Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 /// \file Run.cc 27 /// \brief Implementation of the Run class 28 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 33 #include "Run.hh" 34 35 #include "DetectorConstruction.hh" 36 #include "HistoManager.hh" 37 #include "PrimaryGeneratorAction.hh" 38 39 #include "G4HadronicProcess.hh" 40 #include "G4HadronicProcessStore.hh" 41 #include "G4Neutron.hh" 42 #include "G4ProcessTable.hh" 43 #include "G4SystemOfUnits.hh" 44 #include "G4UnitsTable.hh" 45 46 //....oooOO0OOooo........oooOO0OOooo........oo 47 48 Run::Run(DetectorConstruction* det) : fDetecto 49 { 50 for (G4int i = 0; i < 3; i++) { 51 fPbalance[i] = 0.; 52 } 53 for (G4int i = 0; i < 3; i++) { 54 fNbGamma[i] = 0; 55 } 56 fPbalance[1] = DBL_MAX; 57 fNbGamma[1] = 10000; 58 } 59 60 //....oooOO0OOooo........oooOO0OOooo........oo 61 62 void Run::SetPrimary(G4ParticleDefinition* par 63 { 64 fParticle = particle; 65 fEkin = energy; 66 } 67 68 //....oooOO0OOooo........oooOO0OOooo........oo 69 70 void Run::SetTargetXXX(G4bool flag) 71 { 72 fTargetXXX = flag; 73 } 74 75 //....oooOO0OOooo........oooOO0OOooo........oo 76 77 void Run::CountProcesses(G4VProcess* process) 78 { 79 if (process == nullptr) return; 80 G4String procName = process->GetProcessName( 81 std::map<G4String, G4int>::iterator it = fPr 82 if (it == fProcCounter.end()) { 83 fProcCounter[procName] = 1; 84 } 85 else { 86 fProcCounter[procName]++; 87 } 88 } 89 90 //....oooOO0OOooo........oooOO0OOooo........oo 91 92 void Run::SumTrack(G4double trackl) 93 { 94 fTotalCount++; 95 fSumTrack += trackl; 96 fSumTrack2 += trackl * trackl; 97 } 98 99 //....oooOO0OOooo........oooOO0OOooo........oo 100 101 void Run::CountNuclearChannel(G4String name, G 102 { 103 std::map<G4String, NuclChannel>::iterator it 104 if (it == fNuclChannelMap.end()) { 105 fNuclChannelMap[name] = NuclChannel(1, Q); 106 } 107 else { 108 NuclChannel& data = it->second; 109 data.fCount++; 110 data.fQ += Q; 111 } 112 } 113 114 //....oooOO0OOooo........oooOO0OOooo........oo 115 116 void Run::ParticleCount(G4String name, G4doubl 117 { 118 std::map<G4String, ParticleData>::iterator i 119 if (it == fParticleDataMap.end()) { 120 fParticleDataMap[name] = ParticleData(1, E 121 } 122 else { 123 ParticleData& data = it->second; 124 data.fCount++; 125 data.fEmean += Ekin; 126 // update min max 127 G4double emin = data.fEmin; 128 if (Ekin < emin) data.fEmin = Ekin; 129 G4double emax = data.fEmax; 130 if (Ekin > emax) data.fEmax = Ekin; 131 } 132 } 133 //....oooOO0OOooo........oooOO0OOooo........oo 134 135 void Run::Balance(G4double Pbal) 136 { 137 fPbalance[0] += Pbal; 138 // update min max 139 if (fTotalCount == 1) fPbalance[1] = fPbalan 140 if (Pbal < fPbalance[1]) fPbalance[1] = Pbal 141 if (Pbal > fPbalance[2]) fPbalance[2] = Pbal 142 } 143 144 //....oooOO0OOooo........oooOO0OOooo........oo 145 146 void Run::CountGamma(G4int nGamma) 147 { 148 fGammaCount++; 149 fNbGamma[0] += nGamma; 150 // update min max 151 if (fGammaCount == 1) fNbGamma[1] = fNbGamma 152 if (nGamma < fNbGamma[1]) fNbGamma[1] = nGam 153 if (nGamma > fNbGamma[2]) fNbGamma[2] = nGam 154 } 155 156 //....oooOO0OOooo........oooOO0OOooo........oo 157 158 void Run::Merge(const G4Run* run) 159 { 160 const Run* localRun = static_cast<const Run* 161 162 // primary particle info 163 // 164 fParticle = localRun->fParticle; 165 fEkin = localRun->fEkin; 166 167 // accumulate sums 168 // 169 fTotalCount += localRun->fTotalCount; 170 fGammaCount += localRun->fGammaCount; 171 fSumTrack += localRun->fSumTrack; 172 fSumTrack2 += localRun->fSumTrack2; 173 174 fPbalance[0] += localRun->fPbalance[0]; 175 G4double min, max; 176 min = localRun->fPbalance[1]; 177 max = localRun->fPbalance[2]; 178 if (fPbalance[1] > min) fPbalance[1] = min; 179 if (fPbalance[2] < max) fPbalance[2] = max; 180 181 fNbGamma[0] += localRun->fNbGamma[0]; 182 G4int nbmin, nbmax; 183 nbmin = localRun->fNbGamma[1]; 184 nbmax = localRun->fNbGamma[2]; 185 if (fNbGamma[1] > nbmin) fNbGamma[1] = nbmin 186 if (fNbGamma[2] < nbmax) fNbGamma[2] = nbmax 187 188 // map: processes count 189 std::map<G4String, G4int>::const_iterator it 190 for (itp = localRun->fProcCounter.begin(); i 191 G4String procName = itp->first; 192 G4int localCount = itp->second; 193 if (fProcCounter.find(procName) == fProcCo 194 fProcCounter[procName] = localCount; 195 } 196 else { 197 fProcCounter[procName] += localCount; 198 } 199 } 200 201 // map: nuclear channels 202 std::map<G4String, NuclChannel>::const_itera 203 for (itc = localRun->fNuclChannelMap.begin() 204 G4String name = itc->first; 205 const NuclChannel& localData = itc->second 206 if (fNuclChannelMap.find(name) == fNuclCha 207 fNuclChannelMap[name] = NuclChannel(loca 208 } 209 else { 210 NuclChannel& data = fNuclChannelMap[name 211 data.fCount += localData.fCount; 212 data.fQ += localData.fQ; 213 } 214 } 215 216 // map: particles count 217 std::map<G4String, ParticleData>::const_iter 218 for (itn = localRun->fParticleDataMap.begin( 219 G4String name = itn->first; 220 const ParticleData& localData = itn->secon 221 if (fParticleDataMap.find(name) == fPartic 222 fParticleDataMap[name] = 223 ParticleData(localData.fCount, localDa 224 } 225 else { 226 ParticleData& data = fParticleDataMap[na 227 data.fCount += localData.fCount; 228 data.fEmean += localData.fEmean; 229 G4double emin = localData.fEmin; 230 if (emin < data.fEmin) data.fEmin = emin 231 G4double emax = localData.fEmax; 232 if (emax > data.fEmax) data.fEmax = emax 233 } 234 } 235 236 G4Run::Merge(run); 237 } 238 239 //....oooOO0OOooo........oooOO0OOooo........oo 240 241 void Run::EndOfRun(G4bool print) 242 { 243 G4int prec = 5, wid = prec + 2; 244 G4int dfprec = G4cout.precision(prec); 245 246 // run condition 247 // 248 const G4Material* material = fDetector->GetM 249 G4double density = material->GetDensity(); 250 251 G4String Particle = fParticle->GetParticleNa 252 G4cout << "\n The run is " << numberOfEvent 253 << G4BestUnit(fEkin, "Energy") << " t 254 << " of " << material->GetName() << " 255 << ")" << G4endl; 256 257 if (numberOfEvent == 0) { 258 G4cout.precision(dfprec); 259 return; 260 } 261 262 // frequency of processes 263 // 264 G4cout << "\n Process calls frequency:" << G 265 G4int survive = 0; 266 std::map<G4String, G4int>::iterator it; 267 for (it = fProcCounter.begin(); it != fProcC 268 G4String procName = it->first; 269 G4int count = it->second; 270 G4cout << "\t" << procName << "= " << coun 271 if (procName == "Transportation") survive 272 } 273 G4cout << G4endl; 274 275 if (survive > 0) { 276 G4cout << "\n Nb of incident particles sur 277 << G4BestUnit(fDetector->GetSize(), 278 << survive << G4endl; 279 } 280 281 if (fTotalCount == 0) fTotalCount = 1; // f 282 283 // compute mean free path and related quanti 284 // 285 G4double MeanFreePath = fSumTrack / fTotalCo 286 G4double MeanTrack2 = fSumTrack2 / fTotalCou 287 G4double rms = std::sqrt(std::fabs(MeanTrack 288 G4double CrossSection = 0.0; 289 if (MeanFreePath > 0.0) { 290 CrossSection = 1. / MeanFreePath; 291 } 292 G4double massicMFP = MeanFreePath * density; 293 G4double massicCS = 0.0; 294 if (massicMFP > 0.0) { 295 massicCS = 1. / massicMFP; 296 } 297 298 G4cout << "\n\n MeanFreePath:\t" << G4BestUn 299 << G4BestUnit(rms, "Length") << "\tma 300 << "\n CrossSection:\t" << CrossSecti 301 << "\t\tmassic: " << G4BestUnit(massi 302 303 // cross section per atom (only for single m 304 // 305 if (material->GetNumberOfElements() == 1) { 306 G4double nbAtoms = material->GetTotNbOfAto 307 G4double crossSection = CrossSection / nbA 308 G4cout << " crossSection per atom:\t" << G 309 } 310 // check cross section from G4HadronicProces 311 // 312 G4cout << "\n Verification: " 313 << "crossSections from G4HadronicProc 314 315 G4ProcessTable* processTable = G4ProcessTabl 316 G4HadronicProcessStore* store = G4HadronicPr 317 G4double sumc1 = 0.0, sumc2 = 0.0; 318 const G4Element* element = 319 (material->GetNumberOfElements() == 1) ? m 320 for (it = fProcCounter.begin(); it != fProcC 321 G4String procName = it->first; 322 const G4VProcess* process = processTable-> 323 PrintXS(process, material, element, store, 324 } 325 if (sumc1 > 0.0) { 326 G4cout << "\n" 327 << std::setw(20) << "total" 328 << " = " << G4BestUnit(sumc1, "Surf 329 if (sumc2 > 0.0) { 330 G4cout << G4BestUnit(sumc2, "Surface"); 331 } 332 G4cout << G4endl; 333 } 334 else { 335 G4cout << " not available" << G4endl; 336 } 337 338 // nuclear channel count 339 // 340 G4cout << "\n List of nuclear reactions: \n" 341 std::map<G4String, NuclChannel>::iterator ic 342 for (ic = fNuclChannelMap.begin(); ic != fNu 343 G4String name = ic->first; 344 NuclChannel data = ic->second; 345 G4int count = data.fCount; 346 G4double Q = data.fQ / count; 347 if (print) 348 G4cout << " " << std::setw(60) << name 349 << " Q = " << std::setw(wid) << 350 } 351 352 // Gamma count 353 // 354 if (print && (fGammaCount > 0)) { 355 G4cout << "\n" 356 << std::setw(58) << "number of gamm 357 << fNbGamma[2] << G4endl; 358 } 359 360 if (print && fTargetXXX) { 361 G4cout << "\n --> NOTE: XXXX because neu 362 } 363 364 // particles count 365 // 366 G4cout << "\n List of generated particles:" 367 368 std::map<G4String, ParticleData>::iterator i 369 for (itn = fParticleDataMap.begin(); itn != 370 G4String name = itn->first; 371 ParticleData data = itn->second; 372 G4int count = data.fCount; 373 G4double eMean = data.fEmean / count; 374 G4double eMin = data.fEmin; 375 G4double eMax = data.fEmax; 376 if (print) 377 G4cout << " " << std::setw(13) << name 378 << " Emean = " << std::setw(wid) 379 << G4BestUnit(eMin, "Energy") << 380 << G4endl; 381 } 382 383 // energy momentum balance 384 // 385 if (fTotalCount > 1) { 386 G4double Pbmean = fPbalance[0] / fTotalCou 387 G4cout << "\n Momentum balance: Pmean = 388 << "\t( " << G4BestUnit(fPbalance[1 389 << G4BestUnit(fPbalance[2], "Energy 390 << G4endl; 391 } 392 393 // normalize histograms 394 ////G4AnalysisManager* analysisManager = G4A 395 ////G4double factor = 1./numberOfEvent; 396 ////analysisManager->ScaleH1(3,factor); 397 398 // remove all contents in fProcCounter, fCou 399 fProcCounter.clear(); 400 fNuclChannelMap.clear(); 401 fParticleDataMap.clear(); 402 403 // restore default format 404 G4cout.precision(dfprec); 405 } 406 407 //....oooOO0OOooo........oooOO0OOooo........oo 408 409 void Run::PrintXS(const G4VProcess* proc, cons 410 G4HadronicProcessStore* stor 411 { 412 if (nullptr == proc) { 413 return; 414 } 415 G4double xs1 = store->GetCrossSectionPerVolu 416 G4double massSigma = xs1 / density; 417 sum1 += massSigma; 418 if (nullptr != elm) { 419 G4double xs2 = store->GetCrossSectionPerAt 420 sum2 += xs2; 421 G4cout << "\n" 422 << std::setw(20) << proc->GetProces 423 << G4BestUnit(massSigma, "Surface/M 424 } 425 else { 426 G4cout << "\n" 427 << std::setw(20) << proc->GetProces 428 << G4BestUnit(massSigma, "Surface/M 429 } 430 } 431 432 //....oooOO0OOooo........oooOO0OOooo........oo 433