Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 /// \file HadNucIneEvents.cc 28 /// \brief Main program, 29 /// hadronic/FlukaCern/ProcessLevel/Fi 30 // 31 // Author: A. Ribbon, 8 November 2020 32 // Modified: G. Hugo, 8 December 2022 33 // 34 //-------------------------------------------- 35 // 36 // HadNucIneEvents 37 // 38 /// This program is an adaptation of Hadr09 ex 39 /// It offers all Hadr09 features, and adds th 40 /// accessing hadron-nucleus inelastic interac 41 /// 42 /// With respect to the Hadr09 example, 43 /// the program also adds the possibility of p 44 /// all encountered secondaries spectra are au 45 /// as well as the residual nuclei distributio 46 /// All plots (created via the G4 analysis man 47 /// to any of the usually supported formats (e 48 /// but also in a Flair-compatible format. 49 /// 50 /// The final states (i.e. secondary particles 51 /// hadron-nuclear inelastic collisions are ha 52 /// 53 /// The use of the class Hadronic Generator is 54 /// the constructor needs to be invoked only o 55 /// of the "physics case" to consider ("CFLUKA 56 /// considered as default if the name is not s 57 /// method needs to be called at each collisio 58 /// collision (hadron, energy, direction, mate 59 /// The class HadronicGenerator is expected to 60 /// multi-threaded environment with "external" 61 /// that are not necessarily managed by Geant4 62 /// each thread should have its own instance o 63 /// 64 /// See the string "***LOOKHERE***" below for 65 /// of this example: the "physics case", the s 66 /// which to sample the projectile 67 /// a list of hadrons is possible from which t 68 /// the kinetic energy of the projectile (whic 69 /// an interval), whether the direction of the 70 /// sampled at each collision, the target mate 71 /// is possible, from which the target materia 72 /// collision, and then from this target mater 73 /// will be chosen randomly by Geant4 itself), 74 /// some information or not and how frequently 75 /// Once a well-defined type of hadron-nucleus 76 /// inelastic collision has been chosen, the m 77 /// HadronicGenerator::GenerateInteraction 78 /// returns the secondaries produced by that i 79 /// of a G4VParticleChange object). 80 /// 81 /// Here by default, an already well-defined t 82 /// inelastic collision is selected 83 /// (specific hadron, at a given kinetic energ 84 /// on a specific material). 85 /// The initial random seed is not set randoml 86 /// so that results are reproducible from one 87 /// 88 /// Use: build/HadNucIneEvents 89 // 90 //-------------------------------------------- 91 92 //....oooOO0OOooo........oooOO0OOooo........oo 93 //....oooOO0OOooo........oooOO0OOooo........oo 94 95 #include "CLHEP/Random/Randomize.h" 96 #include "CLHEP/Random/Ranlux64Engine.h" 97 #include "FinalStateHistoManager.hh" 98 #include "HadronicGenerator.hh" 99 100 #include "G4GenericIon.hh" 101 #include "G4IonTable.hh" 102 #include "G4Material.hh" 103 #include "G4NistManager.hh" 104 #include "G4ParticleTable.hh" 105 #include "G4PhysicalConstants.hh" 106 #include "G4ProcessManager.hh" 107 #include "G4SystemOfUnits.hh" 108 #include "G4UnitsTable.hh" 109 #include "G4VParticleChange.hh" 110 #include "G4ios.hh" 111 #include "globals.hh" 112 113 #include <chrono> 114 #include <iomanip> 115 116 //....oooOO0OOooo........oooOO0OOooo........oo 117 118 G4int main(G4int argc, char** argv) 119 { 120 G4cout << "=== Test of the HadronicGenerator 121 122 // See the HadronicGenerator class for the p 123 // ( In short, it is the name of the Geant4 124 // the collision, with the possibility of 125 // a given energy interval, as in physics 126 127 //***LOOKHERE*** PHYSICS CASE 128 G4String namePhysics = "CFLUKAHI"; 129 // const G4String namePhysics = "FTFP_BERT"; 130 // const G4String namePhysics = "FTFP_BERT_A 131 // const G4String namePhysics = "QGSP_BERT"; 132 // const G4String namePhysics = "QGSP_BIC"; 133 // const G4String namePhysics = "FTFP_INCLXX 134 // const G4String namePhysics = "FTFP"; 135 // const G4String namePhysics = "QGSP"; 136 // const G4String namePhysics = "BERT"; 137 // const G4String namePhysics = "BIC"; 138 // const G4String namePhysics = "IonBIC"; 139 // const G4String namePhysics = "INCL"; 140 141 // The kinetic energy of the projectile will 142 // in the interval [minEnergy, maxEnergy]. 143 G4double minEnergy = 7. * CLHEP::TeV; //*** 144 G4double maxEnergy = 7. * CLHEP::TeV; //*** 145 146 G4int numCollisions = 100000; //***LOOKHERE 147 // const G4int numCollisions = 100; // DE 148 149 // IMPORTANT - TESTING ONLY: 150 // OVERWRITES DEFAULT PHYSICS CASE AND NUMBE 151 std::vector<G4String> args(argv, argv + argc 152 if (args.size() == 2 && args[1] == "--test") 153 namePhysics = G4String("FTFP_BERT"); 154 numCollisions = 10; 155 } 156 157 // Enable or disable the print out of this p 158 // produced in each collisions is printed ou 159 // collisions, the list of secondaries is pr 160 const G4bool isPrintingEnabled = true; //** 161 const G4int printingGap = 100; //***LOOKHER 162 163 // Vector of Geant4 names of hadron projecti 164 // (with uniform probability) for each colli 165 // Note: comment out the corresponding line 166 std::vector<G4String> vecProjectiles; //*** 167 // vecProjectiles.push_back( "pi-" ); 168 // Note: vecProjectiles.push_back( "pi0" ); 169 // vecProjectiles.push_back( "pi+" ); 170 // vecProjectiles.push_back( "kaon-" ); 171 // vecProjectiles.push_back( "kaon+" ); 172 // vecProjectiles.push_back( "kaon0L" ); 173 // vecProjectiles.push_back( "kaon0S" ); 174 // Note: vecProjectiles.push_back( "eta" ); 175 // Note: vecProjectiles.push_back( "eta_prim 176 vecProjectiles.push_back("proton"); 177 // vecProjectiles.push_back( "neutron" ); 178 // vecProjectiles.push_back( "deuteron" ); 179 // vecProjectiles.push_back( "triton" ); 180 // vecProjectiles.push_back( "He3" ); 181 // vecProjectiles.push_back( "alpha" ); 182 // vecProjectiles.push_back( "lambda" ); 183 // vecProjectiles.push_back( "sigma-" ); 184 // Note: vecProjectiles.push_back( "sigma0" 185 // vecProjectiles.push_back( "sigma+" ); 186 // vecProjectiles.push_back( "xi-" ); 187 // vecProjectiles.push_back( "xi0" ); 188 // vecProjectiles.push_back( "omega-" ); 189 // vecProjectiles.push_back( "anti_proton" ) 190 // vecProjectiles.push_back( "anti_neutron" 191 // vecProjectiles.push_back( "anti_lambda" ) 192 // vecProjectiles.push_back( "anti_sigma-" ) 193 // Note: vecProjectiles.push_back( "anti_sig 194 // vecProjectiles.push_back( "anti_sigma+" ) 195 // vecProjectiles.push_back( "anti_xi-" ); 196 // vecProjectiles.push_back( "anti_xi0" ); 197 // vecProjectiles.push_back( "anti_omega-" ) 198 // vecProjectiles.push_back( "anti_deuteron" 199 // vecProjectiles.push_back( "anti_triton" ) 200 // vecProjectiles.push_back( "anti_He3" ); 201 // vecProjectiles.push_back( "anti_alpha" ); 202 // Charm and bottom hadrons 203 // vecProjectiles.push_back( "D+" ); 204 // vecProjectiles.push_back( "D-" ); 205 // vecProjectiles.push_back( "D0" ); 206 // vecProjectiles.push_back( "anti_D0" ); 207 // vecProjectiles.push_back( "Ds+" ); 208 // vecProjectiles.push_back( "Ds-" ); 209 // Note: vecProjectiles.push_back( "etac" ); 210 // Note: vecProjectiles.push_back( "J/psi" ) 211 // vecProjectiles.push_back( "B+" ); 212 // vecProjectiles.push_back( "B-" ); 213 // vecProjectiles.push_back( "B0" ); 214 // vecProjectiles.push_back( "anti_B0" ); 215 // vecProjectiles.push_back( "Bs0" ); 216 // vecProjectiles.push_back( "anti_Bs0" ); 217 // vecProjectiles.push_back( "Bc+" ); 218 // vecProjectiles.push_back( "Bc-" ); 219 // Note: vecProjectiles.push_back( "Upsilon" 220 // vecProjectiles.push_back( "lambda_c+" ); 221 // vecProjectiles.push_back( "anti_lambda_c+ 222 // Note: vecProjectiles.push_back( "sigma_c+ 223 // Note: vecProjectiles.push_back( "anti_sig 224 // Note: vecProjectiles.push_back( "sigma_c0 225 // Note: vecProjectiles.push_back( "anti_sig 226 // Note: vecProjectiles.push_back( "sigma_c+ 227 // Note: vecProjectiles.push_back( "anti_sig 228 // vecProjectiles.push_back( "xi_c+" ); 229 // vecProjectiles.push_back( "anti_xi_c+" ); 230 // vecProjectiles.push_back( "xi_c0" ); 231 // vecProjectiles.push_back( "anti_xi_c0" ); 232 // vecProjectiles.push_back( "omega_c0" ); 233 // vecProjectiles.push_back( "anti_omega_c0" 234 // vecProjectiles.push_back( "lambda_b" ); 235 // vecProjectiles.push_back( "anti_lambda_b" 236 // Note: vecProjectiles.push_back( "sigma_b+ 237 // Note: vecProjectiles.push_back( "anti_sig 238 // Note: vecProjectiles.push_back( "sigma_b0 239 // Note: vecProjectiles.push_back( "sigma_b0 240 // Note: vecProjectiles.push_back( "sigma_b- 241 // Note: vecProjectiles.push_back( "anti_sig 242 // vecProjectiles.push_back( "xi_b0" ); 243 // vecProjectiles.push_back( "anti_xi_b0" ); 244 // vecProjectiles.push_back( "xi_b-" ); 245 // vecProjectiles.push_back( "anti_xi_b-" ); 246 // vecProjectiles.push_back( "omega_b-" ); 247 // vecProjectiles.push_back( "anti_omega_b-" 248 249 G4ParticleDefinition* projectileNucleus = nu 250 G4GenericIon* gion = G4GenericIon::GenericIo 251 gion->SetProcessManager(new G4ProcessManager 252 G4ParticleTable* partTable = G4ParticleTable 253 G4IonTable* ions = partTable->GetIonTable(); 254 partTable->SetReadiness(); 255 ions->CreateAllIon(); 256 ions->CreateAllIsomer(); 257 258 //***LOOKHERE*** HADRON (false) OR ION (tru 259 const G4bool isProjectileIon = false; 260 if (isProjectileIon) { 261 minEnergy = 40.0 * 13.0 * CLHEP::GeV; //* 262 maxEnergy = 40.0 * 13.0 * CLHEP::GeV; //* 263 G4int ionZ = 18, ionA = 40; //***LOOKHERE 264 projectileNucleus = partTable->GetIonTable 265 } 266 267 // Vector of Geant4 NIST names of materials: 268 // (with uniform probability) for each colli 269 // Note: comment out the corresponding line 270 // or, vice versa, add a new line to e 271 std::vector<G4String> vecMaterials; //***LO 272 // vecMaterials.push_back( "G4_H" ); 273 // vecMaterials.push_back( "G4_He" ); 274 // vecMaterials.push_back( "G4_Be" ); 275 vecMaterials.push_back("G4_C"); 276 // vecMaterials.push_back( "G4_Al" ); 277 // vecMaterials.push_back( "G4_Si" ); 278 // vecMaterials.push_back( "G4_Sc" ); 279 // vecMaterials.push_back( "G4_Ar" ); 280 // vecMaterials.push_back( "G4_Fe" ); 281 // vecMaterials.push_back( "G4_Cu" ); 282 // vecMaterials.push_back( "G4_W" ); 283 // vecMaterials.push_back( "G4_Pb" ); 284 285 const G4int numProjectiles = vecProjectiles. 286 const G4int numMaterials = vecMaterials.size 287 288 G4cout << G4endl << "================= Conf 289 << "Model: " << namePhysics << G4endl 290 << maxEnergy / CLHEP::GeV << " ] GeV" 291 << "Number of collisions: " << numCo 292 << "Number of hadron projectiles: " < 293 << "Number of materials: " << numMa 294 << "IsIonProjectile: " << (projectile 295 << (projectileNucleus != nullptr ? pr 296 << G4endl << "======================= 297 298 CLHEP::Ranlux64Engine defaultEngine(1234567, 299 CLHEP::HepRandom::setTheEngine(&defaultEngin 300 //***LOOKHERE*** RANDOM ENGINE START SEED 301 // G4int seed = time( NULL ); 302 // CLHEP::HepRandom::setTheSeed( seed ); 303 // G4cout << G4endl << " Initial seed = " << 304 305 // Set up histo manager. 306 auto histoManager = FinalStateHistoManager() 307 histoManager.Book(); 308 309 // Instanciate the HadronicGenerator providi 310 HadronicGenerator* theHadronicGenerator = ne 311 //****************************************** 312 313 if (theHadronicGenerator == nullptr) { 314 G4cerr << "ERROR: theHadronicGenerator is 315 return 1; 316 } 317 else if (!theHadronicGenerator->IsPhysicsCas 318 G4cerr << "ERROR: this physics case is NOT 319 return 2; 320 } 321 322 // Start timing 323 auto start = std::chrono::high_resolution_cl 324 325 // Loop over the collisions 326 G4double rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, 327 G4VParticleChange* aChange = nullptr; 328 for (G4int i = 0; i < numCollisions; ++i) { 329 histoManager.BeginOfEvent(); 330 331 // Draw some random numbers to select the 332 // projectile hadron, projectile kinetic e 333 rnd1 = CLHEP::HepRandom::getTheEngine()->f 334 rnd2 = CLHEP::HepRandom::getTheEngine()->f 335 rnd3 = CLHEP::HepRandom::getTheEngine()->f 336 rnd4 = CLHEP::HepRandom::getTheEngine()->f 337 rnd5 = CLHEP::HepRandom::getTheEngine()->f 338 rnd6 = CLHEP::HepRandom::getTheEngine()->f 339 // Sample the projectile kinetic energy 340 projectileEnergy = minEnergy + rnd1 * (max 341 if (projectileEnergy <= 0.0) projectileEne 342 // Sample the projectile direction 343 normalization = 1.0 / std::sqrt(rnd2 * rnd 344 //***LOOKHERE*** IF true THEN SMEAR DIREC 345 const G4bool isOnSmearingDirection = false 346 //***LOOKHERE*** ELSE USE THIS FIXED DIRE 347 G4ThreeVector aDirection = G4ThreeVector(0 348 if (isOnSmearingDirection) { 349 aDirection = G4ThreeVector(normalization 350 } 351 // Sample the projectile hadron from the v 352 G4int index_projectile = std::trunc(rnd5 * 353 G4String nameProjectile = vecProjectiles[i 354 G4ParticleDefinition* projectile = partTab 355 if (projectileNucleus) { 356 nameProjectile = projectileNucleus->GetP 357 projectile = projectileNucleus; 358 } 359 // Sample the target material from the vec 360 // (Note: the target nucleus will be sampl 361 G4int index_material = std::trunc(rnd6 * n 362 G4String nameMaterial = vecMaterials[index 363 G4Material* material = G4NistManager::Inst 364 if (material == nullptr) { 365 G4cerr << "ERROR: Material " << nameMate 366 return 3; 367 } 368 if (isPrintingEnabled) { 369 G4cout << "\t Collision " << i << " ; pr 370 if (projectileNucleus) { 371 G4cout << " ; Ekin[MeV]/nucleon=" 372 << projectileEnergy 373 / static_cast<G4double>(st 374 } 375 else { 376 G4cout << " ; Ekin[MeV]=" << projectil 377 } 378 G4cout << " ; direction=" << aDirection 379 } 380 381 // Call here the "hadronic generator" to g 382 aChange = theHadronicGenerator->GenerateIn 383 projectile, projectileEnergy, 384 /* ************************************* 385 386 G4int nsec = aChange ? aChange->GetNumberO 387 G4bool isPrintingOfSecondariesEnabled = fa 388 if (isPrintingEnabled) { 389 G4cout << G4endl << "\t --> #secondaries 390 << " ; impactParameter[fm]=" << t 391 << " ; #projectileSpectatorNucleo 392 << theHadronicGenerator->GetNumbe 393 << " ; #targetSpectatorNucleons=" 394 << theHadronicGenerator->GetNumbe 395 << " ; #NNcollisions=" << theHadr 396 if (i % printingGap == 0) { 397 isPrintingOfSecondariesEnabled = true; 398 G4cout << "\t \t List of produced seco 399 } 400 } 401 // Loop over produced secondaries and even 402 for (G4int j = 0; j < nsec; ++j) { 403 const G4DynamicParticle* sec = aChange-> 404 if (isPrintingOfSecondariesEnabled) { 405 G4cout << "\t \t \t j=" << j << "\t" < 406 << "\t p=" << sec->Get4Momentum 407 } 408 409 // Store each secondary. 410 histoManager.ScoreSecondary(sec); 411 412 delete aChange->GetSecondary(j); 413 } 414 if (aChange) aChange->Clear(); 415 histoManager.EndOfEvent(); 416 } 417 418 histoManager.EndOfRun(); 419 420 G4cout << G4endl << " Final random number = 421 << G4endl; 422 423 const auto stop = std::chrono::high_resoluti 424 const auto diff = stop - start; 425 const auto time = 426 static_cast<G4double>(std::chrono::duratio 427 / 1e6; 428 G4cout << G4endl; 429 G4cout << "Processed " << numCollisions << " 430 << " seconds." 431 << " Average: " << std::defaultfloat 432 << G4endl; 433 G4cout << G4endl; 434 435 G4cout << "=== End of test ===" << G4endl; 436 } 437 438 //....oooOO0OOooo........oooOO0OOooo........oo 439