Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 /// \file field/field02/src/F02DetectorConstru << 27 /// \brief Implementation of the F02DetectorCo << 28 // 23 // >> 24 // $Id: F02DetectorConstruction.cc,v 1.10 2003/11/25 14:51:15 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-07-00-patch-01 $ 29 // 26 // 30 // << 27 // 31 // << 32 //....oooOO0OOooo........oooOO0OOooo........oo << 33 //....oooOO0OOooo........oooOO0OOooo........oo << 34 28 35 #include "F02DetectorConstruction.hh" 29 #include "F02DetectorConstruction.hh" >> 30 #include "F02DetectorMessenger.hh" 36 31 37 #include "F02CalorimeterSD.hh" 32 #include "F02CalorimeterSD.hh" 38 #include "F02DetectorMessenger.hh" << 33 #include "F02ElectricFieldSetup.hh" >> 34 >> 35 #include "G4VClusterModel.hh" >> 36 #include "G4PAIclusterModel.hh" 39 37 40 #include "G4AutoDelete.hh" << 41 #include "G4GeometryManager.hh" << 42 #include "G4FieldBuilder.hh" << 43 #include "G4LogicalVolume.hh" << 44 #include "G4LogicalVolumeStore.hh" << 45 #include "G4Material.hh" 38 #include "G4Material.hh" >> 39 #include "G4Tubs.hh" >> 40 #include "G4LogicalVolume.hh" 46 #include "G4PVPlacement.hh" 41 #include "G4PVPlacement.hh" 47 #include "G4PhysicalConstants.hh" << 42 #include "G4UniformMagField.hh" 48 #include "G4PhysicalVolumeStore.hh" << 43 #include "G4FieldManager.hh" 49 #include "G4RunManager.hh" << 44 #include "G4TransportationManager.hh" 50 #include "G4SDManager.hh" 45 #include "G4SDManager.hh" >> 46 #include "G4RunManager.hh" >> 47 >> 48 #include "G4GeometryManager.hh" >> 49 #include "G4PhysicalVolumeStore.hh" >> 50 #include "G4LogicalVolumeStore.hh" 51 #include "G4SolidStore.hh" 51 #include "G4SolidStore.hh" 52 #include "G4SystemOfUnits.hh" << 53 #include "G4Tubs.hh" << 54 #include "G4UniformElectricField.hh" << 55 52 56 //....oooOO0OOooo........oooOO0OOooo........oo << 53 #include "G4ios.hh" >> 54 >> 55 ///////////////////////////////////////////////////////////////////////////// >> 56 // >> 57 // 57 58 58 F02DetectorConstruction::F02DetectorConstructi 59 F02DetectorConstruction::F02DetectorConstruction() >> 60 : solidWorld(0), logicWorld(0), physiWorld(0), >> 61 solidAbsorber(0),logicAbsorber(0), physiAbsorber(0), >> 62 fEmFieldSetup(0), calorimeterSD(0), >> 63 AbsorberMaterial(0), worldchanged(false), WorldMaterial(0) 59 { 64 { 60 // create commands for interactive definitio << 65 // default parameter values of the calorimeter 61 66 62 fDetectorMessenger = new F02DetectorMessenge << 67 WorldSizeZ = 80.*cm; >> 68 WorldSizeR = 20.*cm; 63 69 64 // create field builder << 70 AbsorberThickness = 40.0*mm; 65 // this will create commands for field confi << 71 66 G4FieldBuilder::Instance(); << 72 AbsorberRadius = 10.*cm; 67 // G4FieldBuilder::Instance()->SetVerboseLev << 73 zAbsorber = 36.*cm ; 68 << 74 69 // create materials << 75 // create commands for interactive definition of the calorimeter >> 76 >> 77 detectorMessenger = new F02DetectorMessenger(this); >> 78 70 DefineMaterials(); 79 DefineMaterials(); >> 80 >> 81 fEmFieldSetup = new F02ElectricFieldSetup() ; 71 } 82 } 72 83 73 //....oooOO0OOooo........oooOO0OOooo........oo << 84 ////////////////////////////////////////////////////////////////////////// >> 85 // >> 86 // 74 87 75 F02DetectorConstruction::~F02DetectorConstruct 88 F02DetectorConstruction::~F02DetectorConstruction() 76 { << 89 { 77 delete fDetectorMessenger; << 90 delete detectorMessenger; >> 91 delete fEmFieldSetup ; 78 } 92 } 79 93 80 //....oooOO0OOooo........oooOO0OOooo........oo << 94 ////////////////////////////////////////////////////////////////////////// >> 95 // >> 96 // 81 97 82 G4VPhysicalVolume* F02DetectorConstruction::Co 98 G4VPhysicalVolume* F02DetectorConstruction::Construct() 83 { 99 { 84 return ConstructCalorimeter(); 100 return ConstructCalorimeter(); 85 } 101 } 86 102 87 //....oooOO0OOooo........oooOO0OOooo........oo << 103 ////////////////////////////////////////////////////////////////////////////// >> 104 // >> 105 // 88 106 89 void F02DetectorConstruction::DefineMaterials( 107 void F02DetectorConstruction::DefineMaterials() 90 { << 108 { 91 // This function illustrates the possible wa << 109 //This function illustrates the possible ways to define materials 92 << 110 93 G4String name, symbol; // a=mass of a mole; << 111 G4String name, symbol ; // a=mass of a mole; 94 G4double a, z, density; // z=mean number of << 112 G4double a, z, density ; // z=mean number of protons; 95 G4int nel; 113 G4int nel; 96 G4int ncomponents; 114 G4int ncomponents; 97 G4double fractionmass, pressure, temperature 115 G4double fractionmass, pressure, temperature; 98 116 99 // << 117 // 100 // define Elements << 118 // define Elements 101 // << 119 // 102 120 103 a = 1.01 * g / mole; << 121 a = 1.01*g/mole; 104 auto elH = new G4Element(name = "Hydrogen", << 122 G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); 105 123 106 a = 12.01 * g / mole; << 124 a = 12.01*g/mole; 107 auto elC = new G4Element(name = "Carbon", sy << 125 G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a); 108 126 109 a = 14.01 * g / mole; << 127 a = 14.01*g/mole; 110 auto elN = new G4Element(name = "Nitrogen", << 128 G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); 111 129 112 a = 16.00 * g / mole; << 130 a = 16.00*g/mole; 113 auto elO = new G4Element(name = "Oxygen", sy << 131 G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); 114 132 115 a = 39.948 * g / mole; << 133 a = 39.948*g/mole; 116 auto elAr = new G4Element(name = "Argon", sy << 134 G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); 117 135 118 // << 136 // 119 // define simple materials << 137 // define simple materials 120 // << 138 // 121 139 122 // Mylar 140 // Mylar 123 141 124 density = 1.39 * g / cm3; << 142 density = 1.39*g/cm3; 125 auto mylar = new G4Material(name = "Mylar", << 143 G4Material* Mylar = new G4Material(name="Mylar", density, nel=3); 126 mylar->AddElement(elO, 2); << 144 Mylar->AddElement(elO,2); 127 mylar->AddElement(elC, 5); << 145 Mylar->AddElement(elC,5); 128 mylar->AddElement(elH, 4); << 146 Mylar->AddElement(elH,4); 129 147 130 // Polypropelene 148 // Polypropelene 131 149 132 auto CH2 = new G4Material("Polypropelene", 0 << 150 G4Material* CH2 = new G4Material ("Polypropelene" , 0.91*g/cm3, 2); 133 CH2->AddElement(elH, 2); << 151 CH2->AddElement(elH,2); 134 CH2->AddElement(elC, 1); << 152 CH2->AddElement(elC,1); 135 153 136 // Krypton as detector gas, STP 154 // Krypton as detector gas, STP 137 155 138 density = 3.700 * mg / cm3; << 156 density = 3.700*mg/cm3 ; 139 a = 83.80 * g / mole; << 157 a = 83.80*g/mole ; 140 auto Kr = new G4Material(name = "Kr", z = 36 << 158 G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); 141 159 142 // Dry air (average composition) 160 // Dry air (average composition) 143 161 144 density = 1.7836 * mg / cm3; // STP << 162 density = 1.7836*mg/cm3 ; // STP 145 auto argon = new G4Material(name = "Argon", << 163 G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); 146 argon->AddElement(elAr, 1); << 164 Argon->AddElement(elAr, 1); 147 << 165 148 density = 1.25053 * mg / cm3; // STP << 166 density = 1.25053*mg/cm3 ; // STP 149 auto nitrogen = new G4Material(name = "N2", << 167 G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); 150 nitrogen->AddElement(elN, 2); << 168 Nitrogen->AddElement(elN, 2); 151 << 169 152 density = 1.4289 * mg / cm3; // STP << 170 density = 1.4289*mg/cm3 ; // STP 153 auto oxygen = new G4Material(name = "O2", de << 171 G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); 154 oxygen->AddElement(elO, 2); << 172 Oxygen->AddElement(elO, 2); >> 173 155 174 156 density = 1.2928 * mg / cm3; // STP << 175 density = 1.2928*mg/cm3 ; // STP 157 176 158 temperature = STP_Temperature; 177 temperature = STP_Temperature; 159 pressure = 1.0e-0 * STP_Pressure; << 178 pressure = 1.0e-0*STP_Pressure; 160 179 161 auto air = << 180 G4Material* Air = new G4Material(name="Air" , density, ncomponents=3, 162 new G4Material(name = "Air", density, ncom << 181 kStateGas,temperature,pressure); 163 air->AddMaterial(nitrogen, fractionmass = 0. << 182 Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ; 164 air->AddMaterial(oxygen, fractionmass = 0.23 << 183 Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ; 165 air->AddMaterial(argon, fractionmass = 0.012 << 184 Air->AddMaterial( Argon, fractionmass = 0.0128 ) ; 166 185 167 // Xenon as detector gas, STP 186 // Xenon as detector gas, STP 168 187 169 density = 5.858 * mg / cm3; << 188 density = 5.858*mg/cm3 ; 170 a = 131.29 * g / mole; << 189 a = 131.29*g/mole ; 171 auto Xe = new G4Material(name = "Xenon", z = << 190 G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); 172 191 173 // Carbon dioxide, STP 192 // Carbon dioxide, STP 174 193 175 density = 1.842 * mg / cm3; << 194 density = 1.977*mg/cm3; 176 auto CarbonDioxide = new G4Material(name = " << 195 G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2); 177 CarbonDioxide->AddElement(elC, 1); << 196 CarbonDioxide->AddElement(elC,1); 178 CarbonDioxide->AddElement(elO, 2); << 197 CarbonDioxide->AddElement(elO,2); 179 198 180 // 80% Xe + 20% CO2, STP 199 // 80% Xe + 20% CO2, STP 181 200 182 density = 5.0818 * mg / cm3; << 201 density = 5.0818*mg/cm3 ; 183 auto Xe20CO2 = new G4Material(name = "Xe20CO << 202 G4Material* Xe20CO2 = new G4Material(name="Xe20CO2" , density, ncomponents=2); 184 Xe20CO2->AddMaterial(Xe, fractionmass = 0.92 << 203 Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ; 185 Xe20CO2->AddMaterial(CarbonDioxide, fraction << 204 Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ; 186 205 187 // 80% Kr + 20% CO2, STP 206 // 80% Kr + 20% CO2, STP 188 207 189 density = 3.601 * mg / cm3; << 208 density = 3.601*mg/cm3 ; 190 auto Kr20CO2 = new G4Material(name = "Kr20CO << 209 G4Material* Kr20CO2 = new G4Material(name="Kr20CO2" , density, 191 Kr20CO2->AddMaterial(Kr, fractionmass = 0.89 << 210 ncomponents=2); 192 Kr20CO2->AddMaterial(CarbonDioxide, fraction << 211 Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ; >> 212 Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ; 193 213 194 G4cout << *(G4Material::GetMaterialTable()) << 195 214 196 // default materials of the calorimeter << 215 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 197 216 198 fAbsorberMaterial = Kr20CO2; // XeCO2CF4; << 217 AbsorberMaterial = Kr20CO2 ; // XeCO2CF4 ; 199 218 200 fWorldMaterial = air; << 219 WorldMaterial = Air ; 201 } 220 } 202 221 203 //....oooOO0OOooo........oooOO0OOooo........oo << 222 ///////////////////////////////////////////////////////////////////////// 204 << 223 // >> 224 // >> 225 205 G4VPhysicalVolume* F02DetectorConstruction::Co 226 G4VPhysicalVolume* F02DetectorConstruction::ConstructCalorimeter() 206 { 227 { >> 228 // complete the Calor parameters definition and Print >> 229 >> 230 ComputeCalorParameters(); >> 231 PrintCalorParameters(); >> 232 207 // Cleanup old geometry 233 // Cleanup old geometry 208 234 209 if (fPhysiWorld) { << 235 if (physiWorld) >> 236 { 210 G4GeometryManager::GetInstance()->OpenGeom 237 G4GeometryManager::GetInstance()->OpenGeometry(); 211 G4PhysicalVolumeStore::GetInstance()->Clea 238 G4PhysicalVolumeStore::GetInstance()->Clean(); 212 G4LogicalVolumeStore::GetInstance()->Clean 239 G4LogicalVolumeStore::GetInstance()->Clean(); 213 G4SolidStore::GetInstance()->Clean(); 240 G4SolidStore::GetInstance()->Clean(); 214 } 241 } 215 242 216 // complete the Calor parameters definition << 217 << 218 ComputeCalorParameters(); << 219 PrintCalorParameters(); << 220 << 221 // World 243 // World 222 << 244 223 fSolidWorld = new G4Tubs("World", // its na << 245 solidWorld = new G4Tubs("World", //its name 224 0., fWorldSizeR, fW << 246 0.,WorldSizeR,WorldSizeZ/2.,0.,twopi); //its size 225 << 247 226 fLogicWorld = new G4LogicalVolume(fSolidWorl << 248 logicWorld = new G4LogicalVolume(solidWorld, //its solid 227 fWorldMate << 249 WorldMaterial, //its material 228 "World"); << 250 "World"); //its name 229 << 251 230 fPhysiWorld = new G4PVPlacement(nullptr, // << 252 physiWorld = new G4PVPlacement(0, //no rotation 231 G4ThreeVecto << 253 G4ThreeVector(), //at (0,0,0) 232 "World", // << 254 "World", //its name 233 fLogicWorld, << 255 logicWorld, //its logical volume 234 nullptr, // << 256 0, //its mother volume 235 false, // n << 257 false, //no boolean operation 236 0); // copy << 258 0); //copy number 237 // Absorber 259 // Absorber 238 260 239 fSolidAbsorber = new G4Tubs("Absorber", 0., << 261 if (AbsorberThickness > 0.) 240 << 262 { 241 fLogicAbsorber = new G4LogicalVolume(fSolidA << 263 solidAbsorber = new G4Tubs("Absorber", 242 << 264 0.,AbsorberRadius,AbsorberThickness/2.,0.,twopi); 243 fPhysiAbsorber = new G4PVPlacement(nullptr, << 265 244 fLogicAbs << 266 logicAbsorber = new G4LogicalVolume(solidAbsorber, >> 267 AbsorberMaterial, >> 268 "Absorber"); >> 269 >> 270 physiAbsorber = new G4PVPlacement(0, >> 271 G4ThreeVector(0.,0.,zAbsorber), >> 272 "Absorber", >> 273 logicAbsorber, >> 274 physiWorld, >> 275 false, >> 276 0); >> 277 } >> 278 >> 279 // Sensitive Detectors: Absorber >> 280 >> 281 G4SDManager* SDman = G4SDManager::GetSDMpointer(); >> 282 >> 283 if(!calorimeterSD) >> 284 { >> 285 calorimeterSD = new F02CalorimeterSD("CalorSD",this); >> 286 SDman->AddNewDetector( calorimeterSD ); >> 287 } >> 288 if (logicAbsorber) logicAbsorber->SetSensitiveDetector(calorimeterSD); 245 289 246 return fPhysiWorld; << 290 return physiWorld; 247 } 291 } 248 292 249 //....oooOO0OOooo........oooOO0OOooo........oo << 293 //////////////////////////////////////////////////////////////////////////// >> 294 // >> 295 // 250 296 251 void F02DetectorConstruction::PrintCalorParame 297 void F02DetectorConstruction::PrintCalorParameters() 252 { 298 { 253 G4cout << "\n The WORLD is made of " << f << 299 G4cout << "\n The WORLD is made of " 254 << fWorldMaterial->GetName(); << 300 << WorldSizeZ/mm << "mm of " << WorldMaterial->GetName() ; 255 G4cout << ", the transverse size (R) of the << 301 G4cout << ", the transverse size (R) of the world is " << WorldSizeR/mm << " mm. " << G4endl; 256 G4cout << " The ABSORBER is made of " << fAb << 302 G4cout << " The ABSORBER is made of " 257 << fAbsorberMaterial->GetName(); << 303 << AbsorberThickness/mm << "mm of " << AbsorberMaterial->GetName() ; 258 G4cout << ", the transverse size (R) is " << << 304 G4cout << ", the transverse size (R) is " << AbsorberRadius/mm << " mm. " << G4endl; 259 G4cout << " Z position of the (middle of the << 305 G4cout << " Z position of the (middle of the) absorber " << zAbsorber/mm << " mm." << G4endl; 260 G4cout << G4endl; 306 G4cout << G4endl; 261 } 307 } 262 308 263 //....oooOO0OOooo........oooOO0OOooo........oo << 309 /////////////////////////////////////////////////////////////////////////// >> 310 // >> 311 // 264 312 265 void F02DetectorConstruction::SetAbsorberMater 313 void F02DetectorConstruction::SetAbsorberMaterial(G4String materialChoice) 266 { 314 { 267 // get the pointer to the material table 315 // get the pointer to the material table 268 const G4MaterialTable* theMaterialTable = G4 316 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 269 317 270 // search the material by its name << 318 // search the material by its name 271 G4Material* material; << 319 G4Material* pttoMaterial; 272 for (size_t j = 0; j < theMaterialTable->siz << 320 for (size_t J=0 ; J<theMaterialTable->size() ; J++) 273 material = (*theMaterialTable)[j]; << 321 { pttoMaterial = (*theMaterialTable)[J]; 274 if (material->GetName() == materialChoice) << 322 if(pttoMaterial->GetName() == materialChoice) 275 fAbsorberMaterial = material; << 323 { 276 fLogicAbsorber->SetMaterial(material); << 324 AbsorberMaterial = pttoMaterial; 277 G4RunManager::GetRunManager()->PhysicsHa << 325 logicAbsorber->SetMaterial(pttoMaterial); 278 } << 326 } 279 } << 327 } 280 } 328 } 281 329 282 //....oooOO0OOooo........oooOO0OOooo........oo << 330 //////////////////////////////////////////////////////////////////////////// >> 331 // >> 332 // 283 333 284 void F02DetectorConstruction::SetWorldMaterial 334 void F02DetectorConstruction::SetWorldMaterial(G4String materialChoice) 285 { 335 { 286 // get the pointer to the material table 336 // get the pointer to the material table 287 const G4MaterialTable* theMaterialTable = G4 337 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 288 338 289 // search the material by its name << 339 // search the material by its name 290 G4Material* material; << 340 G4Material* pttoMaterial; 291 for (size_t j = 0; j < theMaterialTable->siz << 341 for (size_t J=0 ; J<theMaterialTable->size() ; J++) 292 material = (*theMaterialTable)[j]; << 342 { pttoMaterial = (*theMaterialTable)[J]; 293 if (material->GetName() == materialChoice) << 343 if(pttoMaterial->GetName() == materialChoice) 294 fWorldMaterial = material; << 344 { 295 fLogicWorld->SetMaterial(material); << 345 WorldMaterial = pttoMaterial; 296 G4RunManager::GetRunManager()->PhysicsHa << 346 logicWorld->SetMaterial(pttoMaterial); 297 } << 347 } 298 } << 348 } 299 } 349 } 300 350 301 //....oooOO0OOooo........oooOO0OOooo........oo << 351 /////////////////////////////////////////////////////////////////////////// >> 352 // >> 353 // 302 354 303 void F02DetectorConstruction::SetAbsorberThick 355 void F02DetectorConstruction::SetAbsorberThickness(G4double val) 304 { 356 { 305 // change Absorber thickness and recompute t 357 // change Absorber thickness and recompute the calorimeter parameters 306 fAbsorberThickness = val; << 358 AbsorberThickness = val; 307 ComputeCalorParameters(); 359 ComputeCalorParameters(); 308 G4RunManager::GetRunManager()->GeometryHasBe << 360 } 309 } << 310 361 311 //....oooOO0OOooo........oooOO0OOooo........oo << 362 ///////////////////////////////////////////////////////////////////////////// >> 363 // >> 364 // 312 365 313 void F02DetectorConstruction::SetAbsorberRadiu 366 void F02DetectorConstruction::SetAbsorberRadius(G4double val) 314 { 367 { 315 // change the transverse size and recompute 368 // change the transverse size and recompute the calorimeter parameters 316 fAbsorberRadius = val; << 369 AbsorberRadius = val; 317 ComputeCalorParameters(); 370 ComputeCalorParameters(); 318 G4RunManager::GetRunManager()->GeometryHasBe << 371 } 319 } << 320 372 321 //....oooOO0OOooo........oooOO0OOooo........oo << 373 //////////////////////////////////////////////////////////////////////////// >> 374 // >> 375 // 322 376 323 void F02DetectorConstruction::SetWorldSizeZ(G4 377 void F02DetectorConstruction::SetWorldSizeZ(G4double val) 324 { 378 { 325 fWorldChanged = true; << 379 worldchanged=true; 326 fWorldSizeZ = val; << 380 WorldSizeZ = val; 327 ComputeCalorParameters(); 381 ComputeCalorParameters(); 328 G4RunManager::GetRunManager()->GeometryHasBe << 382 } 329 } << 330 383 331 //....oooOO0OOooo........oooOO0OOooo........oo << 384 /////////////////////////////////////////////////////////////////////////// >> 385 // >> 386 // 332 387 333 void F02DetectorConstruction::SetWorldSizeR(G4 388 void F02DetectorConstruction::SetWorldSizeR(G4double val) 334 { 389 { 335 fWorldChanged = true; << 390 worldchanged=true; 336 fWorldSizeR = val; << 391 WorldSizeR = val; 337 ComputeCalorParameters(); 392 ComputeCalorParameters(); 338 G4RunManager::GetRunManager()->GeometryHasBe << 393 } 339 } << 340 394 341 //....oooOO0OOooo........oooOO0OOooo........oo << 395 ////////////////////////////////////////////////////////////////////////////// >> 396 // >> 397 // 342 398 343 void F02DetectorConstruction::SetAbsorberZpos( 399 void F02DetectorConstruction::SetAbsorberZpos(G4double val) 344 { 400 { 345 fZAbsorber = val; << 401 zAbsorber = val; 346 ComputeCalorParameters(); 402 ComputeCalorParameters(); 347 G4RunManager::GetRunManager()->GeometryHasBe << 403 } 348 } << 349 << 350 //....oooOO0OOooo........oooOO0OOooo........oo << 351 404 352 void F02DetectorConstruction::SetFieldValue(G4 << 353 { << 354 fFieldVector = value; << 355 << 356 G4UniformElectricField* elField = nullptr; << 357 if (fFieldVector != G4ThreeVector(0.,0.,0.)) << 358 elField = new G4UniformElectricField(fFiel << 359 } << 360 << 361 // Set field to the field builder << 362 auto fieldBuilder = G4FieldBuilder::Instance << 363 fieldBuilder->SetGlobalField(elField); << 364 } << 365 405 366 //....oooOO0OOooo........oooOO0OOooo........oo << 406 //////////////////////////////////////////////////////////////////////////// 367 << 407 // 368 void F02DetectorConstruction::ConstructSDandFi << 408 // >> 409 >> 410 void F02DetectorConstruction::UpdateGeometry() 369 { 411 { 370 // Sensitive Detectors: Absorber << 412 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter()); 371 << 372 if (!fCalorimeterSD.Get()) { << 373 auto calorimeterSD = new F02CalorimeterSD( << 374 fCalorimeterSD.Put(calorimeterSD); << 375 } << 376 G4SDManager::GetSDMpointer()->AddNewDetector << 377 SetSensitiveDetector(fLogicAbsorber, fCalori << 378 << 379 // Create detector field << 380 SetFieldValue(fFieldVector); << 381 << 382 // Construct all Geant4 field objects << 383 auto fieldBuilder = G4FieldBuilder::Instance << 384 fieldBuilder->SetFieldType(kElectroMagnetic) << 385 fieldBuilder->ConstructFieldSetup(); << 386 } 413 } 387 414 388 //....oooOO0OOooo........oooOO0OOooo........oo << 415 // >> 416 // >> 417 //////////////////////////////////////////////////////////////////////////// 389 418