Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm7/src/G4Screen 26 /// \file electromagnetic/TestEm7/src/G4ScreenedNuclearRecoil.cc 27 /// \brief Implementation of the G4ScreenedNuc 27 /// \brief Implementation of the G4ScreenedNuclearRecoil class 28 // 28 // 29 // 29 // >> 30 // G4ScreenedNuclearRecoil.cc,v 1.57 2008/05/07 11:51:26 marcus Exp >> 31 // GEANT4 tag >> 32 // 30 // 33 // 31 // Class Description 34 // Class Description 32 // Process for screened electromagnetic nuclea << 35 // Process for screened electromagnetic nuclear elastic scattering; 33 // Physics comes from: 36 // Physics comes from: 34 // Marcus H. Mendenhall and Robert A. Weller, << 37 // Marcus H. Mendenhall and Robert A. Weller, 35 // "Algorithms for the rapid computation o << 38 // "Algorithms for the rapid computation of classical cross 36 // sections for screened Coulomb collision 39 // sections for screened Coulomb collisions " 37 // Nuclear Instruments and Methods in Phy << 40 // Nuclear Instruments and Methods in Physics Research B58 (1991) 11-17 38 // The only input required is a screening func 41 // The only input required is a screening function phi(r/a) which is the ratio 39 // of the actual interatomic potential for two << 42 // of the actual interatomic potential for two atoms with atomic numbers Z1 and Z2, 40 // numbers Z1 and Z2, << 43 // to the unscreened potential Z1*Z2*e^2/r where e^2 is elm_coupling in Geant4 units 41 // to the unscreened potential Z1*Z2*e^2/r whe << 42 // Geant4 units << 43 // 44 // 44 // First version, April 2004, Marcus H. Menden 45 // First version, April 2004, Marcus H. Mendenhall, Vanderbilt University 45 // 46 // 46 // 5 May, 2004, Marcus Mendenhall 47 // 5 May, 2004, Marcus Mendenhall 47 // Added an option for enhancing hard collisio << 48 // Added an option for enhancing hard collisions statistically, to allow 48 // backscattering calculations to be carried o 49 // backscattering calculations to be carried out with much improved event rates, 49 // without distorting the multiple-scattering 50 // without distorting the multiple-scattering broadening too much. 50 // the method SetCrossSectionHardening(G4doubl << 51 // the method SetCrossSectionHardening(G4double fraction, G4double HardeningFactor) 51 // Hardeni << 52 // sets what fraction of the events will be ra 52 // sets what fraction of the events will be randomly hardened, 53 // and the factor by which the impact area is 53 // and the factor by which the impact area is reduced for such selected events. 54 // 54 // 55 // 21 November, 2004, Marcus Mendenhall 55 // 21 November, 2004, Marcus Mendenhall 56 // added static_nucleus to IsApplicable 56 // added static_nucleus to IsApplicable 57 // << 57 // 58 // 7 December, 2004, Marcus Mendenhall 58 // 7 December, 2004, Marcus Mendenhall 59 // changed mean free path of stopping particle 59 // changed mean free path of stopping particle from 0.0 to 1.0*nanometer 60 // to avoid new verbose warning about 0 MFP in 60 // to avoid new verbose warning about 0 MFP in 4.6.2p02 61 // << 61 // 62 // 17 December, 2004, Marcus Mendenhall 62 // 17 December, 2004, Marcus Mendenhall 63 // added code to permit screening out overly c << 63 // added code to permit screening out overly close collisions which are 64 // expected to be hadronic, not Coulombic 64 // expected to be hadronic, not Coulombic 65 // 65 // 66 // 19 December, 2004, Marcus Mendenhall 66 // 19 December, 2004, Marcus Mendenhall 67 // massive rewrite to add modular physics stag 67 // massive rewrite to add modular physics stages and plug-in cross section table 68 // computation. This allows one to select (e. << 68 // computation. This allows one to select (e.g.) between the normal external python 69 // python process and an embedded python inter << 69 // process and an embedded python interpreter (which is much faster) for generating 70 // for generating the tables. << 70 // the tables. 71 // It also allows one to switch between sub-sa << 71 // It also allows one to switch between sub-sampled scattering (event biasing) and 72 // and normal scattering, and between non-rela << 72 // normal scattering, and between non-relativistic kinematics and relativistic 73 // relativistic kinematic approximations, with << 73 // kinematic approximations, without having a class for every combination. Further, one can 74 // combination. Further, one can add extra sta << 74 // add extra stages to the scattering, which can implement various book-keeping processes. 75 // implement various book-keeping processes. << 75 // 76 // << 77 // January 2007, Marcus Mendenhall 76 // January 2007, Marcus Mendenhall 78 // Reorganized heavily for inclusion in Geant4 << 77 // Reorganized heavily for inclusion in Geant4 Core. All modules merged into 79 // one source and header, all historic code re 78 // one source and header, all historic code removed. 80 // << 79 // 81 // Class Description - End 80 // Class Description - End 82 81 83 //....oooOO0OOooo........oooOO0OOooo........oo << 84 82 85 #include "G4ScreenedNuclearRecoil.hh" << 83 #include <stdio.h> 86 84 87 #include "globals.hh" 85 #include "globals.hh" 88 86 89 #include <stdio.h> << 87 #include "G4ScreenedNuclearRecoil.hh" 90 88 91 const char* G4ScreenedCoulombCrossSectionInfo: << 89 const char* G4ScreenedCoulombCrossSectionInfo::CVSFileVers() { return 92 { << 90 "G4ScreenedNuclearRecoil.cc,v 1.57 2008/05/07 11:51:26 marcus Exp GEANT4 tag "; 93 return "G4ScreenedNuclearRecoil.cc,v 1.57 20 << 94 } 91 } 95 92 96 #include "c2_factory.hh" << 93 #include "G4ParticleTypes.hh" 97 << 94 #include "G4ParticleTable.hh" >> 95 #include "G4VParticleChange.hh" >> 96 #include "G4ParticleChangeForLoss.hh" 98 #include "G4DataVector.hh" 97 #include "G4DataVector.hh" 99 #include "G4DynamicParticle.hh" << 98 #include "G4Track.hh" >> 99 #include "G4Step.hh" >> 100 >> 101 #include "G4Material.hh" 100 #include "G4Element.hh" 102 #include "G4Element.hh" 101 #include "G4ElementVector.hh" << 102 #include "G4EmProcessSubType.hh" << 103 #include "G4IonTable.hh" << 104 #include "G4Isotope.hh" 103 #include "G4Isotope.hh" 105 #include "G4IsotopeVector.hh" << 106 #include "G4LindhardPartition.hh" << 107 #include "G4Material.hh" << 108 #include "G4MaterialCutsCouple.hh" 104 #include "G4MaterialCutsCouple.hh" 109 #include "G4ParticleChangeForLoss.hh" << 105 #include "G4ElementVector.hh" >> 106 #include "G4IsotopeVector.hh" >> 107 >> 108 #include "G4EmProcessSubType.hh" >> 109 >> 110 #include "G4RangeTest.hh" 110 #include "G4ParticleDefinition.hh" 111 #include "G4ParticleDefinition.hh" 111 #include "G4ParticleTable.hh" << 112 #include "G4DynamicParticle.hh" 112 #include "G4ParticleTypes.hh" << 113 #include "G4ProcessManager.hh" 113 #include "G4ProcessManager.hh" 114 #include "G4StableIsotopes.hh" 114 #include "G4StableIsotopes.hh" 115 #include "G4Step.hh" << 115 #include "G4LindhardPartition.hh" 116 #include "G4Track.hh" << 116 117 #include "G4VParticleChange.hh" << 117 #include "G4PhysicalConstants.hh" >> 118 #include "G4SystemOfUnits.hh" 118 #include "Randomize.hh" 119 #include "Randomize.hh" 119 120 120 #include <iomanip> << 121 #include <iostream> 121 #include <iostream> 122 static c2_factory<G4double> c2; // this makes << 122 #include <iomanip> >> 123 >> 124 #include "c2_factory.hh" >> 125 static c2_factory<G4double> c2; // this makes a lot of notation shorter 123 typedef c2_ptr<G4double> c2p; 126 typedef c2_ptr<G4double> c2p; 124 127 125 G4ScreenedCoulombCrossSection::~G4ScreenedCoul 128 G4ScreenedCoulombCrossSection::~G4ScreenedCoulombCrossSection() 126 { 129 { 127 screeningData.clear(); << 130 screeningData.clear(); 128 MFPTables.clear(); << 131 MFPTables.clear(); 129 } 132 } 130 133 131 const G4double G4ScreenedCoulombCrossSection:: << 134 const G4double G4ScreenedCoulombCrossSection::massmap[nMassMapElements+1]={ 132 0, 1.007940, 4.002602, 6.941000 << 135 0, 1.007940, 4.002602, 6.941000, 9.012182, 10.811000, 12.010700, 133 15.999400, 18.998403, 20.179700, 22.98977 << 136 14.006700, 15.999400, 18.998403, 20.179700, 22.989770, 24.305000, 26.981538, 28.085500, 134 32.065000, 35.453000, 39.948000, 39.09830 << 137 30.973761, 32.065000, 35.453000, 39.948000, 39.098300, 40.078000, 44.955910, 47.867000, 135 51.996100, 54.938049, 55.845000, 58.93320 << 138 50.941500, 51.996100, 54.938049, 55.845000, 58.933200, 58.693400, 63.546000, 65.409000, 136 72.640000, 74.921600, 78.960000, 79.90400 << 139 69.723000, 72.640000, 74.921600, 78.960000, 79.904000, 83.798000, 85.467800, 87.620000, 137 91.224000, 92.906380, 95.940000, 98.00000 << 140 88.905850, 91.224000, 92.906380, 95.940000, 98.000000, 101.070000, 102.905500, 106.420000, 138 112.411000, 114.818000, 118.710000, 121.7600 << 141 107.868200, 112.411000, 114.818000, 118.710000, 121.760000, 127.600000, 126.904470, 131.293000, 139 137.327000, 138.905500, 140.116000, 140.9076 << 142 132.905450, 137.327000, 138.905500, 140.116000, 140.907650, 144.240000, 145.000000, 150.360000, 140 157.250000, 158.925340, 162.500000, 164.9303 << 143 151.964000, 157.250000, 158.925340, 162.500000, 164.930320, 167.259000, 168.934210, 173.040000, 141 178.490000, 180.947900, 183.840000, 186.2070 << 144 174.967000, 178.490000, 180.947900, 183.840000, 186.207000, 190.230000, 192.217000, 195.078000, 142 200.590000, 204.383300, 207.200000, 208.9803 << 145 196.966550, 200.590000, 204.383300, 207.200000, 208.980380, 209.000000, 210.000000, 222.000000, 143 226.000000, 227.000000, 232.038100, 231.0358 << 146 223.000000, 226.000000, 227.000000, 232.038100, 231.035880, 238.028910, 237.000000, 244.000000, 144 247.000000, 247.000000, 251.000000, 252.0000 << 147 243.000000, 247.000000, 247.000000, 251.000000, 252.000000, 257.000000, 258.000000, 259.000000, 145 261.000000, 262.000000, 266.000000, 264.0000 << 148 262.000000, 261.000000, 262.000000, 266.000000, 264.000000, 277.000000, 268.000000, 281.000000, 146 285.000000, 282.500000, 289.000000, 287.5000 << 149 272.000000, 285.000000, 282.500000, 289.000000, 287.500000, 292.000000}; 147 << 150 148 G4ParticleDefinition* << 151 G4ParticleDefinition* G4ScreenedCoulombCrossSection::SelectRandomUnweightedTarget(const G4MaterialCutsCouple* couple) 149 G4ScreenedCoulombCrossSection::SelectRandomUnw << 152 { 150 { << 153 // Select randomly an element within the material, according to number density only 151 // Select randomly an element within the mat << 154 const G4Material* material = couple->GetMaterial(); 152 // density only << 155 G4int nMatElements = material->GetNumberOfElements(); 153 const G4Material* material = couple->GetMate << 156 const G4ElementVector* elementVector = material->GetElementVector(); 154 G4int nMatElements = material->GetNumberOfEl << 157 const G4Element *element=0; 155 const G4ElementVector* elementVector = mater << 158 G4ParticleDefinition*target=0; 156 const G4Element* element = 0; << 159 157 G4ParticleDefinition* target = 0; << 160 // Special case: the material consists of one element 158 << 161 if (nMatElements == 1) 159 // Special case: the material consists of on << 162 { 160 if (nMatElements == 1) { << 163 element= (*elementVector)[0]; 161 element = (*elementVector)[0]; << 164 } 162 } << 165 else 163 else { << 166 { 164 // Composite material << 167 // Composite material 165 G4double random = G4UniformRand() * materi << 168 G4double random = G4UniformRand() * material->GetTotNbOfAtomsPerVolume(); 166 G4double nsum = 0.0; << 169 G4double nsum=0.0; 167 const G4double* atomDensities = material-> << 170 const G4double *atomDensities=material->GetVecNbOfAtomsPerVolume(); 168 << 171 169 for (G4int k = 0; k < nMatElements; k++) { << 172 for (G4int k=0 ; k < nMatElements ; k++ ) 170 nsum += atomDensities[k]; << 173 { 171 element = (*elementVector)[k]; << 174 nsum+=atomDensities[k]; 172 if (nsum >= random) break; << 175 element= (*elementVector)[k]; 173 } << 176 if (nsum >= random) break; 174 } << 177 } 175 << 176 G4int N = 0; << 177 G4int Z = element->GetZasInt(); << 178 << 179 G4int nIsotopes = element->GetNumberOfIsotop << 180 if (0 < nIsotopes) { << 181 if (Z <= 92) { << 182 // we have no detailed material isotopic << 183 // so use G4StableIsotopes table up to Z << 184 static G4StableIsotopes theIso; << 185 // get a stable isotope table for defaul << 186 nIsotopes = theIso.GetNumberOfIsotopes(Z << 187 G4double random = 100.0 * G4UniformRand( << 188 // values are expressed as percent, sum << 189 G4int tablestart = theIso.GetFirstIsotop << 190 G4double asum = 0.0; << 191 for (G4int i = 0; i < nIsotopes; i++) { << 192 asum += theIso.GetAbundance(i + tables << 193 N = theIso.GetIsotopeNucleonCount(i + << 194 if (asum >= random) break; << 195 } << 196 } << 197 else { << 198 // too heavy for stable isotope table, j << 199 N = (G4int)std::floor(element->GetN() + << 200 } << 201 } << 202 else { << 203 G4int i; << 204 const G4IsotopeVector* isoV = element->Get << 205 G4double random = G4UniformRand(); << 206 G4double* abundance = element->GetRelative << 207 G4double asum = 0.0; << 208 for (i = 0; i < nIsotopes; i++) { << 209 asum += abundance[i]; << 210 N = (*isoV)[i]->GetN(); << 211 if (asum >= random) break; << 212 } 178 } 213 } << 214 179 215 // get the official definition of this nucle << 180 G4int N=0; 216 // value of A note that GetIon is very slow, << 181 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 217 // we have already found ourselves. << 182 218 ParticleCache::iterator p = targetMap.find(Z << 183 G4int nIsotopes=element->GetNumberOfIsotopes(); 219 if (p != targetMap.end()) { << 184 if(!nIsotopes) { 220 target = (*p).second; << 185 if(Z<=92) { 221 } << 186 // we have no detailed material isotopic info available, 222 else { << 187 // so use G4StableIsotopes table up to Z=92 223 target = G4IonTable::GetIonTable()->GetIon << 188 static G4StableIsotopes theIso; // get a stable isotope table for default results 224 targetMap[Z * 1000 + N] = target; << 189 nIsotopes=theIso.GetNumberOfIsotopes(Z); 225 } << 190 G4double random = 100.0*G4UniformRand(); // values are expressed as percent, sum is 100 226 return target; << 191 G4int tablestart=theIso.GetFirstIsotope(Z); >> 192 G4double asum=0.0; >> 193 for(G4int i=0; i<nIsotopes; i++) { >> 194 asum+=theIso.GetAbundance(i+tablestart); >> 195 N=theIso.GetIsotopeNucleonCount(i+tablestart); >> 196 if(asum >= random) break; >> 197 } >> 198 } else { >> 199 // too heavy for stable isotope table, just use mean mass >> 200 N=(G4int)std::floor(element->GetN()+0.5); >> 201 } >> 202 } else { >> 203 G4int i; >> 204 const G4IsotopeVector *isoV=element->GetIsotopeVector(); >> 205 G4double random = G4UniformRand(); >> 206 G4double *abundance=element->GetRelativeAbundanceVector(); >> 207 G4double asum=0.0; >> 208 for(i=0; i<nIsotopes; i++) { >> 209 asum+=abundance[i]; >> 210 N=(*isoV)[i]->GetN(); >> 211 if(asum >= random) break; >> 212 } >> 213 } >> 214 >> 215 // get the official definition of this nucleus, to get the correct value of A >> 216 // note that GetIon is very slow, so we will cache ones we have already found ourselves. >> 217 ParticleCache::iterator p=targetMap.find(Z*1000+N); >> 218 if (p != targetMap.end()) { >> 219 target=(*p).second; >> 220 } else{ >> 221 target=G4ParticleTable::GetParticleTable()->GetIon(Z, N, 0.0); >> 222 targetMap[Z*1000+N]=target; >> 223 } >> 224 return target; 227 } 225 } 228 226 229 void G4ScreenedCoulombCrossSection::BuildMFPTa 227 void G4ScreenedCoulombCrossSection::BuildMFPTables() 230 { 228 { 231 const G4int nmfpvals = 200; << 229 const G4int nmfpvals=200; 232 230 233 std::vector<G4double> evals(nmfpvals), mfpva << 231 std::vector<G4double> evals(nmfpvals), mfpvals(nmfpvals); 234 232 235 // sum up inverse MFPs per element for each << 233 // sum up inverse MFPs per element for each material 236 const G4MaterialTable* materialTable = G4Mat << 234 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 237 if (materialTable == 0) { << 235 if (materialTable == 0) { return; } 238 return; << 236 //G4Exception("G4ScreenedCoulombCrossSection::BuildMFPTables - no MaterialTable found)"); 239 } << 237 240 // G4Exception("G4ScreenedCoulombCrossSectio << 238 G4int nMaterials = G4Material::GetNumberOfMaterials(); 241 //- no MaterialTable found)"); << 239 242 << 240 for (G4int matidx=0; matidx < nMaterials; matidx++) { 243 G4int nMaterials = G4Material::GetNumberOfMa << 241 244 << 242 const G4Material* material= (*materialTable)[matidx]; 245 for (G4int matidx = 0; matidx < nMaterials; << 243 const G4ElementVector &elementVector = *(material->GetElementVector()); 246 const G4Material* material = (*materialTab << 244 const G4int nMatElements = material->GetNumberOfElements(); 247 const G4ElementVector& elementVector = *(m << 245 248 const G4int nMatElements = material->GetNu << 246 const G4Element *element=0; 249 << 247 const G4double *atomDensities=material->GetVecNbOfAtomsPerVolume(); 250 const G4Element* element = 0; << 248 251 const G4double* atomDensities = material-> << 249 G4double emin=0, emax=0; // find innermost range of cross section functions 252 << 250 for (G4int kel=0 ; kel < nMatElements ; kel++ ) 253 G4double emin = 0, emax = 0; << 251 { 254 // find innermost range of cross section f << 252 element=elementVector[kel]; 255 for (G4int kel = 0; kel < nMatElements; ke << 253 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 256 element = elementVector[kel]; << 254 const G4_c2_function &ifunc=sigmaMap[Z]; 257 G4int Z = (G4int)std::floor(element->Get << 255 if(!kel || ifunc.xmin() > emin) emin=ifunc.xmin(); 258 const G4_c2_function& ifunc = sigmaMap[Z << 256 if(!kel || ifunc.xmax() < emax) emax=ifunc.xmax(); 259 if (!kel || ifunc.xmin() > emin) emin = << 257 } 260 if (!kel || ifunc.xmax() < emax) emax = << 258 261 } << 259 G4double logint=std::log(emax/emin) / (nmfpvals-1) ; // logarithmic increment for tables 262 << 260 263 G4double logint = std::log(emax / emin) / << 261 // compute energy scale for interpolator. Force exact values at both ends to avoid range errors 264 // logarithmic increment for tables << 262 for (G4int i=1; i<nmfpvals-1; i++) evals[i]=emin*std::exp(logint*i); 265 << 263 evals.front()=emin; 266 // compute energy scale for interpolator. << 264 evals.back()=emax; 267 // both ends to avoid range errors << 265 268 for (G4int i = 1; i < nmfpvals - 1; i++) << 266 // zero out the inverse mfp sums to start 269 evals[i] = emin * std::exp(logint * i); << 267 for (G4int eidx=0; eidx < nmfpvals; eidx++) mfpvals[eidx] = 0.0; 270 evals.front() = emin; << 268 271 evals.back() = emax; << 269 // sum inverse mfp for each element in this material and for each energy 272 << 270 for (G4int kel=0 ; kel < nMatElements ; kel++ ) 273 // zero out the inverse mfp sums to start << 271 { 274 for (G4int eidx = 0; eidx < nmfpvals; eidx << 272 element=elementVector[kel]; 275 mfpvals[eidx] = 0.0; << 273 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 276 << 274 const G4_c2_function &sigma=sigmaMap[Z]; 277 // sum inverse mfp for each element in thi << 275 G4double ndens = atomDensities[kel]; // compute atom fraction for this element in this material 278 // energy << 276 279 for (G4int kel = 0; kel < nMatElements; ke << 277 for (G4int eidx=0; eidx < nmfpvals; eidx++) { 280 element = elementVector[kel]; << 278 mfpvals[eidx] += ndens*sigma(evals[eidx]); 281 G4int Z = (G4int)std::floor(element->Get << 279 } 282 const G4_c2_function& sigma = sigmaMap[Z << 280 } 283 G4double ndens = atomDensities[kel]; << 281 284 // compute atom fraction for this elemen << 282 // convert inverse mfp to regular mfp 285 << 283 for (G4int eidx=0; eidx < nmfpvals; eidx++) { 286 for (G4int eidx = 0; eidx < nmfpvals; ei << 284 mfpvals[eidx] = 1.0/mfpvals[eidx]; 287 mfpvals[eidx] += ndens * sigma(evals[e << 285 } 288 } << 286 // and make a new interpolating function out of the sum >> 287 MFPTables[matidx] = c2.log_log_interpolating_function().load(evals, mfpvals,true,0,true,0); 289 } 288 } >> 289 } 290 290 291 // convert inverse mfp to regular mfp << 291 G4ScreenedNuclearRecoil:: 292 for (G4int eidx = 0; eidx < nmfpvals; eidx << 292 G4ScreenedNuclearRecoil(const G4String& processName, 293 mfpvals[eidx] = 1.0 / mfpvals[eidx]; << 293 const G4String &ScreeningKey, 294 } << 294 G4bool GenerateRecoils, 295 // and make a new interpolating function o << 295 G4double RecoilCutoff, G4double PhysicsCutoff) : 296 MFPTables[matidx] = c2.log_log_interpolati << 296 G4VDiscreteProcess(processName), 297 } << 297 screeningKey(ScreeningKey), 298 } << 298 generateRecoils(GenerateRecoils), avoidReactions(1), 299 << 299 recoilCutoff(RecoilCutoff), physicsCutoff(PhysicsCutoff), 300 G4ScreenedNuclearRecoil::G4ScreenedNuclearReco << 300 hardeningFraction(0.0), hardeningFactor(1.0), 301 << 301 externalCrossSectionConstructor(0), 302 << 302 NIELPartitionFunction(new G4LindhardRobinsonPartition) 303 << 303 { 304 : G4VDiscreteProcess(processName, fElectroma << 304 // for now, point to class instance of this. Doing it by creating a new one fails 305 screeningKey(ScreeningKey), << 305 // to correctly update NIEL 306 generateRecoils(GenerateRecoils), << 306 // not even this is needed... done in G4VProcess(). 307 avoidReactions(1), << 307 // pParticleChange=&aParticleChange; 308 recoilCutoff(RecoilCutoff), << 308 processMaxEnergy=50000.0*MeV; 309 physicsCutoff(PhysicsCutoff), << 309 highEnergyLimit=100.0*MeV; 310 hardeningFraction(0.0), << 310 lowEnergyLimit=physicsCutoff; 311 hardeningFactor(1.0), << 311 registerDepositedEnergy=1; // by default, don't hide NIEL 312 externalCrossSectionConstructor(0), << 312 MFPScale=1.0; 313 NIELPartitionFunction(new G4LindhardRobins << 313 // SetVerboseLevel(2); 314 { << 314 AddStage(new G4ScreenedCoulombClassicalKinematics); 315 // for now, point to class instance of this. << 315 AddStage(new G4SingleScatter); 316 // one fails << 316 SetProcessSubType(fCoulombScattering); 317 // to correctly update NIEL << 318 // not even this is needed... done in G4VPro << 319 // pParticleChange=&aParticleChange; << 320 processMaxEnergy = 50000.0 * MeV; << 321 highEnergyLimit = 100.0 * MeV; << 322 lowEnergyLimit = physicsCutoff; << 323 registerDepositedEnergy = 1; // by default, << 324 MFPScale = 1.0; << 325 // SetVerboseLevel(2); << 326 AddStage(new G4ScreenedCoulombClassicalKinem << 327 AddStage(new G4SingleScatter); << 328 SetProcessSubType(fCoulombScattering); << 329 } 317 } 330 318 331 void G4ScreenedNuclearRecoil::ResetTables() 319 void G4ScreenedNuclearRecoil::ResetTables() 332 { 320 { 333 std::map<G4int, G4ScreenedCoulombCrossSectio << 321 334 for (; xt != crossSectionHandlers.end(); xt+ << 322 std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xt=crossSectionHandlers.begin(); 335 delete (*xt).second; << 323 for(;xt != crossSectionHandlers.end(); xt++) { 336 } << 324 delete (*xt).second; 337 crossSectionHandlers.clear(); << 325 } >> 326 crossSectionHandlers.clear(); 338 } 327 } 339 328 340 void G4ScreenedNuclearRecoil::ClearStages() 329 void G4ScreenedNuclearRecoil::ClearStages() 341 { 330 { 342 // I don't think I like deleting the process << 331 // I don't think I like deleting the processes here... they are better abandoned 343 // abandoned << 332 // if the creator doesn't get rid of them 344 // if the creator doesn't get rid of them << 333 // std::vector<G4ScreenedCollisionStage *>::iterator stage=collisionStages.begin(); 345 // std::vector<G4ScreenedCollisionStage *>:: << 334 //for(; stage != collisionStages.end(); stage++) delete (*stage); 346 // collisionStages.begin(); << 347 // for(; stage != collisionStages.end(); sta << 348 335 349 collisionStages.clear(); << 336 collisionStages.clear(); 350 } 337 } 351 338 352 void G4ScreenedNuclearRecoil::SetNIELPartition << 339 void G4ScreenedNuclearRecoil::SetNIELPartitionFunction(const G4VNIELPartition *part) 353 { 340 { 354 if (NIELPartitionFunction) delete NIELPartit << 341 if(NIELPartitionFunction) delete NIELPartitionFunction; 355 NIELPartitionFunction = part; << 342 NIELPartitionFunction=part; 356 } 343 } 357 344 358 void G4ScreenedNuclearRecoil::DepositEnergy(G4 << 345 void G4ScreenedNuclearRecoil::DepositEnergy(G4int z1, G4double a1, const G4Material *material, G4double energy) 359 G4 << 360 { 346 { 361 if (!NIELPartitionFunction) { << 347 if(!NIELPartitionFunction) { 362 IonizingLoss += energy; << 348 IonizingLoss+=energy; 363 } << 349 } else { 364 else { << 350 G4double part=NIELPartitionFunction->PartitionNIEL(z1, a1, material, energy); 365 G4double part = NIELPartitionFunction->Par << 351 IonizingLoss+=energy*(1-part); 366 IonizingLoss += energy * (1 - part); << 352 NIEL += energy*part; 367 NIEL += energy * part; << 353 } 368 } << 369 } 354 } 370 355 371 G4ScreenedNuclearRecoil::~G4ScreenedNuclearRec 356 G4ScreenedNuclearRecoil::~G4ScreenedNuclearRecoil() 372 { 357 { 373 ResetTables(); << 358 ResetTables(); 374 } 359 } 375 360 376 // returns true if it appears the nuclei colli << 361 // returns true if it appears the nuclei collided, and we are interested in checking 377 // in checking << 362 G4bool G4ScreenedNuclearRecoil::CheckNuclearCollision( 378 G4bool G4ScreenedNuclearRecoil::CheckNuclearCo << 363 G4double A, G4double a1, G4double apsis) { 379 { << 364 return avoidReactions && (apsis < (1.1*(std::pow(A,1.0/3.0)+std::pow(a1,1.0/3.0)) + 1.4)*fermi); 380 return avoidReactions << 365 // nuclei are within 1.4 fm (reduced pion Compton wavelength) of each other at apsis, 381 && (apsis < (1.1 * (std::pow(A, 1.0 / << 366 // this is hadronic, skip it 382 // nuclei are within 1.4 fm (reduced pion Co << 383 // other at apsis, << 384 // this is hadronic, skip it << 385 } 367 } 386 368 387 G4ScreenedCoulombCrossSection* G4ScreenedNucle << 369 G4ScreenedCoulombCrossSection *G4ScreenedNuclearRecoil::GetNewCrossSectionHandler(void) { 388 { << 370 G4ScreenedCoulombCrossSection *xc; 389 G4ScreenedCoulombCrossSection* xc; << 371 if(!externalCrossSectionConstructor) xc=new G4NativeScreenedCoulombCrossSection; 390 if (!externalCrossSectionConstructor) << 372 else xc=externalCrossSectionConstructor->create(); 391 xc = new G4NativeScreenedCoulombCrossSecti << 373 xc->SetVerbosity(verboseLevel); 392 else << 374 return xc; 393 xc = externalCrossSectionConstructor->crea << 394 xc->SetVerbosity(verboseLevel); << 395 return xc; << 396 } 375 } 397 376 398 G4double G4ScreenedNuclearRecoil::GetMeanFreeP << 377 G4double G4ScreenedNuclearRecoil::GetMeanFreePath(const G4Track& track, >> 378 G4double, 399 379 G4ForceCondition* cond) 400 { 380 { 401 const G4DynamicParticle* incoming = track.Ge << 381 const G4DynamicParticle* incoming = track.GetDynamicParticle(); 402 G4double energy = incoming->GetKineticEnergy << 382 G4double energy = incoming->GetKineticEnergy(); 403 G4double a1 = incoming->GetDefinition()->Get << 383 G4double a1=incoming->GetDefinition()->GetPDGMass()/amu_c2; 404 << 384 405 G4double meanFreePath; << 385 G4double meanFreePath; 406 *cond = NotForced; << 386 *cond=NotForced; 407 << 387 408 if (energy < lowEnergyLimit || energy < reco << 388 if (energy < lowEnergyLimit || energy < recoilCutoff*a1) { 409 *cond = Forced; << 389 *cond=Forced; 410 return 1.0 * nm; << 390 return 1.0*nm; /* catch and stop slow particles to collect their NIEL! */ 411 /* catch and stop slow particles to collec << 391 } else if (energy > processMaxEnergy*a1) { 412 } << 392 return DBL_MAX; // infinite mean free path 413 else if (energy > processMaxEnergy * a1) { << 393 } else if (energy > highEnergyLimit*a1) energy=highEnergyLimit*a1; /* constant MFP at high energy */ 414 return DBL_MAX; // infinite mean free pat << 394 415 } << 395 G4double fz1=incoming->GetDefinition()->GetPDGCharge(); 416 else if (energy > highEnergyLimit * a1) << 396 G4int z1=(G4int)(fz1/eplus + 0.5); 417 energy = highEnergyLimit * a1; << 397 418 /* constant MFP at high energy */ << 398 std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xh= 419 << 399 crossSectionHandlers.find(z1); 420 G4double fz1 = incoming->GetDefinition()->Ge << 400 G4ScreenedCoulombCrossSection *xs; 421 G4int z1 = (G4int)(fz1 / eplus + 0.5); << 401 422 << 402 if (xh==crossSectionHandlers.end()) { 423 std::map<G4int, G4ScreenedCoulombCrossSectio << 403 xs =crossSectionHandlers[z1]=GetNewCrossSectionHandler(); 424 G4ScreenedCoulombCrossSection* xs; << 404 xs->LoadData(screeningKey, z1, a1, physicsCutoff); 425 << 405 xs->BuildMFPTables(); 426 if (xh == crossSectionHandlers.end()) { << 406 } else xs=(*xh).second; 427 xs = crossSectionHandlers[z1] = GetNewCros << 407 428 xs->LoadData(screeningKey, z1, a1, physics << 408 const G4MaterialCutsCouple* materialCouple = track.GetMaterialCutsCouple(); 429 xs->BuildMFPTables(); << 409 size_t materialIndex = materialCouple->GetMaterial()->GetIndex(); 430 } << 410 431 else << 411 const G4_c2_function &mfp=*(*xs)[materialIndex]; 432 xs = (*xh).second; << 412 433 << 413 // make absolutely certain we don't get an out-of-range energy 434 const G4MaterialCutsCouple* materialCouple = << 414 meanFreePath = mfp(std::min(std::max(energy, mfp.xmin()), mfp.xmax())); 435 size_t materialIndex = materialCouple->GetMa << 415 436 << 416 // G4cout << "MFP: " << meanFreePath << " index " << materialIndex << " energy " << energy << " MFPScale " << MFPScale << G4endl; 437 const G4_c2_function& mfp = *(*xs)[materialI << 417 438 << 418 return meanFreePath*MFPScale; 439 // make absolutely certain we don't get an o << 440 meanFreePath = mfp(std::min(std::max(energy, << 441 << 442 // G4cout << "MFP: " << meanFreePath << " in << 443 //<< " energy " << energy << " MFPScale " << << 444 << 445 return meanFreePath * MFPScale; << 446 } 419 } 447 420 448 G4VParticleChange* G4ScreenedNuclearRecoil::Po 421 G4VParticleChange* G4ScreenedNuclearRecoil::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 449 { 422 { 450 validCollision = 1; << 423 validCollision=1; 451 pParticleChange->Initialize(aTrack); << 424 pParticleChange->Initialize(aTrack); 452 NIEL = 0.0; // default is no NIEL deposited << 425 NIEL=0.0; // default is no NIEL deposited 453 IonizingLoss = 0.0; << 426 IonizingLoss=0.0; 454 << 427 455 // do universal setup << 428 // do universal setup 456 << 429 457 const G4DynamicParticle* incidentParticle = << 430 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); 458 G4ParticleDefinition* baseParticle = aTrack. << 431 G4ParticleDefinition *baseParticle=aTrack.GetDefinition(); 459 << 432 460 G4double fz1 = baseParticle->GetPDGCharge() << 433 G4double fz1=baseParticle->GetPDGCharge()/eplus; 461 G4int z1 = (G4int)(fz1 + 0.5); << 434 G4int z1=(G4int)(fz1+0.5); 462 G4double a1 = baseParticle->GetPDGMass() / a << 435 G4double a1=baseParticle->GetPDGMass()/amu_c2; 463 G4double incidentEnergy = incidentParticle-> << 436 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); 464 << 437 465 // Select randomly one element and (possibly << 438 // Select randomly one element and (possibly) isotope in the current material. 466 // current material. << 439 const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple(); 467 const G4MaterialCutsCouple* couple = aTrack. << 440 468 << 441 const G4Material* mat = couple->GetMaterial(); 469 const G4Material* mat = couple->GetMaterial( << 442 470 << 443 G4double P=0.0; // the impact parameter of this collision 471 G4double P = 0.0; // the impact parameter o << 444 472 << 445 if(incidentEnergy < GetRecoilCutoff()*a1) { // check energy sanity on entry 473 if (incidentEnergy < GetRecoilCutoff() * a1) << 446 DepositEnergy(z1, baseParticle->GetPDGMass()/amu_c2, mat, incidentEnergy); 474 // check energy sanity on entry << 447 GetParticleChange().ProposeEnergy(0.0); 475 DepositEnergy(z1, baseParticle->GetPDGMass << 448 // stop the particle and bail out 476 GetParticleChange().ProposeEnergy(0.0); << 449 validCollision=0; 477 // stop the particle and bail out << 450 } else { 478 validCollision = 0; << 451 479 } << 452 G4double numberDensity=mat->GetTotNbOfAtomsPerVolume(); 480 else { << 453 G4double lattice=0.5/std::pow(numberDensity,1.0/3.0); // typical lattice half-spacing 481 G4double numberDensity = mat->GetTotNbOfAt << 454 G4double length=GetCurrentInteractionLength(); 482 G4double lattice = 0.5 / std::pow(numberDe << 455 G4double sigopi=1.0/(CLHEP::pi*numberDensity*length); // this is sigma0/pi 483 // typical lattice half-spacing << 456 484 G4double length = GetCurrentInteractionLen << 457 // compute the impact parameter very early, so if is rejected as too far away, little effort is wasted 485 G4double sigopi = 1.0 / (pi * numberDensit << 458 // this is the TRIM method for determining an impact parameter based on the flight path 486 // this is sigma0/pi << 459 // this gives a cumulative distribution of N(P)= 1-exp(-pi P^2 n l) 487 << 460 // which says the probability of NOT hitting a disk of area sigma= pi P^2 =exp(-sigma N l) 488 // compute the impact parameter very early << 461 // which may be reasonable 489 // as too far away, little effort is waste << 462 if(sigopi < lattice*lattice) { 490 // this is the TRIM method for determining << 463 // normal long-flight approximation 491 // based on the flight path << 464 P = std::sqrt(-std::log(G4UniformRand()) *sigopi); 492 // this gives a cumulative distribution of << 465 } else { 493 // N(P)= 1-exp(-pi P^2 n l) << 466 // short-flight limit 494 // which says the probability of NOT hitti << 467 P = std::sqrt(G4UniformRand())*lattice; 495 // sigma= pi P^2 =exp(-sigma N l) << 468 } 496 // which may be reasonable << 469 497 if (sigopi < lattice * lattice) { << 470 G4double fraction=GetHardeningFraction(); 498 // normal long-flight approximation << 471 if(fraction && G4UniformRand() < fraction) { 499 P = std::sqrt(-std::log(G4UniformRand()) << 472 // pick out some events, and increase the central cross section 500 } << 473 // by reducing the impact parameter 501 else { << 474 P /= std::sqrt(GetHardeningFactor()); 502 // short-flight limit << 475 } 503 P = std::sqrt(G4UniformRand()) * lattice << 476 504 } << 477 505 << 478 // check if we are far enough away that the energy transfer must be below cutoff, 506 G4double fraction = GetHardeningFraction() << 479 // and leave everything alone if so, saving a lot of time. 507 if (fraction && G4UniformRand() < fraction << 480 if(P*P > sigopi) { 508 // pick out some events, and increase th << 481 if(GetVerboseLevel() > 1) 509 // section by reducing the impact parame << 482 printf("ScreenedNuclear impact reject: length=%.3f P=%.4f limit=%.4f\n", 510 P /= std::sqrt(GetHardeningFactor()); << 483 length/angstrom, P/angstrom,std::sqrt(sigopi)/angstrom); 511 } << 484 // no collision, don't follow up with anything 512 << 485 validCollision=0; 513 // check if we are far enough away that th << 486 } 514 // must be below cutoff, << 487 } 515 // and leave everything alone if so, savin << 488 516 if (P * P > sigopi) { << 489 // find out what we hit, and record it in our kinematics block. 517 if (GetVerboseLevel() > 1) << 490 kinematics.targetMaterial=mat; 518 printf("ScreenedNuclear impact reject: << 491 kinematics.a1=a1; 519 P / angstrom, std::sqrt(sigopi) << 492 520 // no collision, don't follow up with an << 493 if(validCollision) { 521 validCollision = 0; << 494 G4ScreenedCoulombCrossSection *xsect=GetCrossSectionHandlers()[z1]; 522 } << 495 G4ParticleDefinition *recoilIon= 523 } << 496 xsect->SelectRandomUnweightedTarget(couple); >> 497 kinematics.crossSection=xsect; >> 498 kinematics.recoilIon=recoilIon; >> 499 kinematics.impactParameter=P; >> 500 kinematics.a2=recoilIon->GetPDGMass()/amu_c2; >> 501 } else { >> 502 kinematics.recoilIon=0; >> 503 kinematics.impactParameter=0; >> 504 kinematics.a2=0; >> 505 } >> 506 >> 507 std::vector<G4ScreenedCollisionStage *>::iterator stage=collisionStages.begin(); >> 508 >> 509 for(; stage != collisionStages.end(); stage++) >> 510 (*stage)->DoCollisionStep(this,aTrack, aStep); >> 511 >> 512 if(registerDepositedEnergy) { >> 513 pParticleChange->ProposeLocalEnergyDeposit(IonizingLoss+NIEL); >> 514 pParticleChange->ProposeNonIonizingEnergyDeposit(NIEL); >> 515 //MHM G4cout << "depositing energy, total = " << IonizingLoss+NIEL << " NIEL = " << NIEL << G4endl; >> 516 } 524 517 525 // find out what we hit, and record it in ou << 518 return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep ); 526 kinematics.targetMaterial = mat; << 527 kinematics.a1 = a1; << 528 << 529 if (validCollision) { << 530 G4ScreenedCoulombCrossSection* xsect = Get << 531 G4ParticleDefinition* recoilIon = xsect->S << 532 kinematics.crossSection = xsect; << 533 kinematics.recoilIon = recoilIon; << 534 kinematics.impactParameter = P; << 535 kinematics.a2 = recoilIon->GetPDGMass() / << 536 } << 537 else { << 538 kinematics.recoilIon = 0; << 539 kinematics.impactParameter = 0; << 540 kinematics.a2 = 0; << 541 } << 542 << 543 std::vector<G4ScreenedCollisionStage*>::iter << 544 << 545 for (; stage != collisionStages.end(); stage << 546 (*stage)->DoCollisionStep(this, aTrack, aS << 547 << 548 if (registerDepositedEnergy) { << 549 pParticleChange->ProposeLocalEnergyDeposit << 550 pParticleChange->ProposeNonIonizingEnergyD << 551 // MHM G4cout << "depositing energy, total << 552 //<< IonizingLoss+NIEL << " NIEL = " << NI << 553 } << 554 << 555 return G4VDiscreteProcess::PostStepDoIt(aTra << 556 } << 557 << 558 G4ScreenedCoulombClassicalKinematics::G4Screen << 559 : // instantiate all the needed functions s << 560 // done at run time << 561 // we will be solving x^2 - x phi(x*au)/e << 562 // or, for easier scaling, x'^2 - x' au p << 563 // note that only the last of these gets << 564 phifunc(c2.const_plugin_function()), << 565 xovereps(c2.linear(0., 0., 0.)), << 566 // will fill this in with the right slope << 567 diff(c2.quadratic(0., 0., 0., 1.) - xovere << 568 {} << 569 << 570 G4bool G4ScreenedCoulombClassicalKinematics::D << 571 << 572 << 573 { << 574 G4double au = screen->au; << 575 G4CoulombKinematicsInfo& kin = master->GetKi << 576 G4double A = kin.a2; << 577 G4double a1 = kin.a1; << 578 << 579 G4double xx0; // first estimate of closest << 580 if (eps < 5.0) { << 581 G4double y = std::log(eps); << 582 G4double mlrho4 = ((((3.517e-4 * y + 1.401 << 583 G4double rho4 = std::exp(-mlrho4); // W&M << 584 G4double bb2 = 0.5 * beta * beta; << 585 xx0 = std::sqrt(bb2 + std::sqrt(bb2 * bb2 << 586 } << 587 else { << 588 G4double ee = 1.0 / (2.0 * eps); << 589 xx0 = ee + std::sqrt(ee * ee + beta * beta << 590 if (master->CheckNuclearCollision(A, a1, x << 591 // nuclei too close << 592 } << 593 << 594 // we will be solving x^2 - x phi(x*au)/eps << 595 // or, for easier scaling, x'^2 - x' au phi( << 596 xovereps.reset(0., 0.0, au / eps); // slope << 597 phifunc.set_function(&(screen->EMphiData.get << 598 // install interpolating table << 599 G4double xx1, phip, phip2; << 600 G4int root_error; << 601 xx1 = diff->find_root(phifunc.xmin(), std::m << 602 std::min(xx0 * au, phi << 603 &phip, &phip2) << 604 / au; << 605 << 606 if (root_error) { << 607 G4cout << "Screened Coulomb Root Finder Er << 608 G4cout << "au " << au << " A " << A << " a << 609 << " beta " << beta << G4endl; << 610 G4cout << " xmin " << phifunc.xmin() << " << 611 G4cout << " f(xmin) " << phifunc(phifunc.x << 612 << phifunc(std::min(10 * xx0 * au, << 613 G4cout << " xstart " << std::min(xx0 * au, << 614 << beta * beta * au * au; << 615 G4cout << G4endl; << 616 throw c2_exception("Failed root find"); << 617 } << 618 << 619 // phiprime is scaled by one factor of au be << 620 // at (xx0*au), << 621 G4double phiprime = phip * au; << 622 << 623 // lambda0 is from W&M 19 << 624 G4double lambda0 = << 625 1.0 / std::sqrt(0.5 + beta * beta / (2.0 * << 626 << 627 // compute the 6-term Lobatto integral alpha << 628 // different coefficients) << 629 // this is probably completely un-needed but << 630 // quality results, << 631 G4double alpha = (1.0 + lambda0) / 30.0; << 632 G4double xvals[] = {0.98302349, 0.84652241, << 633 G4double weights[] = {0.03472124, 0.14769029 << 634 for (G4int k = 0; k < 4; k++) { << 635 G4double x, ff; << 636 x = xx1 / xvals[k]; << 637 ff = 1.0 / std::sqrt(1.0 - phifunc(x * au) << 638 alpha += weights[k] * ff; << 639 } << 640 << 641 phifunc.unset_function(); << 642 // throws an exception if used without setti << 643 << 644 G4double thetac1 = pi * beta * alpha / xx1; << 645 // complement of CM scattering angle << 646 G4double sintheta = std::sin(thetac1); // n << 647 G4double costheta = -std::cos(thetac1); // << 648 // G4double psi=std::atan2(sintheta, costhet << 649 // lab scattering angle (M&T 3rd eq. 8.69) << 650 << 651 // numerics note: because we checked above << 652 // of beta which give real recoils, << 653 // we don't have to look too closely for the << 654 // (which would cause sin(theta) << 655 // and 1-cos(theta) to both vanish and make << 656 G4double zeta = std::atan2(sintheta, 1 - cos << 657 // lab recoil angle (M&T 3rd eq. 8.73) << 658 G4double coszeta = std::cos(zeta); << 659 G4double sinzeta = std::sin(zeta); << 660 << 661 kin.sinTheta = sintheta; << 662 kin.cosTheta = costheta; << 663 kin.sinZeta = sinzeta; << 664 kin.cosZeta = coszeta; << 665 return 1; // all OK, collision is valid << 666 } 519 } 667 520 668 void G4ScreenedCoulombClassicalKinematics::DoC << 521 G4ScreenedCoulombClassicalKinematics::G4ScreenedCoulombClassicalKinematics() : 669 << 522 // instantiate all the needed functions statically, so no allocation is done at run time >> 523 // we will be solving x^2 - x phi(x*au)/eps - beta^2 == 0.0 >> 524 // or, for easier scaling, x'^2 - x' au phi(x')/eps - beta^2 au^2 >> 525 // note that only the last of these gets deleted, since it owns the rest >> 526 phifunc(c2.const_plugin_function()), >> 527 xovereps(c2.linear(0., 0., 0.)), // will fill this in with the right slope at run time >> 528 diff(c2.quadratic(0., 0., 0., 1.)-xovereps*phifunc) 670 { 529 { 671 if (!master->GetValidCollision()) return; << 672 << 673 G4ParticleChange& aParticleChange = master-> << 674 G4CoulombKinematicsInfo& kin = master->GetKi << 675 << 676 const G4DynamicParticle* incidentParticle = << 677 G4ParticleDefinition* baseParticle = aTrack. << 678 << 679 G4double incidentEnergy = incidentParticle-> << 680 << 681 // this adjustment to a1 gives the right res << 682 // (constant gamma) << 683 // relativistic collisions. Hard collisions << 684 // Coulombic and hadronic terms interfere an << 685 G4double gamma = (1.0 + incidentEnergy / bas << 686 G4double a1 = kin.a1 * gamma; // relativist << 687 << 688 G4ParticleDefinition* recoilIon = kin.recoil << 689 G4double A = recoilIon->GetPDGMass() / amu_c << 690 G4int Z = (G4int)((recoilIon->GetPDGCharge() << 691 << 692 G4double Ec = incidentEnergy * (A / (A + a1) << 693 // energy in CM frame (non-relativistic!) << 694 const G4ScreeningTables* screen = kin.crossS << 695 G4double au = screen->au; // screening leng << 696 << 697 G4double beta = kin.impactParameter / au; << 698 // dimensionless impact parameter << 699 G4double eps = Ec / (screen->z1 * Z * elm_co << 700 // dimensionless energy << 701 << 702 G4bool ok = DoScreeningComputation(master, s << 703 if (!ok) { << 704 master->SetValidCollision(0); // flag bad << 705 return; // just bail out without setting << 706 } << 707 << 708 G4double eRecoil = << 709 4 * incidentEnergy * a1 * A * kin.cosZeta << 710 kin.eRecoil = eRecoil; << 711 << 712 if (incidentEnergy - eRecoil < master->GetRe << 713 aParticleChange.ProposeEnergy(0.0); << 714 master->DepositEnergy(int(screen->z1), a1, << 715 } << 716 << 717 if (master->GetEnableRecoils() && eRecoil > << 718 kin.recoilIon = recoilIon; << 719 } << 720 else { << 721 kin.recoilIon = 0; // this flags no recoi << 722 master->DepositEnergy(Z, A, kin.targetMate << 723 } << 724 } 530 } 725 531 726 void G4SingleScatter::DoCollisionStep(G4Screen << 532 G4bool G4ScreenedCoulombClassicalKinematics::DoScreeningComputation(G4ScreenedNuclearRecoil *master, 727 const G4 << 533 const G4ScreeningTables *screen, G4double eps, G4double beta) 728 { << 534 { 729 if (!master->GetValidCollision()) return; << 535 G4double au=screen->au; 730 << 536 G4CoulombKinematicsInfo &kin=master->GetKinematics(); 731 G4CoulombKinematicsInfo& kin = master->GetKi << 537 G4double A=kin.a2; 732 G4ParticleChange& aParticleChange = master-> << 538 G4double a1=kin.a1; >> 539 >> 540 G4double xx0; // first estimate of closest approach >> 541 if(eps < 5.0) { >> 542 G4double y=std::log(eps); >> 543 G4double mlrho4=((((3.517e-4*y+1.401e-2)*y+2.393e-1)*y+2.734)*y+2.220); >> 544 G4double rho4=std::exp(-mlrho4); // W&M eq. 18 >> 545 G4double bb2=0.5*beta*beta; >> 546 xx0=std::sqrt(bb2+std::sqrt(bb2*bb2+rho4)); // W&M eq. 17 >> 547 } else { >> 548 G4double ee=1.0/(2.0*eps); >> 549 xx0=ee+std::sqrt(ee*ee+beta*beta); // W&M eq. 15 (Rutherford value) >> 550 if(master->CheckNuclearCollision(A, a1, xx0*au)) return 0; // nuclei too close >> 551 >> 552 } >> 553 >> 554 // we will be solving x^2 - x phi(x*au)/eps - beta^2 == 0.0 >> 555 // or, for easier scaling, x'^2 - x' au phi(x')/eps - beta^2 au^2 >> 556 xovereps.reset(0., 0.0, au/eps); // slope of x*au/eps term >> 557 phifunc.set_function(&(screen->EMphiData.get())); // install interpolating table >> 558 G4double xx1, phip, phip2; >> 559 G4int root_error; >> 560 xx1=diff->find_root(phifunc.xmin(), std::min(10*xx0*au,phifunc.xmax()), >> 561 std::min(xx0*au, phifunc.xmax()), beta*beta*au*au, &root_error, &phip, &phip2)/au; >> 562 >> 563 if(root_error) { >> 564 G4cout << "Screened Coulomb Root Finder Error" << G4endl; >> 565 G4cout << "au " << au << " A " << A << " a1 " << a1 << " xx1 " << xx1 << " eps " << eps << " beta " << beta << G4endl; >> 566 G4cout << " xmin " << phifunc.xmin() << " xmax " << std::min(10*xx0*au,phifunc.xmax()) ; >> 567 G4cout << " f(xmin) " << phifunc(phifunc.xmin()) << " f(xmax) " << phifunc(std::min(10*xx0*au,phifunc.xmax())) ; >> 568 G4cout << " xstart " << std::min(xx0*au, phifunc.xmax()) << " target " << beta*beta*au*au ; >> 569 G4cout << G4endl; >> 570 throw c2_exception("Failed root find"); >> 571 } >> 572 >> 573 // phiprime is scaled by one factor of au because phi is evaluated at (xx0*au), >> 574 G4double phiprime=phip*au; >> 575 >> 576 //lambda0 is from W&M 19 >> 577 G4double lambda0=1.0/std::sqrt(0.5+beta*beta/(2.0*xx1*xx1)-phiprime/(2.0*eps)); >> 578 >> 579 //compute the 6-term Lobatto integral alpha (per W&M 21, with different coefficients) >> 580 // this is probably completely un-needed but gives the highest quality results, >> 581 G4double alpha=(1.0+ lambda0)/30.0; >> 582 G4double xvals[]={0.98302349, 0.84652241, 0.53235309, 0.18347974}; >> 583 G4double weights[]={0.03472124, 0.14769029, 0.23485003, 0.18602489}; >> 584 for(G4int k=0; k<4; k++) { >> 585 G4double x, ff; >> 586 x=xx1/xvals[k]; >> 587 ff=1.0/std::sqrt(1.0-phifunc(x*au)/(x*eps)-beta*beta/(x*x)); >> 588 alpha+=weights[k]*ff; >> 589 } >> 590 >> 591 phifunc.unset_function(); // throws an exception if used without setting again 733 592 734 const G4DynamicParticle* incidentParticle = << 593 G4double thetac1=CLHEP::pi*beta*alpha/xx1; // complement of CM scattering angle 735 G4double incidentEnergy = incidentParticle-> << 594 G4double sintheta=std::sin(thetac1); //note sin(pi-theta)=sin(theta) 736 G4double eRecoil = kin.eRecoil; << 595 G4double costheta=-std::cos(thetac1); // note cos(pi-theta)=-cos(theta) 737 << 596 // G4double psi=std::atan2(sintheta, costheta+a1/A); // lab scattering angle (M&T 3rd eq. 8.69) 738 G4double azimuth = G4UniformRand() * (2.0 * << 597 739 G4double sa = std::sin(azimuth); << 598 // numerics note: because we checked above for reasonable values of beta which give real recoils, 740 G4double ca = std::cos(azimuth); << 599 // we don't have to look too closely for theta -> 0 here (which would cause sin(theta) 741 << 600 // and 1-cos(theta) to both vanish and make the atan2 ill behaved). 742 G4ThreeVector recoilMomentumDirection(kin.si << 601 G4double zeta=std::atan2(sintheta, 1-costheta); // lab recoil angle (M&T 3rd eq. 8.73) 743 G4ParticleMomentum incidentDirection = incid << 602 G4double coszeta=std::cos(zeta); 744 recoilMomentumDirection = recoilMomentumDire << 603 G4double sinzeta=std::sin(zeta); 745 G4ThreeVector recoilMomentum = << 604 746 recoilMomentumDirection * std::sqrt(2.0 * << 605 kin.sinTheta=sintheta; 747 << 606 kin.cosTheta=costheta; 748 if (aParticleChange.GetEnergy() != 0.0) { << 607 kin.sinZeta=sinzeta; 749 // DoKinematics hasn't stopped it! << 608 kin.cosZeta=coszeta; 750 G4ThreeVector beamMomentum = incidentParti << 609 return 1; // all OK, collision is valid 751 aParticleChange.ProposeMomentumDirection(b << 610 } 752 aParticleChange.ProposeEnergy(incidentEner << 611 753 } << 612 void G4ScreenedCoulombClassicalKinematics::DoCollisionStep(G4ScreenedNuclearRecoil *master, 754 << 613 const G4Track& aTrack, const G4Step&) { 755 if (kin.recoilIon) { << 614 756 G4DynamicParticle* recoil = << 615 if(!master->GetValidCollision()) return; 757 new G4DynamicParticle(kin.recoilIon, rec << 616 758 << 617 G4ParticleChange &aParticleChange=master->GetParticleChange(); 759 aParticleChange.SetNumberOfSecondaries(1); << 618 G4CoulombKinematicsInfo &kin=master->GetKinematics(); 760 aParticleChange.AddSecondary(recoil); << 619 761 } << 620 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); >> 621 G4ParticleDefinition *baseParticle=aTrack.GetDefinition(); >> 622 >> 623 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); >> 624 >> 625 // this adjustment to a1 gives the right results for soft (constant gamma) >> 626 // relativistic collisions. Hard collisions are wrong anyway, since the >> 627 // Coulombic and hadronic terms interfere and cannot be added. >> 628 G4double gamma=(1.0+incidentEnergy/baseParticle->GetPDGMass()); >> 629 G4double a1=kin.a1*gamma; // relativistic gamma correction >> 630 >> 631 G4ParticleDefinition *recoilIon=kin.recoilIon; >> 632 G4double A=recoilIon->GetPDGMass()/amu_c2; >> 633 G4int Z=(G4int)((recoilIon->GetPDGCharge()/eplus)+0.5); >> 634 >> 635 G4double Ec = incidentEnergy*(A/(A+a1)); // energy in CM frame (non-relativistic!) >> 636 const G4ScreeningTables *screen=kin.crossSection->GetScreening(Z); >> 637 G4double au=screen->au; // screening length >> 638 >> 639 G4double beta = kin.impactParameter/au; // dimensionless impact parameter >> 640 G4double eps = Ec/(screen->z1*Z*elm_coupling/au); // dimensionless energy >> 641 >> 642 G4bool ok=DoScreeningComputation(master, screen, eps, beta); >> 643 if(!ok) { >> 644 master->SetValidCollision(0); // flag bad collision >> 645 return; // just bail out without setting valid flag >> 646 } >> 647 >> 648 G4double eRecoil=4*incidentEnergy*a1*A*kin.cosZeta*kin.cosZeta/((a1+A)*(a1+A)); >> 649 kin.eRecoil=eRecoil; >> 650 >> 651 if(incidentEnergy-eRecoil < master->GetRecoilCutoff()*a1) { >> 652 aParticleChange.ProposeEnergy(0.0); >> 653 master->DepositEnergy(int(screen->z1), a1, kin.targetMaterial, incidentEnergy-eRecoil); >> 654 } >> 655 >> 656 if(master->GetEnableRecoils() && eRecoil > master->GetRecoilCutoff() * kin.a2) { >> 657 kin.recoilIon=recoilIon; >> 658 } else { >> 659 kin.recoilIon=0; // this flags no recoil to be generated >> 660 master->DepositEnergy(Z, A, kin.targetMaterial, eRecoil) ; >> 661 } >> 662 } >> 663 >> 664 void G4SingleScatter::DoCollisionStep(G4ScreenedNuclearRecoil *master, >> 665 const G4Track& aTrack, const G4Step&) { >> 666 >> 667 if(!master->GetValidCollision()) return; >> 668 >> 669 G4CoulombKinematicsInfo &kin=master->GetKinematics(); >> 670 G4ParticleChange &aParticleChange=master->GetParticleChange(); >> 671 >> 672 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); >> 673 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); >> 674 G4double eRecoil=kin.eRecoil; >> 675 >> 676 G4double azimuth=G4UniformRand()*(2.0*CLHEP::pi); >> 677 G4double sa=std::sin(azimuth); >> 678 G4double ca=std::cos(azimuth); >> 679 >> 680 G4ThreeVector recoilMomentumDirection(kin.sinZeta*ca, kin.sinZeta*sa, kin.cosZeta); >> 681 G4ParticleMomentum incidentDirection = incidentParticle->GetMomentumDirection(); >> 682 recoilMomentumDirection=recoilMomentumDirection.rotateUz(incidentDirection); >> 683 G4ThreeVector recoilMomentum=recoilMomentumDirection*std::sqrt(2.0*eRecoil*kin.a2*amu_c2); >> 684 >> 685 if(aParticleChange.GetEnergy() != 0.0) { // DoKinematics hasn't stopped it! >> 686 G4ThreeVector beamMomentum=incidentParticle->GetMomentum()-recoilMomentum; >> 687 aParticleChange.ProposeMomentumDirection(beamMomentum.unit()) ; >> 688 aParticleChange.ProposeEnergy(incidentEnergy-eRecoil); >> 689 } >> 690 >> 691 if(kin.recoilIon) { >> 692 G4DynamicParticle* recoil = new G4DynamicParticle (kin.recoilIon, >> 693 recoilMomentumDirection,eRecoil) ; >> 694 >> 695 aParticleChange.SetNumberOfSecondaries(1); >> 696 aParticleChange.AddSecondary(recoil); >> 697 } 762 } 698 } 763 699 764 G4bool G4ScreenedNuclearRecoil::IsApplicable(c << 700 G4bool G4ScreenedNuclearRecoil:: >> 701 IsApplicable(const G4ParticleDefinition& aParticleType) 765 { 702 { 766 return aParticleType == *(G4Proton::Proton() << 703 return aParticleType == *(G4Proton::Proton()) || 767 || aParticleType.GetParticleType() == << 704 aParticleType.GetParticleType() == "nucleus" || >> 705 aParticleType.GetParticleType() == "static_nucleus"; 768 } 706 } 769 707 770 void G4ScreenedNuclearRecoil::BuildPhysicsTabl << 708 >> 709 void >> 710 G4ScreenedNuclearRecoil:: >> 711 DumpPhysicsTable(const G4ParticleDefinition&) 771 { 712 { 772 G4String nam = aParticleType.GetParticleName << 773 if (nam == "GenericIon" || nam == "proton" | << 774 || nam == "alpha" || nam == "He3") << 775 { << 776 G4cout << G4endl << GetProcessName() << ": << 777 << " SubType= " << GetProcessSub << 778 << " maxEnergy(MeV)= " << proces << 779 } << 780 } 713 } 781 714 782 void G4ScreenedNuclearRecoil::DumpPhysicsTable << 783 << 784 // This used to be the file mhmScreenedNuclear 715 // This used to be the file mhmScreenedNuclearRecoil_native.cc 785 // it has been included here to collect this f << 716 // it has been included here to collect this file into a smaller number of packages 786 // number of packages << 787 717 788 #include "G4DataVector.hh" 718 #include "G4DataVector.hh" >> 719 #include "G4Material.hh" 789 #include "G4Element.hh" 720 #include "G4Element.hh" 790 #include "G4ElementVector.hh" << 791 #include "G4Isotope.hh" 721 #include "G4Isotope.hh" 792 #include "G4Material.hh" << 793 #include "G4MaterialCutsCouple.hh" 722 #include "G4MaterialCutsCouple.hh" 794 << 723 #include "G4ElementVector.hh" 795 #include <vector> 724 #include <vector> 796 725 797 G4_c2_function& ZBLScreening(G4int z1, G4int z << 726 G4_c2_function &ZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) 798 { << 799 static const size_t ncoef = 4; << 800 static G4double scales[ncoef] = {-3.2, -0.94 << 801 static G4double coefs[ncoef] = {0.1818, 0.50 << 802 << 803 G4double au = 0.8854 * angstrom * 0.529 / (s << 804 std::vector<G4double> r(npoints), phi(npoint << 805 << 806 for (size_t i = 0; i < npoints; i++) { << 807 G4double rr = (float)i / (float)(npoints - << 808 r[i] = rr * rr * rMax; << 809 // use quadratic r scale to make sampling << 810 G4double sum = 0.0; << 811 for (size_t j = 0; j < ncoef; j++) << 812 sum += coefs[j] * std::exp(scales[j] * r << 813 phi[i] = sum; << 814 } << 815 << 816 // compute the derivative at the origin for << 817 G4double phiprime0 = 0.0; << 818 for (size_t j = 0; j < ncoef; j++) << 819 phiprime0 += scales[j] * coefs[j] * std::e << 820 phiprime0 *= (1.0 / au); // put back in nat << 821 << 822 *auval = au; << 823 return c2.lin_log_interpolating_function().l << 824 } << 825 << 826 G4_c2_function& MoliereScreening(G4int z1, G4i << 827 { 727 { 828 static const size_t ncoef = 3; << 728 static const size_t ncoef=4; 829 static G4double scales[ncoef] = {-6.0, -1.2, << 729 static G4double scales[ncoef]={-3.2, -0.9432, -0.4028, -0.2016}; 830 static G4double coefs[ncoef] = {0.10, 0.55, << 730 static G4double coefs[ncoef]={0.1818,0.5099,0.2802,0.0281}; 831 << 731 832 G4double au = 0.8853 * 0.529 * angstrom / st << 732 G4double au=0.8854*angstrom*0.529/(std::pow(z1, 0.23)+std::pow(z2,0.23)); 833 std::vector<G4double> r(npoints), phi(npoint << 733 std::vector<G4double> r(npoints), phi(npoints); 834 << 734 835 for (size_t i = 0; i < npoints; i++) { << 735 for(size_t i=0; i<npoints; i++) { 836 G4double rr = (float)i / (float)(npoints - << 736 G4double rr=(float)i/(float)(npoints-1); 837 r[i] = rr * rr * rMax; << 737 r[i]=rr*rr*rMax; // use quadratic r scale to make sampling fine near the center 838 // use quadratic r scale to make sampling << 738 G4double sum=0.0; 839 G4double sum = 0.0; << 739 for(size_t j=0; j<ncoef; j++) sum+=coefs[j]*std::exp(scales[j]*r[i]/au); 840 for (size_t j = 0; j < ncoef; j++) << 740 phi[i]=sum; 841 sum += coefs[j] * std::exp(scales[j] * r << 741 } 842 phi[i] = sum; << 843 } << 844 << 845 // compute the derivative at the origin for << 846 G4double phiprime0 = 0.0; << 847 for (size_t j = 0; j < ncoef; j++) << 848 phiprime0 += scales[j] * coefs[j] * std::e << 849 phiprime0 *= (1.0 / au); // put back in nat << 850 << 851 *auval = au; << 852 return c2.lin_log_interpolating_function().l << 853 } << 854 << 855 G4_c2_function& LJScreening(G4int z1, G4int z2 << 856 { << 857 // from Loftager, Besenbacher, Jensen & Sore << 858 // PhysRev A20, 1443++, 1979 << 859 G4double au = 0.8853 * 0.529 * angstrom / st << 860 std::vector<G4double> r(npoints), phi(npoint << 861 << 862 for (size_t i = 0; i < npoints; i++) { << 863 G4double rr = (float)i / (float)(npoints - << 864 r[i] = rr * rr * rMax; << 865 // use quadratic r scale to make sampling << 866 << 867 G4double y = std::sqrt(9.67 * r[i] / au); << 868 G4double ysq = y * y; << 869 G4double phipoly = 1 + y + 0.3344 * ysq + << 870 phi[i] = phipoly * std::exp(-y); << 871 // G4cout << r[i] << " " << phi[i] << G4en << 872 } << 873 << 874 // compute the derivative at the origin for << 875 G4double logphiprime0 = (9.67 / 2.0) * (2 * << 876 // #avoid 0/0 on first element << 877 logphiprime0 *= (1.0 / au); // #put back in << 878 << 879 *auval = au; << 880 return c2.lin_log_interpolating_function().l << 881 } << 882 << 883 G4_c2_function& LJZBLScreening(G4int z1, G4int << 884 { << 885 // hybrid of LJ and ZBL, uses LJ if x < 0.25 << 886 /// connector in between. These numbers are << 887 // is very near the point where the function << 888 G4double auzbl, aulj; << 889 << 890 c2p zbl = ZBLScreening(z1, z2, npoints, rMax << 891 c2p lj = LJScreening(z1, z2, npoints, rMax, << 892 << 893 G4double au = (auzbl + aulj) * 0.5; << 894 lj->set_domain(lj->xmin(), 0.25 * au); << 895 zbl->set_domain(1.5 * au, zbl->xmax()); << 896 << 897 c2p conn = c2.connector_function(lj->xmax(), << 898 c2_piecewise_function_p<G4double>& pw = c2.p << 899 c2p keepit(pw); << 900 pw.append_function(lj); << 901 pw.append_function(conn); << 902 pw.append_function(zbl); << 903 << 904 *auval = au; << 905 keepit.release_for_return(); << 906 return pw; << 907 } << 908 << 909 G4NativeScreenedCoulombCrossSection::~G4Native << 910 << 911 G4NativeScreenedCoulombCrossSection::G4NativeS << 912 { << 913 AddScreeningFunction("zbl", ZBLScreening); << 914 AddScreeningFunction("lj", LJScreening); << 915 AddScreeningFunction("mol", MoliereScreening << 916 AddScreeningFunction("ljzbl", LJZBLScreening << 917 } << 918 << 919 std::vector<G4String> G4NativeScreenedCoulombC << 920 { << 921 std::vector<G4String> keys; << 922 // find the available screening keys << 923 std::map<std::string, ScreeningFunc>::const_ << 924 for (; sfunciter != phiMap.end(); sfunciter+ << 925 keys.push_back((*sfunciter).first); << 926 return keys; << 927 } << 928 << 929 static inline G4double cm_energy(G4double a1, << 930 { << 931 // "relativistically correct energy in CM fr << 932 G4double m1 = a1 * amu_c2, mass2 = a2 * amu_ << 933 G4double mc2 = (m1 + mass2); << 934 G4double f = 2.0 * mass2 * t0 / (mc2 * mc2); << 935 // old way: return (f < 1e-6) ? 0.5*mc2*f : << 936 // formally equivalent to previous, but nume << 937 // f without conditional << 938 // uses identity (sqrt(1+x) - 1)(sqrt(1+x) + << 939 return mc2 * f / (std::sqrt(1.0 + f) + 1.0); << 940 } << 941 << 942 static inline G4double thetac(G4double m1, G4d << 943 { << 944 G4double s2th2 = eratio * ((m1 + mass2) * (m << 945 G4double sth2 = std::sqrt(s2th2); << 946 return 2.0 * std::asin(sth2); << 947 } << 948 742 949 void G4NativeScreenedCoulombCrossSection::Load << 743 // compute the derivative at the origin for the spline 950 << 744 G4double phiprime0=0.0; 951 { << 745 for(size_t j=0; j<ncoef; j++) phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au); 952 static const size_t sigLen = 200; << 746 phiprime0*=(1.0/au); // put back in natural units; 953 // since sigma doesn't matter much, a very c << 747 954 G4DataVector energies(sigLen); << 748 *auval=au; 955 G4DataVector data(sigLen); << 749 return c2.lin_log_interpolating_function().load(r, phi, false, phiprime0,true,0); 956 << 750 } 957 a1 = standardmass(z1); << 751 958 // use standardized values for mass for buil << 752 G4_c2_function &MoliereScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) 959 << 753 { 960 const G4MaterialTable* materialTable = G4Mat << 754 static const size_t ncoef=3; 961 G4int nMaterials = G4Material::GetNumberOfMa << 755 static G4double scales[ncoef]={-6.0, -1.2, -0.3}; 962 << 756 static G4double coefs[ncoef]={0.10, 0.55, 0.35}; 963 for (G4int im = 0; im < nMaterials; im++) { << 757 964 const G4Material* material = (*materialTab << 758 G4double au=0.8853*0.529*angstrom/std::sqrt(std::pow(z1, 0.6667)+std::pow(z2,0.6667)); 965 const G4ElementVector* elementVector = mat << 759 std::vector<G4double> r(npoints), phi(npoints); 966 const G4int nMatElements = material->GetNu << 760 967 << 761 for(size_t i=0; i<npoints; i++) { 968 for (G4int iEl = 0; iEl < nMatElements; iE << 762 G4double rr=(float)i/(float)(npoints-1); 969 const G4Element* element = (*elementVect << 763 r[i]=rr*rr*rMax; // use quadratic r scale to make sampling fine near the center 970 G4int Z = element->GetZasInt(); << 764 G4double sum=0.0; 971 G4double a2 = element->GetA() * (mole / << 765 for(size_t j=0; j<ncoef; j++) sum+=coefs[j]*std::exp(scales[j]*r[i]/au); 972 << 766 phi[i]=sum; 973 if (sigmaMap.find(Z) != sigmaMap.end()) << 974 // we've already got this element << 975 << 976 // find the screening function generator << 977 std::map<std::string, ScreeningFunc>::it << 978 if (sfunciter == phiMap.end()) { << 979 G4ExceptionDescription ed; << 980 ed << "No such screening key <" << scr << 981 G4Exception("G4NativeScreenedCoulombCr << 982 } << 983 ScreeningFunc sfunc = (*sfunciter).secon << 984 << 985 G4double au; << 986 G4_c2_ptr screen = sfunc(z1, Z, 200, 50. << 987 // generate the screening data << 988 G4ScreeningTables st; << 989 << 990 st.EMphiData = screen; // save our phi << 991 st.z1 = z1; << 992 st.m1 = a1; << 993 st.z2 = Z; << 994 st.m2 = a2; << 995 st.emin = recoilCutoff; << 996 st.au = au; << 997 << 998 // now comes the hard part... build the << 999 // tables from the phi table << 1000 // based on (pi-thetac) = pi*beta*alpha << 1001 // alpha is very nearly unity, always << 1002 // so just solve it wth alpha=1, which << 1003 // much easier << 1004 // this function returns an approximati << 1005 // (beta/x0)^2=phi(x0)/(eps*x0)-1 ~ ((p << 1006 // Since we don't need exact sigma valu << 1007 // (within a factor of 2 almost always) << 1008 // this rearranges to phi(x0)/(x0*eps) << 1009 // 2*theta/pi - theta^2/pi^2 << 1010 << 1011 c2_linear_p<G4double>& c2eps = c2.linea << 1012 // will store an appropriate eps inside << 1013 G4_c2_ptr phiau = screen(c2.linear(0.0, << 1014 G4_c2_ptr x0func(phiau / c2eps); << 1015 // this will be phi(x)/(x*eps) when c2e << 1016 x0func->set_domain(1e-6 * angstrom / au << 1017 // needed for inverse function << 1018 // use the c2_inverse_function interfac << 1019 // it is more efficient for an ordered << 1020 // computation of values. << 1021 G4_c2_ptr x0_solution(c2.inverse_functi << 1022 << 1023 G4double m1c2 = a1 * amu_c2; << 1024 G4double escale = z1 * Z * elm_coupling << 1025 // energy at screening distance << 1026 G4double emax = m1c2; << 1027 // model is doubtful in very relativist << 1028 G4double eratkin = 0.9999 * (4 * a1 * a << 1029 // #maximum kinematic ratio possible at << 1030 G4double cmfact0 = st.emin / cm_energy( << 1031 G4double l1 = std::log(emax); << 1032 G4double l0 = std::log(st.emin * cmfact << 1033 << 1034 if (verbosity >= 1) << 1035 G4cout << "Native Screening: " << scr << 1036 << a2 << " " << recoilCutoff < << 1037 << 1038 for (size_t idx = 0; idx < sigLen; idx+ << 1039 G4double ee = std::exp(idx * ((l1 - l << 1040 G4double gamma = 1.0 + ee / m1c2; << 1041 G4double eratio = (cmfact0 * st.emin) << 1042 // factor by which ee needs to be red << 1043 G4double theta = thetac(gamma * a1, a << 1044 << 1045 G4double eps = cm_energy(a1, a2, ee) << 1046 // #make sure lab energy is converted << 1047 // calculations << 1048 c2eps.reset(0.0, 0.0, eps); << 1049 // set correct slope in this function << 1050 << 1051 G4double q = theta / pi; << 1052 // G4cout << ee << " " << m1c2 << " " << 1053 // << eps << " " << theta << " " << q << 1054 // old way using root finder << 1055 // G4double x0= x0func->find_root(1e- << 1056 // 0.9999*screen.xmax()/au, 1.0, 2*q- << 1057 // new way using c2_inverse_function << 1058 // useful information so should be a << 1059 // since we are scanning this in stri << 1060 G4double x0 = 0; << 1061 try { << 1062 x0 = x0_solution(2 * q - q * q); << 1063 } 767 } 1064 catch (c2_exception&) { << 768 1065 G4Exception("G4ScreenedNuclearRecoi << 769 // compute the derivative at the origin for the spline 1066 "failure in inverse sol << 770 G4double phiprime0=0.0; >> 771 for(size_t j=0; j<ncoef; j++) phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au); >> 772 phiprime0*=(1.0/au); // put back in natural units; >> 773 >> 774 *auval=au; >> 775 return c2.lin_log_interpolating_function().load(r, phi, false, phiprime0,true,0); >> 776 } >> 777 >> 778 G4_c2_function &LJScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) >> 779 { >> 780 //from Loftager, Besenbacher, Jensen & Sorensen >> 781 //PhysRev A20, 1443++, 1979 >> 782 G4double au=0.8853*0.529*angstrom/std::sqrt(std::pow(z1, 0.6667)+std::pow(z2,0.6667)); >> 783 std::vector<G4double> r(npoints), phi(npoints); >> 784 >> 785 for(size_t i=0; i<npoints; i++) { >> 786 G4double rr=(float)i/(float)(npoints-1); >> 787 r[i]=rr*rr*rMax; // use quadratic r scale to make sampling fine near the center >> 788 >> 789 G4double y=std::sqrt(9.67*r[i]/au); >> 790 G4double ysq=y*y; >> 791 G4double phipoly=1+y+0.3344*ysq+0.0485*y*ysq+0.002647*ysq*ysq; >> 792 phi[i]=phipoly*std::exp(-y); >> 793 // G4cout << r[i] << " " << phi[i] << G4endl; >> 794 } >> 795 >> 796 // compute the derivative at the origin for the spline >> 797 G4double logphiprime0=(9.67/2.0)*(2*0.3344-1.0); // #avoid 0/0 on first element >> 798 logphiprime0 *= (1.0/au); // #put back in natural units >> 799 >> 800 *auval=au; >> 801 return c2.lin_log_interpolating_function().load(r, phi, false, logphiprime0*phi[0],true,0); >> 802 } >> 803 >> 804 G4_c2_function &LJZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) >> 805 { >> 806 // hybrid of LJ and ZBL, uses LJ if x < 0.25*auniv, ZBL if x > 1.5*auniv, and >> 807 /// connector in between. These numbers are selected so the switchover >> 808 // is very near the point where the functions naturally cross. >> 809 G4double auzbl, aulj; >> 810 >> 811 c2p zbl=ZBLScreening(z1, z2, npoints, rMax, &auzbl); >> 812 c2p lj=LJScreening(z1, z2, npoints, rMax, &aulj); >> 813 >> 814 G4double au=(auzbl+aulj)*0.5; >> 815 lj->set_domain(lj->xmin(), 0.25*au); >> 816 zbl->set_domain(1.5*au,zbl->xmax()); >> 817 >> 818 c2p conn=c2.connector_function(lj->xmax(), lj, zbl->xmin(), zbl, true,0); >> 819 c2_piecewise_function_p<G4double> &pw=c2.piecewise_function(); >> 820 c2p keepit(pw); >> 821 pw.append_function(lj); >> 822 pw.append_function(conn); >> 823 pw.append_function(zbl); >> 824 >> 825 *auval=au; >> 826 keepit.release_for_return(); >> 827 return pw; >> 828 } >> 829 >> 830 G4NativeScreenedCoulombCrossSection::~G4NativeScreenedCoulombCrossSection() { >> 831 } >> 832 >> 833 G4NativeScreenedCoulombCrossSection::G4NativeScreenedCoulombCrossSection() { >> 834 AddScreeningFunction("zbl", ZBLScreening); >> 835 AddScreeningFunction("lj", LJScreening); >> 836 AddScreeningFunction("mol", MoliereScreening); >> 837 AddScreeningFunction("ljzbl", LJZBLScreening); >> 838 } >> 839 >> 840 std::vector<G4String> G4NativeScreenedCoulombCrossSection::GetScreeningKeys() const { >> 841 std::vector<G4String> keys; >> 842 // find the available screening keys >> 843 std::map<std::string, ScreeningFunc>::const_iterator sfunciter=phiMap.begin(); >> 844 for(; sfunciter != phiMap.end(); sfunciter++) keys.push_back((*sfunciter).first); >> 845 return keys; >> 846 } >> 847 >> 848 static inline G4double cm_energy(G4double a1, G4double a2, G4double t0) { >> 849 // "relativistically correct energy in CM frame" >> 850 G4double m1=a1*amu_c2, mass2=a2*amu_c2; >> 851 G4double mc2=(m1+mass2); >> 852 G4double f=2.0*mass2*t0/(mc2*mc2); >> 853 // old way: return (f < 1e-6) ? 0.5*mc2*f : mc2*(std::sqrt(1.0+f)-1.0); >> 854 // formally equivalent to previous, but numerically stable for all f without conditional >> 855 // uses identity (sqrt(1+x) - 1)(sqrt(1+x) + 1) = x >> 856 return mc2*f/(std::sqrt(1.0+f)+1.0); >> 857 } >> 858 >> 859 static inline G4double thetac(G4double m1, G4double mass2, G4double eratio) { >> 860 G4double s2th2=eratio*( (m1+mass2)*(m1+mass2)/(4.0*m1*mass2) ); >> 861 G4double sth2=std::sqrt(s2th2); >> 862 return 2.0*std::asin(sth2); >> 863 } >> 864 >> 865 void G4NativeScreenedCoulombCrossSection::LoadData(G4String screeningKey, G4int z1, G4double a1, G4double recoilCutoff) >> 866 { >> 867 static const size_t sigLen=200; // since sigma doesn't matter much, a very coarse table will do >> 868 G4DataVector energies(sigLen); >> 869 G4DataVector data(sigLen); >> 870 >> 871 a1=standardmass(z1); // use standardized values for mass for building tables >> 872 >> 873 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); >> 874 if (materialTable == 0) { return; } >> 875 //G4Exception("mhmNativeCrossSection::LoadData - no MaterialTable found)"); >> 876 >> 877 G4int nMaterials = G4Material::GetNumberOfMaterials(); >> 878 >> 879 for (G4int im=0; im<nMaterials; im++) >> 880 { >> 881 const G4Material* material= (*materialTable)[im]; >> 882 const G4ElementVector* elementVector = material->GetElementVector(); >> 883 const G4int nMatElements = material->GetNumberOfElements(); >> 884 >> 885 for (G4int iEl=0; iEl<nMatElements; iEl++) >> 886 { >> 887 G4Element* element = (*elementVector)[iEl]; >> 888 G4int Z = (G4int) element->GetZ(); >> 889 G4double a2=element->GetA()*(mole/gram); >> 890 >> 891 if(sigmaMap.find(Z)!=sigmaMap.end()) continue; // we've already got this element >> 892 >> 893 // find the screening function generator we need >> 894 std::map<std::string, ScreeningFunc>::iterator sfunciter=phiMap.find(screeningKey); >> 895 if(sfunciter==phiMap.end()) { >> 896 G4cout << "no such screening key " << screeningKey << G4endl; // FIXME later >> 897 exit(1); >> 898 } >> 899 ScreeningFunc sfunc=(*sfunciter).second; >> 900 >> 901 G4double au; >> 902 G4_c2_ptr screen=sfunc(z1, Z, 200, 50.0*angstrom, &au); // generate the screening data >> 903 G4ScreeningTables st; >> 904 >> 905 st.EMphiData=screen; //save our phi table >> 906 st.z1=z1; st.m1=a1; st.z2=Z; st.m2=a2; st.emin=recoilCutoff; >> 907 st.au=au; >> 908 >> 909 // now comes the hard part... build the total cross section tables from the phi table >> 910 //based on (pi-thetac) = pi*beta*alpha/x0, but noting that alpha is very nearly unity, always >> 911 //so just solve it wth alpha=1, which makes the solution much easier >> 912 //this function returns an approximation to (beta/x0)^2=phi(x0)/(eps*x0)-1 ~ ((pi-thetac)/pi)^2 >> 913 //Since we don't need exact sigma values, this is good enough (within a factor of 2 almost always) >> 914 //this rearranges to phi(x0)/(x0*eps) = 2*theta/pi - theta^2/pi^2 >> 915 >> 916 c2_linear_p<G4double> &c2eps=c2.linear(0.0, 0.0, 1.0); // will store an appropriate eps inside this in loop >> 917 G4_c2_ptr phiau=screen(c2.linear(0.0, 0.0, au)); >> 918 G4_c2_ptr x0func(phiau/c2eps); // this will be phi(x)/(x*eps) when c2eps is correctly set >> 919 x0func->set_domain(1e-6*angstrom/au, 0.9999*screen->xmax()/au); // needed for inverse function >> 920 // use the c2_inverse_function interface for the root finder... it is more efficient for an ordered >> 921 // computation of values. >> 922 G4_c2_ptr x0_solution(c2.inverse_function(x0func)); >> 923 >> 924 G4double m1c2=a1*amu_c2; >> 925 G4double escale=z1*Z*elm_coupling/au; // energy at screening distance >> 926 G4double emax=m1c2; // model is doubtful in very relativistic range >> 927 G4double eratkin=0.9999*(4*a1*a2)/((a1+a2)*(a1+a2)); // #maximum kinematic ratio possible at 180 degrees >> 928 G4double cmfact0=st.emin/cm_energy(a1, a2, st.emin); >> 929 G4double l1=std::log(emax); >> 930 G4double l0=std::log(st.emin*cmfact0/eratkin); >> 931 >> 932 if(verbosity >=1) >> 933 G4cout << "Native Screening: " << screeningKey << " " << z1 << " " << a1 << " " << >> 934 Z << " " << a2 << " " << recoilCutoff << G4endl; >> 935 >> 936 for(size_t idx=0; idx<sigLen; idx++) { >> 937 G4double ee=std::exp(idx*((l1-l0)/sigLen)+l0); >> 938 G4double gamma=1.0+ee/m1c2; >> 939 G4double eratio=(cmfact0*st.emin)/ee; // factor by which ee needs to be reduced to get emin >> 940 G4double theta=thetac(gamma*a1, a2, eratio); >> 941 >> 942 G4double eps=cm_energy(a1, a2, ee)/escale; // #make sure lab energy is converted to CM for these calculations >> 943 c2eps.reset(0.0, 0.0, eps); // set correct slope in this function >> 944 >> 945 G4double q=theta/pi; >> 946 // G4cout << ee << " " << m1c2 << " " << gamma << " " << eps << " " << theta << " " << q << G4endl; >> 947 // old way using root finder >> 948 // G4double x0= x0func->find_root(1e-6*angstrom/au, 0.9999*screen.xmax()/au, 1.0, 2*q-q*q); >> 949 // new way using c2_inverse_function which caches useful information so should be a bit faster >> 950 // since we are scanning this in strict order. >> 951 G4double x0=0; >> 952 try { >> 953 x0=x0_solution(2*q-q*q); >> 954 } catch(c2_exception e) { >> 955 //G4Exception(G4String("G4ScreenedNuclearRecoil: failure in inverse solution to generate MFP Tables: ")+e.what()); >> 956 } >> 957 G4double betasquared=x0*x0 - x0*phiau(x0)/eps; >> 958 G4double sigma=pi*betasquared*au*au; >> 959 energies[idx]=ee; >> 960 data[idx]=sigma; >> 961 } >> 962 screeningData[Z]=st; >> 963 sigmaMap[Z] = c2.log_log_interpolating_function().load(energies, data, true,0,true,0); >> 964 } 1067 } 965 } 1068 G4double betasquared = x0 * x0 - x0 * << 1069 G4double sigma = pi * betasquared * a << 1070 energies[idx] = ee; << 1071 data[idx] = sigma; << 1072 } << 1073 screeningData[Z] = st; << 1074 sigmaMap[Z] = c2.log_log_interpolating_ << 1075 } << 1076 } << 1077 } 966 } 1078 967