Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 /// \file field/field04/src/F04GlobalField.cc 27 /// \file field/field04/src/F04GlobalField.cc 28 /// \brief Implementation of the F04GlobalFiel 28 /// \brief Implementation of the F04GlobalField class 29 // 29 // 30 30 31 #include "F04GlobalField.hh" << 31 #include <time.h> 32 32 33 #include "F04FocusSolenoid.hh" << 33 #include "Randomize.hh" 34 #include "F04SimpleSolenoid.hh" << 34 #include "G4TransportationManager.hh" 35 35 36 #include "G4CashKarpRKF45.hh" << 37 #include "G4ClassicalRK4.hh" << 38 #include "G4ExplicitEuler.hh" 36 #include "G4ExplicitEuler.hh" 39 #include "G4ImplicitEuler.hh" 37 #include "G4ImplicitEuler.hh" 40 #include "G4SimpleHeum.hh" << 41 #include "G4SimpleRunge.hh" 38 #include "G4SimpleRunge.hh" >> 39 #include "G4SimpleHeum.hh" >> 40 #include "G4ClassicalRK4.hh" >> 41 #include "G4CashKarpRKF45.hh" 42 #include "G4SystemOfUnits.hh" 42 #include "G4SystemOfUnits.hh" 43 #include "G4TransportationManager.hh" << 44 #include "Randomize.hh" << 45 43 46 #include <ctime> << 44 #include "F04GlobalField.hh" >> 45 #include "F04SimpleSolenoid.hh" >> 46 #include "F04FocusSolenoid.hh" 47 47 48 //....oooOO0OOooo........oooOO0OOooo........oo 48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 49 49 50 G4ThreadLocal F04GlobalField* F04GlobalField:: << 50 G4ThreadLocal F04GlobalField* F04GlobalField::fObject = 0; 51 51 52 //....oooOO0OOooo........oooOO0OOooo........oo 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 53 53 54 F04GlobalField::F04GlobalField(F04DetectorCons << 54 F04GlobalField::F04GlobalField(F04DetectorConstruction* det) >> 55 : G4ElectroMagneticField(), >> 56 fMinStep(0.01*mm), fDeltaChord(3.0*mm), >> 57 fDeltaOneStep(0.01*mm), fDeltaIntersection(0.1*mm), >> 58 fEpsMin(2.5e-7*mm), fEpsMax(0.05*mm), >> 59 fEquation(0), fFieldManager(0), >> 60 fFieldPropagator(0), fStepper(0), fChordFinder(0), >> 61 fDetectorConstruction(det) >> 62 //F04GlobalField::F04GlobalField(F04DetectorConstruction* det) >> 63 // : G4MagneticField(), >> 64 // fMinStep(0.01*mm), fDeltaChord(3.0*mm), >> 65 // fDeltaOneStep(0.01*mm), fDeltaIntersection(0.1*mm), >> 66 // fEpsMin(2.5e-7*mm), fEpsMax(0.05*mm), >> 67 // fEquation(0), fFieldManager(0), >> 68 // fFieldPropagator(0), fStepper(0), fChordFinder(0), >> 69 // fDetectorConstruction(det) 55 { 70 { 56 fFieldMessenger = new F04FieldMessenger(this << 71 fFieldMessenger = new F04FieldMessenger(this,det); 57 72 58 fFields = new FieldList(); 73 fFields = new FieldList(); 59 74 >> 75 fStepperType = 4 ; // ClassicalRK4 is default stepper >> 76 60 // set object 77 // set object >> 78 61 fObject = this; 79 fObject = this; >> 80 fFirst = true; >> 81 >> 82 fNfp = 0; >> 83 fFp = NULL; 62 84 63 ConstructField(); 85 ConstructField(); 64 } 86 } 65 87 66 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 67 89 68 F04GlobalField::~F04GlobalField() 90 F04GlobalField::~F04GlobalField() 69 { 91 { 70 Clear(); 92 Clear(); 71 93 72 delete fFields; 94 delete fFields; 73 95 74 delete fFieldMessenger; 96 delete fFieldMessenger; 75 97 76 delete fEquation; << 98 if (fEquation) delete fEquation; 77 delete fStepper; << 99 if (fStepper) delete fStepper; 78 delete fChordFinder; << 100 if (fChordFinder) delete fChordFinder; 79 } 101 } 80 102 81 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 82 104 83 void F04GlobalField::ConstructField() 105 void F04GlobalField::ConstructField() 84 { 106 { 85 Clear(); 107 Clear(); 86 108 87 // Construct equ. of motion of particles th 109 // Construct equ. of motion of particles through B fields 88 // fEquation = new G4Mag_EqRhs(this); << 110 // fEquation = new G4Mag_EqRhs(this); 89 // Construct equ. of motion of particles th 111 // Construct equ. of motion of particles through e.m. fields 90 // fEquation = new G4EqMagElectricField(thi << 112 // fEquation = new G4EqMagElectricField(this); 91 // Construct equ. of motion of particles in 113 // Construct equ. of motion of particles including spin through B fields 92 // fEquation = new G4Mag_SpinEqRhs(this); << 114 // fEquation = new G4Mag_SpinEqRhs(this); 93 // Construct equ. of motion of particles in 115 // Construct equ. of motion of particles including spin through e.m. fields 94 fEquation = new G4EqEMFieldWithSpin(this); 116 fEquation = new G4EqEMFieldWithSpin(this); 95 117 96 // Get transportation, field, and propagato 118 // Get transportation, field, and propagator managers 97 G4TransportationManager* transportManager = << 119 G4TransportationManager* transportManager = >> 120 G4TransportationManager::GetTransportationManager(); 98 121 99 fFieldManager = GetGlobalFieldManager(); 122 fFieldManager = GetGlobalFieldManager(); 100 123 101 fFieldPropagator = transportManager->GetProp 124 fFieldPropagator = transportManager->GetPropagatorInField(); 102 125 103 // Need to SetFieldChangesEnergy to account 126 // Need to SetFieldChangesEnergy to account for a time varying electric 104 // field (r.f. fields) 127 // field (r.f. fields) 105 fFieldManager->SetFieldChangesEnergy(true); 128 fFieldManager->SetFieldChangesEnergy(true); 106 129 107 // Set the field 130 // Set the field 108 fFieldManager->SetDetectorField(this); 131 fFieldManager->SetDetectorField(this); 109 132 110 // Choose a stepper for integration of the 133 // Choose a stepper for integration of the equation of motion 111 SetStepper(); 134 SetStepper(); 112 135 113 // Create a cord finder providing the (glob 136 // Create a cord finder providing the (global field, min step length, 114 // a pointer to the stepper) 137 // a pointer to the stepper) 115 fChordFinder = new G4ChordFinder((G4Magnetic << 138 fChordFinder = new G4ChordFinder((G4MagneticField*)this,fMinStep,fStepper); 116 139 117 // Set accuracy parameters 140 // Set accuracy parameters 118 fChordFinder->SetDeltaChord(fDeltaChord); << 141 fChordFinder->SetDeltaChord( fDeltaChord ); 119 142 120 fFieldManager->SetAccuraciesWithDeltaOneStep 143 fFieldManager->SetAccuraciesWithDeltaOneStep(fDeltaOneStep); 121 144 122 fFieldManager->SetDeltaIntersection(fDeltaIn 145 fFieldManager->SetDeltaIntersection(fDeltaIntersection); 123 146 124 fFieldPropagator->SetMinimumEpsilonStep(fEps 147 fFieldPropagator->SetMinimumEpsilonStep(fEpsMin); 125 fFieldPropagator->SetMaximumEpsilonStep(fEps 148 fFieldPropagator->SetMaximumEpsilonStep(fEpsMax); 126 149 127 G4cout << "Accuracy Parameters:" << 150 G4cout << "Accuracy Parameters:" << 128 << " MinStep=" << fMinStep << " Delta << 151 " MinStep=" << fMinStep << 129 << " DeltaOneStep=" << fDeltaOneStep << 152 " DeltaChord=" << fDeltaChord << 130 G4cout << " " << 153 " DeltaOneStep=" << fDeltaOneStep << G4endl; 131 << " DeltaIntersection=" << fDeltaInt << 154 G4cout << " " << 132 << " EpsMax=" << fEpsMax << G4endl; << 155 " DeltaIntersection=" << fDeltaIntersection << >> 156 " EpsMin=" << fEpsMin << >> 157 " EpsMax=" << fEpsMax << G4endl; 133 158 134 fFieldManager->SetChordFinder(fChordFinder); 159 fFieldManager->SetChordFinder(fChordFinder); 135 160 136 G4double l = 0.0; 161 G4double l = 0.0; 137 G4double B1 = fDetectorConstruction->GetCapt 162 G4double B1 = fDetectorConstruction->GetCaptureMgntB1(); 138 G4double B2 = fDetectorConstruction->GetCapt 163 G4double B2 = fDetectorConstruction->GetCaptureMgntB2(); 139 164 140 G4LogicalVolume* logicCaptureMgnt = fDetecto 165 G4LogicalVolume* logicCaptureMgnt = fDetectorConstruction->GetCaptureMgnt(); 141 G4ThreeVector captureMgntCenter = fDetectorC << 166 G4ThreeVector captureMgntCenter = >> 167 fDetectorConstruction->GetCaptureMgntCenter(); 142 168 143 auto focusSolenoid = new F04FocusSolenoid(B1 << 169 F04FocusSolenoid* focusSolenoid = 144 focusSolenoid->SetHalf(true); << 170 new F04FocusSolenoid(B1, B2, l, logicCaptureMgnt,captureMgntCenter); >> 171 focusSolenoid -> SetHalf(true); 145 172 146 G4double B = fDetectorConstruction->GetTrans 173 G4double B = fDetectorConstruction->GetTransferMgntB(); 147 174 148 G4LogicalVolume* logicTransferMgnt = fDetect << 175 G4LogicalVolume* logicTransferMgnt = 149 G4ThreeVector transferMgntCenter = fDetector << 176 fDetectorConstruction->GetTransferMgnt(); >> 177 G4ThreeVector transferMgntCenter = >> 178 fDetectorConstruction->GetTransferMgntCenter(); 150 179 151 auto simpleSolenoid = new F04SimpleSolenoid( << 180 F04SimpleSolenoid* simpleSolenoid = >> 181 new F04SimpleSolenoid(B, l, logicTransferMgnt,transferMgntCenter); 152 182 153 simpleSolenoid->SetColor("1,0,1"); 183 simpleSolenoid->SetColor("1,0,1"); 154 simpleSolenoid->SetColor("0,1,1"); 184 simpleSolenoid->SetColor("0,1,1"); 155 simpleSolenoid->SetMaxStep(1.5 * mm); << 185 simpleSolenoid->SetMaxStep(1.5*mm); 156 simpleSolenoid->SetMaxStep(2.5 * mm); << 186 simpleSolenoid->SetMaxStep(2.5*mm); 157 187 158 if (fFields) { 188 if (fFields) { 159 if (fFields->size() > 0) { << 189 if (fFields->size()>0) { 160 FieldList::iterator i; << 190 FieldList::iterator i; 161 for (i = fFields->begin(); i != fFields- << 191 for (i=fFields->begin(); i!=fFields->end(); ++i){ 162 (*i)->Construct(); << 192 (*i)->Construct(); 163 } << 193 } 164 } << 194 } 165 } 195 } 166 } 196 } 167 197 168 //....oooOO0OOooo........oooOO0OOooo........oo 198 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 169 199 170 F04GlobalField* F04GlobalField::GetObject(F04D 200 F04GlobalField* F04GlobalField::GetObject(F04DetectorConstruction* det) 171 { 201 { 172 if (!fObject) new F04GlobalField(det); 202 if (!fObject) new F04GlobalField(det); 173 return fObject; 203 return fObject; 174 } 204 } 175 205 176 //....oooOO0OOooo........oooOO0OOooo........oo 206 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 177 207 178 F04GlobalField* F04GlobalField::GetObject() 208 F04GlobalField* F04GlobalField::GetObject() 179 { 209 { 180 if (fObject) return fObject; 210 if (fObject) return fObject; 181 return nullptr; << 211 return NULL; 182 } 212 } 183 213 184 //....oooOO0OOooo........oooOO0OOooo........oo 214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 185 215 186 void F04GlobalField::SetStepper() 216 void F04GlobalField::SetStepper() 187 { 217 { 188 delete fStepper; << 218 if(fStepper) delete fStepper; 189 219 190 switch (fStepperType) { << 220 switch ( fStepperType ) >> 221 { 191 case 0: 222 case 0: 192 // fStepper = new G4ExplicitEuler( << 223 // fStepper = new G4ExplicitEuler( fEquation, 8 ); // no spin tracking 193 fStepper = new G4ExplicitEuler(fEquation << 224 fStepper = new G4ExplicitEuler( fEquation, 12 ); // with spin tracking 194 G4cout << "G4ExplicitEuler is called" << 225 G4cout << "G4ExplicitEuler is called" << G4endl; 195 break; 226 break; 196 case 1: 227 case 1: 197 // fStepper = new G4ImplicitEuler( << 228 // fStepper = new G4ImplicitEuler( fEquation, 8 ); // no spin tracking 198 fStepper = new G4ImplicitEuler(fEquation << 229 fStepper = new G4ImplicitEuler( fEquation, 12 ); // with spin tracking 199 G4cout << "G4ImplicitEuler is called" << 230 G4cout << "G4ImplicitEuler is called" << G4endl; 200 break; 231 break; 201 case 2: 232 case 2: 202 // fStepper = new G4SimpleRunge( fE << 233 // fStepper = new G4SimpleRunge( fEquation, 8 ); // no spin tracking 203 fStepper = new G4SimpleRunge(fEquation, << 234 fStepper = new G4SimpleRunge( fEquation, 12 ); // with spin tracking 204 G4cout << "G4SimpleRunge is called" << G 235 G4cout << "G4SimpleRunge is called" << G4endl; 205 break; 236 break; 206 case 3: 237 case 3: 207 // fStepper = new G4SimpleHeum( fEq << 238 // fStepper = new G4SimpleHeum( fEquation, 8 ); // no spin tracking 208 fStepper = new G4SimpleHeum(fEquation, 1 << 239 fStepper = new G4SimpleHeum( fEquation, 12 ); // with spin tracking 209 G4cout << "G4SimpleHeum is called" << G4 240 G4cout << "G4SimpleHeum is called" << G4endl; 210 break; 241 break; 211 case 4: 242 case 4: 212 // fStepper = new G4ClassicalRK4( f << 243 // fStepper = new G4ClassicalRK4( fEquation, 8 ); // no spin tracking 213 fStepper = new G4ClassicalRK4(fEquation, << 244 fStepper = new G4ClassicalRK4( fEquation, 12 ); // with spin tracking 214 G4cout << "G4ClassicalRK4 (default) is c 245 G4cout << "G4ClassicalRK4 (default) is called" << G4endl; 215 break; 246 break; 216 case 5: 247 case 5: 217 // fStepper = new G4CashKarpRKF45( << 248 // fStepper = new G4CashKarpRKF45( fEquation, 8 ); // no spin tracking 218 fStepper = new G4CashKarpRKF45(fEquation << 249 fStepper = new G4CashKarpRKF45( fEquation, 12 ); // with spin tracking 219 G4cout << "G4CashKarpRKF45 is called" << 250 G4cout << "G4CashKarpRKF45 is called" << G4endl; 220 break; 251 break; 221 default: << 252 default: fStepper = 0; 222 fStepper = nullptr; << 223 } 253 } 224 } 254 } 225 255 226 //....oooOO0OOooo........oooOO0OOooo........oo 256 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 227 257 228 G4FieldManager* F04GlobalField::GetGlobalField 258 G4FieldManager* F04GlobalField::GetGlobalFieldManager() 229 { 259 { 230 return G4TransportationManager::GetTransport << 260 return G4TransportationManager::GetTransportationManager() >> 261 ->GetFieldManager(); 231 } 262 } 232 263 233 //....oooOO0OOooo........oooOO0OOooo........oo 264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 234 265 235 void F04GlobalField::GetFieldValue(const G4dou 266 void F04GlobalField::GetFieldValue(const G4double* point, G4double* field) const 236 { 267 { 237 // NOTE: this routine dominates the CPU time 268 // NOTE: this routine dominates the CPU time for tracking. 238 // Using the simple array fFp[] instead of f << 269 // Using the simple array fFp[] instead of fields[] 239 // directly sped it up 270 // directly sped it up 240 271 241 field[0] = field[1] = field[2] = field[3] = 272 field[0] = field[1] = field[2] = field[3] = field[4] = field[5] = 0.0; 242 273 243 // protect against Geant4 bug that calls us 274 // protect against Geant4 bug that calls us with point[] NaN. 244 if (point[0] != point[0]) return; << 275 if(point[0] != point[0]) return; 245 276 246 // (can't use fNfp or fFp, as they may chang 277 // (can't use fNfp or fFp, as they may change) 247 if (fFirst) ((F04GlobalField*)this)->SetupAr << 278 if (fFirst) ((F04GlobalField*)this)->SetupArray(); // (cast away const) 248 279 249 for (int i = 0; i < fNfp; ++i) { << 280 for (int i=0; i<fNfp; ++i) { 250 const F04ElementField* p = fFp[i]; << 281 const F04ElementField* p = fFp[i]; 251 if (p->IsInBoundingBox(point)) { << 282 if (p->IsInBoundingBox(point)) { 252 p->AddFieldValue(point, field); << 283 p->AddFieldValue(point,field); 253 } << 284 } 254 } 285 } >> 286 255 } 287 } 256 288 257 //....oooOO0OOooo........oooOO0OOooo........oo 289 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 258 290 259 void F04GlobalField::Clear() 291 void F04GlobalField::Clear() 260 { 292 { 261 if (fFields) { 293 if (fFields) { 262 if (fFields->size() > 0) { << 294 if (fFields->size()>0) { 263 FieldList::iterator i; << 295 FieldList::iterator i; 264 for (i = fFields->begin(); i != fFields- << 296 for (i=fFields->begin(); i!=fFields->end(); ++i) delete *i; 265 delete *i; << 297 fFields->clear(); 266 fFields->clear(); << 298 } 267 } << 268 } 299 } 269 300 270 delete[] fFp; << 301 if (fFp) { delete [] fFp; } 271 fFirst = true; 302 fFirst = true; 272 fNfp = 0; 303 fNfp = 0; 273 fFp = nullptr; << 304 fFp = NULL; 274 } 305 } 275 306 276 //....oooOO0OOooo........oooOO0OOooo........oo 307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 277 308 278 void F04GlobalField::SetupArray() 309 void F04GlobalField::SetupArray() 279 { 310 { 280 fFirst = false; 311 fFirst = false; 281 fNfp = fFields->size(); 312 fNfp = fFields->size(); 282 fFp = new const F04ElementField*[fNfp + 1]; << 313 fFp = new const F04ElementField* [fNfp+1]; // add 1 so it's never 0 283 for (int i = 0; i < fNfp; ++i) << 314 for (int i=0; i<fNfp; ++i) fFp[i] = (*fFields)[i]; 284 fFp[i] = (*fFields)[i]; << 285 } 315 } 286 316