles surviving after " 196 << G4BestUnit(0.5 * (fDetector->Get << 200 << G4BestUnit(0.5*(fDetector->GetSize()),"Length") << " of " 197 << fDetector->GetMaterial()->GetNam 201 << fDetector->GetMaterial()->GetName() << " : " << survive << G4endl; 198 } 202 } 199 203 200 // total track length of incident neutron << 204 // total track length of incident neutron 201 // << 205 // 202 G4cout << "\n Parcours of incident neutron:" << 206 G4cout << "\n Parcours of incident neutron:"; 203 << 207 204 G4double meanCollision1 = (G4double)fNbStep1 << 208 G4double meanCollision1 = (G4double)fNbStep1/numberOfEvent; 205 G4double meanCollision2 = (G4double)fNbStep2 << 209 G4double meanCollision2 = (G4double)fNbStep2/numberOfEvent; 206 G4double meanCollisTota = meanCollision1 + m << 210 G4double meanCollisTota = meanCollision1 + meanCollision2; 207 << 211 208 G4cout << "\n nb of collisions E>1*eV= << 212 G4cout << "\n nb of collisions E>1*eV= " << meanCollision1 209 << " E<1*eV= " << meanCollision2 << 213 << " E<1*eV= " << meanCollision2 210 << 214 << " total= " << meanCollisTota; 211 G4double meanTrackLen1 = fTrackLen1 / number << 215 212 G4double meanTrackLen2 = fTrackLen2 / number << 216 G4double meanTrackLen1 = fTrackLen1/numberOfEvent; 213 G4double meanTrackLtot = meanTrackLen1 + mea << 217 G4double meanTrackLen2 = fTrackLen2/numberOfEvent; 214 << 218 G4double meanTrackLtot = meanTrackLen1 + meanTrackLen2; 215 G4cout << "\n track length E>1*eV= << 219 216 << " E<1*eV= " << G4BestUnit(meanTra << 220 G4cout 217 << " total= " << G4BestUnit(meanTra << 221 << "\n track length E>1*eV= " << G4BestUnit(meanTrackLen1,"Length") 218 << 222 << " E<1*eV= " << G4BestUnit(meanTrackLen2, "Length") 219 G4double meanTime1 = fTime1 / numberOfEvent; << 223 << " total= " << G4BestUnit(meanTrackLtot, "Length"); 220 G4double meanTime2 = fTime2 / numberOfEvent; << 224 221 G4double meanTimeTo = meanTime1 + meanTime2; << 225 G4double meanTime1 = fTime1/numberOfEvent; 222 << 226 G4double meanTime2 = fTime2/numberOfEvent; 223 G4cout << "\n time of flight E>1*eV= << 227 G4double meanTimeTo = meanTime1 + meanTime2; 224 << " E<1*eV= " << G4BestUnit(meanTim << 228 225 << " total= " << G4BestUnit(meanTim << 229 G4cout 226 << 230 << "\n time of flight E>1*eV= " << G4BestUnit(meanTime1,"Time") 227 // particles count << 231 << " E<1*eV= " << G4BestUnit(meanTime2, "Time") 228 // << 232 << " total= " << G4BestUnit(meanTimeTo, "Time") << G4endl; 229 G4cout << "\n List of generated particles:" << 233 230 << 234 //particles count 231 std::map<G4String, ParticleData>::iterator i << 235 // 232 for (itn = fParticleDataMap.begin(); itn != << 236 G4cout << "\n List of generated particles:" << G4endl; >> 237 >> 238 std::map<G4String,ParticleData>::iterator itn; >> 239 for (itn = fParticleDataMap.begin(); itn != fParticleDataMap.end(); itn++) { 233 G4String name = itn->first; 240 G4String name = itn->first; 234 ParticleData data = itn->second; 241 ParticleData data = itn->second; 235 G4int count = data.fCount; 242 G4int count = data.fCount; 236 G4double eMean = data.fEmean / count; << 243 G4double eMean = data.fEmean/count; 237 G4double eMin = data.fEmin; 244 G4double eMin = data.fEmin; 238 G4double eMax = data.fEmax; << 245 G4double eMax = data.fEmax; 239 << 246 240 G4cout << " " << std::setw(13) << name << 247 G4cout << " " << std::setw(13) << name << ": " << std::setw(7) << count 241 << " Emean = " << std::setw(wid) < << 248 << " Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") 242 << G4BestUnit(eMin, "Energy") << " << 249 << "\t( " << G4BestUnit(eMin, "Energy") 243 } << 250 << " --> " << G4BestUnit(eMax, "Energy") 244 << 251 << ")" << G4endl; 245 // normalize histograms << 252 } >> 253 >> 254 //normalize histograms 246 ////G4AnalysisManager* analysisManager = G4A 255 ////G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 247 ////G4double factor = 1./numberOfEvent; 256 ////G4double factor = 1./numberOfEvent; 248 ////analysisManager->ScaleH1(3,factor); 257 ////analysisManager->ScaleH1(3,factor); 249 << 258 250 // remove all contents in fProcCounter, fCou << 259 //remove all contents in fProcCounter, fCount 251 fProcCounter.clear(); 260 fProcCounter.clear(); 252 fParticleDataMap.clear(); 261 fParticleDataMap.clear(); 253 << 262 254 // restore default format << 263 //restore default format 255 G4cout.precision(dfprec); << 264 G4cout.precision(dfprec); 256 } 265 } 257 266 258 //....oooOO0OOooo........oooOO0OOooo........oo 267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 259 268