Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm7/src/G4Screen 26 /// \file electromagnetic/TestEm7/src/G4ScreenedNuclearRecoil.cc 27 /// \brief Implementation of the G4ScreenedNuc 27 /// \brief Implementation of the G4ScreenedNuclearRecoil class 28 // 28 // 29 // 29 // 30 // 30 // 31 // Class Description 31 // Class Description 32 // Process for screened electromagnetic nuclea << 32 // Process for screened electromagnetic nuclear elastic scattering; 33 // Physics comes from: 33 // Physics comes from: 34 // Marcus H. Mendenhall and Robert A. Weller, << 34 // Marcus H. Mendenhall and Robert A. Weller, 35 // "Algorithms for the rapid computation o << 35 // "Algorithms for the rapid computation of classical cross 36 // sections for screened Coulomb collision 36 // sections for screened Coulomb collisions " 37 // Nuclear Instruments and Methods in Phy << 37 // Nuclear Instruments and Methods in Physics Research B58 (1991) 11-17 38 // The only input required is a screening func 38 // The only input required is a screening function phi(r/a) which is the ratio 39 // of the actual interatomic potential for two << 39 // of the actual interatomic potential for two atoms with atomic 40 // numbers Z1 and Z2, 40 // numbers Z1 and Z2, 41 // to the unscreened potential Z1*Z2*e^2/r whe << 41 // to the unscreened potential Z1*Z2*e^2/r where e^2 is elm_coupling in 42 // Geant4 units 42 // Geant4 units 43 // 43 // 44 // First version, April 2004, Marcus H. Menden 44 // First version, April 2004, Marcus H. Mendenhall, Vanderbilt University 45 // 45 // 46 // 5 May, 2004, Marcus Mendenhall 46 // 5 May, 2004, Marcus Mendenhall 47 // Added an option for enhancing hard collisio << 47 // Added an option for enhancing hard collisions statistically, to allow 48 // backscattering calculations to be carried o 48 // backscattering calculations to be carried out with much improved event rates, 49 // without distorting the multiple-scattering 49 // without distorting the multiple-scattering broadening too much. 50 // the method SetCrossSectionHardening(G4doubl << 50 // the method SetCrossSectionHardening(G4double fraction, G4double 51 // Hardeni 51 // HardeningFactor) 52 // sets what fraction of the events will be ra 52 // sets what fraction of the events will be randomly hardened, 53 // and the factor by which the impact area is 53 // and the factor by which the impact area is reduced for such selected events. 54 // 54 // 55 // 21 November, 2004, Marcus Mendenhall 55 // 21 November, 2004, Marcus Mendenhall 56 // added static_nucleus to IsApplicable 56 // added static_nucleus to IsApplicable 57 // << 57 // 58 // 7 December, 2004, Marcus Mendenhall 58 // 7 December, 2004, Marcus Mendenhall 59 // changed mean free path of stopping particle 59 // changed mean free path of stopping particle from 0.0 to 1.0*nanometer 60 // to avoid new verbose warning about 0 MFP in 60 // to avoid new verbose warning about 0 MFP in 4.6.2p02 61 // << 61 // 62 // 17 December, 2004, Marcus Mendenhall 62 // 17 December, 2004, Marcus Mendenhall 63 // added code to permit screening out overly c << 63 // added code to permit screening out overly close collisions which are 64 // expected to be hadronic, not Coulombic 64 // expected to be hadronic, not Coulombic 65 // 65 // 66 // 19 December, 2004, Marcus Mendenhall 66 // 19 December, 2004, Marcus Mendenhall 67 // massive rewrite to add modular physics stag 67 // massive rewrite to add modular physics stages and plug-in cross section table 68 // computation. This allows one to select (e. << 68 // computation. This allows one to select (e.g.) between the normal external 69 // python process and an embedded python inter << 69 // python process and an embedded python interpreter (which is much faster) 70 // for generating the tables. 70 // for generating the tables. 71 // It also allows one to switch between sub-sa << 71 // It also allows one to switch between sub-sampled scattering (event biasing) 72 // and normal scattering, and between non-rela << 72 // and normal scattering, and between non-relativistic kinematics and 73 // relativistic kinematic approximations, with << 73 // relativistic kinematic approximations, without having a class for every 74 // combination. Further, one can add extra sta << 74 // combination. Further, one can add extra stages to the scattering, which can 75 // implement various book-keeping processes. 75 // implement various book-keeping processes. 76 // << 76 // 77 // January 2007, Marcus Mendenhall 77 // January 2007, Marcus Mendenhall 78 // Reorganized heavily for inclusion in Geant4 << 78 // Reorganized heavily for inclusion in Geant4 Core. All modules merged into 79 // one source and header, all historic code re 79 // one source and header, all historic code removed. 80 // << 80 // 81 // Class Description - End 81 // Class Description - End 82 82 83 //....oooOO0OOooo........oooOO0OOooo........oo 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 84 84 85 #include "G4ScreenedNuclearRecoil.hh" << 85 #include <stdio.h> 86 86 87 #include "globals.hh" 87 #include "globals.hh" 88 88 89 #include <stdio.h> << 89 #include "G4ScreenedNuclearRecoil.hh" 90 90 91 const char* G4ScreenedCoulombCrossSectionInfo: << 91 const char* G4ScreenedCoulombCrossSectionInfo::CVSFileVers() { return 92 { << 92 "G4ScreenedNuclearRecoil.cc,v 1.57 2008/05/07 11:51:26 marcus Exp GEANT4 tag "; 93 return "G4ScreenedNuclearRecoil.cc,v 1.57 20 << 94 } 93 } 95 94 96 #include "c2_factory.hh" << 95 #include "G4ParticleTypes.hh" 97 << 96 #include "G4ParticleTable.hh" >> 97 #include "G4IonTable.hh" >> 98 #include "G4VParticleChange.hh" >> 99 #include "G4ParticleChangeForLoss.hh" 98 #include "G4DataVector.hh" 100 #include "G4DataVector.hh" 99 #include "G4DynamicParticle.hh" << 101 #include "G4Track.hh" >> 102 #include "G4Step.hh" >> 103 >> 104 #include "G4Material.hh" 100 #include "G4Element.hh" 105 #include "G4Element.hh" 101 #include "G4ElementVector.hh" << 102 #include "G4EmProcessSubType.hh" << 103 #include "G4IonTable.hh" << 104 #include "G4Isotope.hh" 106 #include "G4Isotope.hh" 105 #include "G4IsotopeVector.hh" << 106 #include "G4LindhardPartition.hh" << 107 #include "G4Material.hh" << 108 #include "G4MaterialCutsCouple.hh" 107 #include "G4MaterialCutsCouple.hh" 109 #include "G4ParticleChangeForLoss.hh" << 108 #include "G4ElementVector.hh" >> 109 #include "G4IsotopeVector.hh" >> 110 >> 111 #include "G4EmProcessSubType.hh" >> 112 110 #include "G4ParticleDefinition.hh" 113 #include "G4ParticleDefinition.hh" 111 #include "G4ParticleTable.hh" << 114 #include "G4DynamicParticle.hh" 112 #include "G4ParticleTypes.hh" << 113 #include "G4ProcessManager.hh" 115 #include "G4ProcessManager.hh" 114 #include "G4StableIsotopes.hh" 116 #include "G4StableIsotopes.hh" 115 #include "G4Step.hh" << 117 #include "G4LindhardPartition.hh" 116 #include "G4Track.hh" << 118 117 #include "G4VParticleChange.hh" << 118 #include "Randomize.hh" 119 #include "Randomize.hh" 119 120 120 #include <iomanip> << 121 #include <iostream> 121 #include <iostream> 122 static c2_factory<G4double> c2; // this makes << 122 #include <iomanip> >> 123 >> 124 #include "c2_factory.hh" >> 125 static c2_factory<G4double> c2; // this makes a lot of notation shorter 123 typedef c2_ptr<G4double> c2p; 126 typedef c2_ptr<G4double> c2p; 124 127 125 G4ScreenedCoulombCrossSection::~G4ScreenedCoul 128 G4ScreenedCoulombCrossSection::~G4ScreenedCoulombCrossSection() 126 { 129 { 127 screeningData.clear(); << 130 screeningData.clear(); 128 MFPTables.clear(); << 131 MFPTables.clear(); 129 } 132 } 130 133 131 const G4double G4ScreenedCoulombCrossSection:: << 134 const G4double G4ScreenedCoulombCrossSection::massmap[nMassMapElements+1]={ 132 0, 1.007940, 4.002602, 6.941000 << 135 0, 1.007940, 4.002602, 6.941000, 9.012182, 10.811000, 12.010700, 133 15.999400, 18.998403, 20.179700, 22.98977 << 136 14.006700, 15.999400, 18.998403, 20.179700, 22.989770, 24.305000, 26.981538, 134 32.065000, 35.453000, 39.948000, 39.09830 << 137 28.085500, 135 51.996100, 54.938049, 55.845000, 58.93320 << 138 30.973761, 32.065000, 35.453000, 39.948000, 39.098300, 40.078000, 44.955910, 136 72.640000, 74.921600, 78.960000, 79.90400 << 139 47.867000, 137 91.224000, 92.906380, 95.940000, 98.00000 << 140 50.941500, 51.996100, 54.938049, 55.845000, 58.933200, 58.693400, 63.546000, 138 112.411000, 114.818000, 118.710000, 121.7600 << 141 65.409000, 139 137.327000, 138.905500, 140.116000, 140.9076 << 142 69.723000, 72.640000, 74.921600, 78.960000, 79.904000, 83.798000, 85.467800, 140 157.250000, 158.925340, 162.500000, 164.9303 << 143 87.620000, 141 178.490000, 180.947900, 183.840000, 186.2070 << 144 88.905850, 91.224000, 92.906380, 95.940000, 98.000000, 101.070000, 102.905500, 142 200.590000, 204.383300, 207.200000, 208.9803 << 145 106.420000, 143 226.000000, 227.000000, 232.038100, 231.0358 << 146 107.868200, 112.411000, 114.818000, 118.710000, 121.760000, 127.600000, 144 247.000000, 247.000000, 251.000000, 252.0000 << 147 126.904470, 131.293000, 145 261.000000, 262.000000, 266.000000, 264.0000 << 148 132.905450, 137.327000, 138.905500, 140.116000, 140.907650, 144.240000, 146 285.000000, 282.500000, 289.000000, 287.5000 << 149 145.000000, 150.360000, 147 << 150 151.964000, 157.250000, 158.925340, 162.500000, 164.930320, 167.259000, 148 G4ParticleDefinition* << 151 168.934210, 173.040000, 149 G4ScreenedCoulombCrossSection::SelectRandomUnw << 152 174.967000, 178.490000, 180.947900, 183.840000, 186.207000, 190.230000, 150 { << 153 192.217000, 195.078000, 151 // Select randomly an element within the mat << 154 196.966550, 200.590000, 204.383300, 207.200000, 208.980380, 209.000000, 152 // density only << 155 210.000000, 222.000000, 153 const G4Material* material = couple->GetMate << 156 223.000000, 226.000000, 227.000000, 232.038100, 231.035880, 238.028910, 154 G4int nMatElements = material->GetNumberOfEl << 157 237.000000, 244.000000, 155 const G4ElementVector* elementVector = mater << 158 243.000000, 247.000000, 247.000000, 251.000000, 252.000000, 257.000000, 156 const G4Element* element = 0; << 159 258.000000, 259.000000, 157 G4ParticleDefinition* target = 0; << 160 262.000000, 261.000000, 262.000000, 266.000000, 264.000000, 277.000000, 158 << 161 268.000000, 281.000000, 159 // Special case: the material consists of on << 162 272.000000, 285.000000, 282.500000, 289.000000, 287.500000, 292.000000}; 160 if (nMatElements == 1) { << 163 161 element = (*elementVector)[0]; << 164 G4ParticleDefinition* 162 } << 165 G4ScreenedCoulombCrossSection::SelectRandomUnweightedTarget( 163 else { << 166 const G4MaterialCutsCouple* couple) 164 // Composite material << 167 { 165 G4double random = G4UniformRand() * materi << 168 // Select randomly an element within the material, according to number 166 G4double nsum = 0.0; << 169 // density only 167 const G4double* atomDensities = material-> << 170 const G4Material* material = couple->GetMaterial(); 168 << 171 G4int nMatElements = material->GetNumberOfElements(); 169 for (G4int k = 0; k < nMatElements; k++) { << 172 const G4ElementVector* elementVector = material->GetElementVector(); 170 nsum += atomDensities[k]; << 173 const G4Element *element=0; 171 element = (*elementVector)[k]; << 174 G4ParticleDefinition*target=0; 172 if (nsum >= random) break; << 175 173 } << 176 // Special case: the material consists of one element 174 } << 177 if (nMatElements == 1) 175 << 178 { 176 G4int N = 0; << 179 element= (*elementVector)[0]; 177 G4int Z = element->GetZasInt(); << 178 << 179 G4int nIsotopes = element->GetNumberOfIsotop << 180 if (0 < nIsotopes) { << 181 if (Z <= 92) { << 182 // we have no detailed material isotopic << 183 // so use G4StableIsotopes table up to Z << 184 static G4StableIsotopes theIso; << 185 // get a stable isotope table for defaul << 186 nIsotopes = theIso.GetNumberOfIsotopes(Z << 187 G4double random = 100.0 * G4UniformRand( << 188 // values are expressed as percent, sum << 189 G4int tablestart = theIso.GetFirstIsotop << 190 G4double asum = 0.0; << 191 for (G4int i = 0; i < nIsotopes; i++) { << 192 asum += theIso.GetAbundance(i + tables << 193 N = theIso.GetIsotopeNucleonCount(i + << 194 if (asum >= random) break; << 195 } << 196 } 180 } 197 else { << 181 else 198 // too heavy for stable isotope table, j << 182 { 199 N = (G4int)std::floor(element->GetN() + << 183 // Composite material 200 } << 184 G4double random = G4UniformRand() * material->GetTotNbOfAtomsPerVolume(); 201 } << 185 G4double nsum=0.0; 202 else { << 186 const G4double *atomDensities=material->GetVecNbOfAtomsPerVolume(); 203 G4int i; << 187 204 const G4IsotopeVector* isoV = element->Get << 188 for (G4int k=0 ; k < nMatElements ; k++ ) 205 G4double random = G4UniformRand(); << 189 { 206 G4double* abundance = element->GetRelative << 190 nsum+=atomDensities[k]; 207 G4double asum = 0.0; << 191 element= (*elementVector)[k]; 208 for (i = 0; i < nIsotopes; i++) { << 192 if (nsum >= random) break; 209 asum += abundance[i]; << 193 } 210 N = (*isoV)[i]->GetN(); << 211 if (asum >= random) break; << 212 } 194 } 213 } << 214 195 215 // get the official definition of this nucle << 196 G4int N=0; 216 // value of A note that GetIon is very slow, << 197 G4int Z=element->GetZasInt(); 217 // we have already found ourselves. << 198 218 ParticleCache::iterator p = targetMap.find(Z << 199 G4int nIsotopes=element->GetNumberOfIsotopes(); 219 if (p != targetMap.end()) { << 200 if(0<nIsotopes) { 220 target = (*p).second; << 201 if(Z<=92) { 221 } << 202 // we have no detailed material isotopic info available, 222 else { << 203 // so use G4StableIsotopes table up to Z=92 223 target = G4IonTable::GetIonTable()->GetIon << 204 static G4StableIsotopes theIso; 224 targetMap[Z * 1000 + N] = target; << 205 // get a stable isotope table for default results 225 } << 206 nIsotopes=theIso.GetNumberOfIsotopes(Z); 226 return target; << 207 G4double random = 100.0*G4UniformRand(); >> 208 // values are expressed as percent, sum is 100 >> 209 G4int tablestart=theIso.GetFirstIsotope(Z); >> 210 G4double asum=0.0; >> 211 for(G4int i=0; i<nIsotopes; i++) { >> 212 asum+=theIso.GetAbundance(i+tablestart); >> 213 N=theIso.GetIsotopeNucleonCount(i+tablestart); >> 214 if(asum >= random) break; >> 215 } >> 216 } else { >> 217 // too heavy for stable isotope table, just use mean mass >> 218 N=(G4int)std::floor(element->GetN()+0.5); >> 219 } >> 220 } else { >> 221 G4int i; >> 222 const G4IsotopeVector *isoV=element->GetIsotopeVector(); >> 223 G4double random = G4UniformRand(); >> 224 G4double *abundance=element->GetRelativeAbundanceVector(); >> 225 G4double asum=0.0; >> 226 for(i=0; i<nIsotopes; i++) { >> 227 asum+=abundance[i]; >> 228 N=(*isoV)[i]->GetN(); >> 229 if(asum >= random) break; >> 230 } >> 231 } >> 232 >> 233 // get the official definition of this nucleus, to get the correct >> 234 // value of A note that GetIon is very slow, so we will cache ones >> 235 // we have already found ourselves. >> 236 ParticleCache::iterator p=targetMap.find(Z*1000+N); >> 237 if (p != targetMap.end()) { >> 238 target=(*p).second; >> 239 } else{ >> 240 target=G4IonTable::GetIonTable()->GetIon(Z, N, 0.0); >> 241 targetMap[Z*1000+N]=target; >> 242 } >> 243 return target; 227 } 244 } 228 245 229 void G4ScreenedCoulombCrossSection::BuildMFPTa 246 void G4ScreenedCoulombCrossSection::BuildMFPTables() 230 { 247 { 231 const G4int nmfpvals = 200; << 248 const G4int nmfpvals=200; 232 << 233 std::vector<G4double> evals(nmfpvals), mfpva << 234 249 235 // sum up inverse MFPs per element for each << 250 std::vector<G4double> evals(nmfpvals), mfpvals(nmfpvals); 236 const G4MaterialTable* materialTable = G4Mat << 237 if (materialTable == 0) { << 238 return; << 239 } << 240 // G4Exception("G4ScreenedCoulombCrossSectio << 241 //- no MaterialTable found)"); << 242 << 243 G4int nMaterials = G4Material::GetNumberOfMa << 244 251 245 for (G4int matidx = 0; matidx < nMaterials; << 252 // sum up inverse MFPs per element for each material 246 const G4Material* material = (*materialTab << 253 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 247 const G4ElementVector& elementVector = *(m << 254 if (materialTable == 0) { return; } 248 const G4int nMatElements = material->GetNu << 255 //G4Exception("G4ScreenedCoulombCrossSection::BuildMFPTables 249 << 256 //- no MaterialTable found)"); 250 const G4Element* element = 0; << 257 251 const G4double* atomDensities = material-> << 258 G4int nMaterials = G4Material::GetNumberOfMaterials(); 252 << 259 253 G4double emin = 0, emax = 0; << 260 for (G4int matidx=0; matidx < nMaterials; matidx++) { 254 // find innermost range of cross section f << 261 255 for (G4int kel = 0; kel < nMatElements; ke << 262 const G4Material* material= (*materialTable)[matidx]; 256 element = elementVector[kel]; << 263 const G4ElementVector &elementVector = 257 G4int Z = (G4int)std::floor(element->Get << 264 *(material->GetElementVector()); 258 const G4_c2_function& ifunc = sigmaMap[Z << 265 const G4int nMatElements = material->GetNumberOfElements(); 259 if (!kel || ifunc.xmin() > emin) emin = << 266 260 if (!kel || ifunc.xmax() < emax) emax = << 267 const G4Element *element=0; 261 } << 268 const G4double *atomDensities=material->GetVecNbOfAtomsPerVolume(); 262 << 269 263 G4double logint = std::log(emax / emin) / << 270 G4double emin=0, emax=0; 264 // logarithmic increment for tables << 271 // find innermost range of cross section functions 265 << 272 for (G4int kel=0 ; kel < nMatElements ; kel++ ) 266 // compute energy scale for interpolator. << 273 { 267 // both ends to avoid range errors << 274 element=elementVector[kel]; 268 for (G4int i = 1; i < nmfpvals - 1; i++) << 275 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 269 evals[i] = emin * std::exp(logint * i); << 276 const G4_c2_function &ifunc=sigmaMap[Z]; 270 evals.front() = emin; << 277 if(!kel || ifunc.xmin() > emin) emin=ifunc.xmin(); 271 evals.back() = emax; << 278 if(!kel || ifunc.xmax() < emax) emax=ifunc.xmax(); 272 << 279 } 273 // zero out the inverse mfp sums to start << 280 274 for (G4int eidx = 0; eidx < nmfpvals; eidx << 281 G4double logint=std::log(emax/emin) / (nmfpvals-1) ; 275 mfpvals[eidx] = 0.0; << 282 // logarithmic increment for tables 276 << 283 277 // sum inverse mfp for each element in thi << 284 // compute energy scale for interpolator. Force exact values at 278 // energy << 285 // both ends to avoid range errors 279 for (G4int kel = 0; kel < nMatElements; ke << 286 for (G4int i=1; i<nmfpvals-1; i++) evals[i]=emin*std::exp(logint*i); 280 element = elementVector[kel]; << 287 evals.front()=emin; 281 G4int Z = (G4int)std::floor(element->Get << 288 evals.back()=emax; 282 const G4_c2_function& sigma = sigmaMap[Z << 289 283 G4double ndens = atomDensities[kel]; << 290 // zero out the inverse mfp sums to start 284 // compute atom fraction for this elemen << 291 for (G4int eidx=0; eidx < nmfpvals; eidx++) mfpvals[eidx] = 0.0; 285 << 292 286 for (G4int eidx = 0; eidx < nmfpvals; ei << 293 // sum inverse mfp for each element in this material and for each 287 mfpvals[eidx] += ndens * sigma(evals[e << 294 // energy 288 } << 295 for (G4int kel=0 ; kel < nMatElements ; kel++ ) 289 } << 296 { 290 << 297 element=elementVector[kel]; 291 // convert inverse mfp to regular mfp << 298 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 292 for (G4int eidx = 0; eidx < nmfpvals; eidx << 299 const G4_c2_function &sigma=sigmaMap[Z]; 293 mfpvals[eidx] = 1.0 / mfpvals[eidx]; << 300 G4double ndens = atomDensities[kel]; 294 } << 301 // compute atom fraction for this element in this material 295 // and make a new interpolating function o << 302 296 MFPTables[matidx] = c2.log_log_interpolati << 303 for (G4int eidx=0; eidx < nmfpvals; eidx++) { 297 } << 304 mfpvals[eidx] += ndens*sigma(evals[eidx]); >> 305 } >> 306 } >> 307 >> 308 // convert inverse mfp to regular mfp >> 309 for (G4int eidx=0; eidx < nmfpvals; eidx++) { >> 310 mfpvals[eidx] = 1.0/mfpvals[eidx]; >> 311 } >> 312 // and make a new interpolating function out of the sum >> 313 MFPTables[matidx] = c2.log_log_interpolating_function().load(evals, >> 314 mfpvals,true,0,true,0); >> 315 } 298 } 316 } 299 317 300 G4ScreenedNuclearRecoil::G4ScreenedNuclearReco << 318 G4ScreenedNuclearRecoil:: 301 << 319 G4ScreenedNuclearRecoil(const G4String& processName, 302 << 320 const G4String &ScreeningKey, 303 << 321 G4bool GenerateRecoils, 304 : G4VDiscreteProcess(processName, fElectroma << 322 G4double RecoilCutoff, G4double PhysicsCutoff) : 305 screeningKey(ScreeningKey), << 323 G4VDiscreteProcess(processName, fElectromagnetic), 306 generateRecoils(GenerateRecoils), << 324 screeningKey(ScreeningKey), 307 avoidReactions(1), << 325 generateRecoils(GenerateRecoils), avoidReactions(1), 308 recoilCutoff(RecoilCutoff), << 326 recoilCutoff(RecoilCutoff), physicsCutoff(PhysicsCutoff), 309 physicsCutoff(PhysicsCutoff), << 327 hardeningFraction(0.0), hardeningFactor(1.0), 310 hardeningFraction(0.0), << 328 externalCrossSectionConstructor(0), 311 hardeningFactor(1.0), << 329 NIELPartitionFunction(new G4LindhardRobinsonPartition) 312 externalCrossSectionConstructor(0), << 313 NIELPartitionFunction(new G4LindhardRobins << 314 { 330 { 315 // for now, point to class instance of this. << 331 // for now, point to class instance of this. Doing it by creating a new 316 // one fails 332 // one fails 317 // to correctly update NIEL 333 // to correctly update NIEL 318 // not even this is needed... done in G4VPro 334 // not even this is needed... done in G4VProcess(). 319 // pParticleChange=&aParticleChange; << 335 // pParticleChange=&aParticleChange; 320 processMaxEnergy = 50000.0 * MeV; << 336 processMaxEnergy=50000.0*MeV; 321 highEnergyLimit = 100.0 * MeV; << 337 highEnergyLimit=100.0*MeV; 322 lowEnergyLimit = physicsCutoff; << 338 lowEnergyLimit=physicsCutoff; 323 registerDepositedEnergy = 1; // by default, << 339 registerDepositedEnergy=1; // by default, don't hide NIEL 324 MFPScale = 1.0; << 340 MFPScale=1.0; 325 // SetVerboseLevel(2); 341 // SetVerboseLevel(2); 326 AddStage(new G4ScreenedCoulombClassicalKinem 342 AddStage(new G4ScreenedCoulombClassicalKinematics); 327 AddStage(new G4SingleScatter); << 343 AddStage(new G4SingleScatter); 328 SetProcessSubType(fCoulombScattering); 344 SetProcessSubType(fCoulombScattering); 329 } 345 } 330 346 331 void G4ScreenedNuclearRecoil::ResetTables() 347 void G4ScreenedNuclearRecoil::ResetTables() 332 { 348 { 333 std::map<G4int, G4ScreenedCoulombCrossSectio << 349 334 for (; xt != crossSectionHandlers.end(); xt+ << 350 std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xt= 335 delete (*xt).second; << 351 crossSectionHandlers.begin(); 336 } << 352 for(;xt != crossSectionHandlers.end(); xt++) { 337 crossSectionHandlers.clear(); << 353 delete (*xt).second; >> 354 } >> 355 crossSectionHandlers.clear(); 338 } 356 } 339 357 340 void G4ScreenedNuclearRecoil::ClearStages() 358 void G4ScreenedNuclearRecoil::ClearStages() 341 { 359 { 342 // I don't think I like deleting the process << 360 // I don't think I like deleting the processes here... they are better 343 // abandoned 361 // abandoned 344 // if the creator doesn't get rid of them 362 // if the creator doesn't get rid of them 345 // std::vector<G4ScreenedCollisionStage *>:: 363 // std::vector<G4ScreenedCollisionStage *>::iterator stage= 346 // collisionStages.begin(); << 364 //collisionStages.begin(); 347 // for(; stage != collisionStages.end(); sta << 365 //for(; stage != collisionStages.end(); stage++) delete (*stage); 348 366 349 collisionStages.clear(); << 367 collisionStages.clear(); 350 } 368 } 351 369 352 void G4ScreenedNuclearRecoil::SetNIELPartition << 370 void G4ScreenedNuclearRecoil::SetNIELPartitionFunction( >> 371 const G4VNIELPartition *part) 353 { 372 { 354 if (NIELPartitionFunction) delete NIELPartit << 373 if(NIELPartitionFunction) delete NIELPartitionFunction; 355 NIELPartitionFunction = part; << 374 NIELPartitionFunction=part; 356 } 375 } 357 376 358 void G4ScreenedNuclearRecoil::DepositEnergy(G4 << 377 void G4ScreenedNuclearRecoil::DepositEnergy(G4int z1, G4double a1, 359 G4 << 378 const G4Material *material, G4double energy) 360 { 379 { 361 if (!NIELPartitionFunction) { << 380 if(!NIELPartitionFunction) { 362 IonizingLoss += energy; << 381 IonizingLoss+=energy; 363 } << 382 } else { 364 else { << 383 G4double part=NIELPartitionFunction->PartitionNIEL(z1, a1, 365 G4double part = NIELPartitionFunction->Par << 384 material, energy); 366 IonizingLoss += energy * (1 - part); << 385 IonizingLoss+=energy*(1-part); 367 NIEL += energy * part; << 386 NIEL += energy*part; 368 } << 387 } 369 } 388 } 370 389 371 G4ScreenedNuclearRecoil::~G4ScreenedNuclearRec 390 G4ScreenedNuclearRecoil::~G4ScreenedNuclearRecoil() 372 { 391 { 373 ResetTables(); << 392 ResetTables(); 374 } 393 } 375 394 376 // returns true if it appears the nuclei colli << 395 // returns true if it appears the nuclei collided, and we are interested 377 // in checking 396 // in checking 378 G4bool G4ScreenedNuclearRecoil::CheckNuclearCo << 397 G4bool G4ScreenedNuclearRecoil::CheckNuclearCollision( 379 { << 398 G4double A, G4double a1, G4double apsis) { 380 return avoidReactions << 399 return avoidReactions && (apsis < (1.1*(std::pow(A,1.0/3.0)+ 381 && (apsis < (1.1 * (std::pow(A, 1.0 / << 400 std::pow(a1,1.0/3.0)) + 1.4)*fermi); 382 // nuclei are within 1.4 fm (reduced pion Co << 401 // nuclei are within 1.4 fm (reduced pion Compton wavelength) of each 383 // other at apsis, << 402 // other at apsis, 384 // this is hadronic, skip it 403 // this is hadronic, skip it 385 } 404 } 386 405 387 G4ScreenedCoulombCrossSection* G4ScreenedNucle << 406 G4ScreenedCoulombCrossSection 388 { << 407 *G4ScreenedNuclearRecoil::GetNewCrossSectionHandler(void) { 389 G4ScreenedCoulombCrossSection* xc; << 408 G4ScreenedCoulombCrossSection *xc; 390 if (!externalCrossSectionConstructor) << 409 if(!externalCrossSectionConstructor) 391 xc = new G4NativeScreenedCoulombCrossSecti << 410 xc=new G4NativeScreenedCoulombCrossSection; 392 else << 411 else xc=externalCrossSectionConstructor->create(); 393 xc = externalCrossSectionConstructor->crea << 412 xc->SetVerbosity(verboseLevel); 394 xc->SetVerbosity(verboseLevel); << 413 return xc; 395 return xc; << 396 } 414 } 397 415 398 G4double G4ScreenedNuclearRecoil::GetMeanFreeP << 416 G4double G4ScreenedNuclearRecoil::GetMeanFreePath(const G4Track& track, >> 417 G4double, 399 418 G4ForceCondition* cond) 400 { 419 { 401 const G4DynamicParticle* incoming = track.Ge << 420 const G4DynamicParticle* incoming = track.GetDynamicParticle(); 402 G4double energy = incoming->GetKineticEnergy << 421 G4double energy = incoming->GetKineticEnergy(); 403 G4double a1 = incoming->GetDefinition()->Get << 422 G4double a1=incoming->GetDefinition()->GetPDGMass()/amu_c2; 404 << 423 405 G4double meanFreePath; << 424 G4double meanFreePath; 406 *cond = NotForced; << 425 *cond=NotForced; 407 << 426 408 if (energy < lowEnergyLimit || energy < reco << 427 if (energy < lowEnergyLimit || energy < recoilCutoff*a1) { 409 *cond = Forced; << 428 *cond=Forced; 410 return 1.0 * nm; << 429 return 1.0*nm; 411 /* catch and stop slow particles to collec << 430 /* catch and stop slow particles to collect their NIEL! */ 412 } << 431 } else if (energy > processMaxEnergy*a1) { 413 else if (energy > processMaxEnergy * a1) { << 432 return DBL_MAX; // infinite mean free path 414 return DBL_MAX; // infinite mean free pat << 433 } else if (energy > highEnergyLimit*a1) energy=highEnergyLimit*a1; 415 } << 434 /* constant MFP at high energy */ 416 else if (energy > highEnergyLimit * a1) << 435 417 energy = highEnergyLimit * a1; << 436 G4double fz1=incoming->GetDefinition()->GetPDGCharge(); 418 /* constant MFP at high energy */ << 437 G4int z1=(G4int)(fz1/eplus + 0.5); 419 << 438 420 G4double fz1 = incoming->GetDefinition()->Ge << 439 std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xh= 421 G4int z1 = (G4int)(fz1 / eplus + 0.5); << 440 crossSectionHandlers.find(z1); 422 << 441 G4ScreenedCoulombCrossSection *xs; 423 std::map<G4int, G4ScreenedCoulombCrossSectio << 442 424 G4ScreenedCoulombCrossSection* xs; << 443 if (xh==crossSectionHandlers.end()) { 425 << 444 xs =crossSectionHandlers[z1]=GetNewCrossSectionHandler(); 426 if (xh == crossSectionHandlers.end()) { << 445 xs->LoadData(screeningKey, z1, a1, physicsCutoff); 427 xs = crossSectionHandlers[z1] = GetNewCros << 446 xs->BuildMFPTables(); 428 xs->LoadData(screeningKey, z1, a1, physics << 447 } else xs=(*xh).second; 429 xs->BuildMFPTables(); << 448 430 } << 449 const G4MaterialCutsCouple* materialCouple = 431 else << 450 track.GetMaterialCutsCouple(); 432 xs = (*xh).second; << 451 size_t materialIndex = materialCouple->GetMaterial()->GetIndex(); 433 << 452 434 const G4MaterialCutsCouple* materialCouple = << 453 const G4_c2_function &mfp=*(*xs)[materialIndex]; 435 size_t materialIndex = materialCouple->GetMa << 454 436 << 455 // make absolutely certain we don't get an out-of-range energy 437 const G4_c2_function& mfp = *(*xs)[materialI << 456 meanFreePath = mfp(std::min(std::max(energy, mfp.xmin()), mfp.xmax())); 438 << 457 439 // make absolutely certain we don't get an o << 458 // G4cout << "MFP: " << meanFreePath << " index " << materialIndex 440 meanFreePath = mfp(std::min(std::max(energy, << 459 //<< " energy " << energy << " MFPScale " << MFPScale << G4endl; 441 << 460 442 // G4cout << "MFP: " << meanFreePath << " in << 461 return meanFreePath*MFPScale; 443 //<< " energy " << energy << " MFPScale " << << 462 } >> 463 >> 464 G4VParticleChange* G4ScreenedNuclearRecoil::PostStepDoIt( >> 465 const G4Track& aTrack, const G4Step& aStep) >> 466 { >> 467 validCollision=1; >> 468 pParticleChange->Initialize(aTrack); >> 469 NIEL=0.0; // default is no NIEL deposited >> 470 IonizingLoss=0.0; >> 471 >> 472 // do universal setup >> 473 >> 474 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); >> 475 G4ParticleDefinition *baseParticle=aTrack.GetDefinition(); >> 476 >> 477 G4double fz1=baseParticle->GetPDGCharge()/eplus; >> 478 G4int z1=(G4int)(fz1+0.5); >> 479 G4double a1=baseParticle->GetPDGMass()/amu_c2; >> 480 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); >> 481 >> 482 // Select randomly one element and (possibly) isotope in the >> 483 // current material. >> 484 const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple(); >> 485 >> 486 const G4Material* mat = couple->GetMaterial(); >> 487 >> 488 G4double P=0.0; // the impact parameter of this collision >> 489 >> 490 if(incidentEnergy < GetRecoilCutoff()*a1) { >> 491 // check energy sanity on entry >> 492 DepositEnergy(z1, baseParticle->GetPDGMass()/amu_c2, mat, >> 493 incidentEnergy); >> 494 GetParticleChange().ProposeEnergy(0.0); >> 495 // stop the particle and bail out >> 496 validCollision=0; >> 497 } else { >> 498 >> 499 G4double numberDensity=mat->GetTotNbOfAtomsPerVolume(); >> 500 G4double lattice=0.5/std::pow(numberDensity,1.0/3.0); >> 501 // typical lattice half-spacing >> 502 G4double length=GetCurrentInteractionLength(); >> 503 G4double sigopi=1.0/(pi*numberDensity*length); >> 504 // this is sigma0/pi >> 505 >> 506 // compute the impact parameter very early, so if is rejected >> 507 // as too far away, little effort is wasted >> 508 // this is the TRIM method for determining an impact parameter >> 509 // based on the flight path >> 510 // this gives a cumulative distribution of >> 511 // N(P)= 1-exp(-pi P^2 n l) >> 512 // which says the probability of NOT hitting a disk of area >> 513 // sigma= pi P^2 =exp(-sigma N l) >> 514 // which may be reasonable >> 515 if(sigopi < lattice*lattice) { >> 516 // normal long-flight approximation >> 517 P = std::sqrt(-std::log(G4UniformRand()) *sigopi); >> 518 } else { >> 519 // short-flight limit >> 520 P = std::sqrt(G4UniformRand())*lattice; >> 521 } >> 522 >> 523 G4double fraction=GetHardeningFraction(); >> 524 if(fraction && G4UniformRand() < fraction) { >> 525 // pick out some events, and increase the central cross >> 526 // section by reducing the impact parameter >> 527 P /= std::sqrt(GetHardeningFactor()); >> 528 } >> 529 >> 530 >> 531 // check if we are far enough away that the energy transfer >> 532 // must be below cutoff, >> 533 // and leave everything alone if so, saving a lot of time. >> 534 if(P*P > sigopi) { >> 535 if(GetVerboseLevel() > 1) >> 536 printf("ScreenedNuclear impact reject: length=%.3f P=%.4f limit=%.4f\n", >> 537 length/angstrom, P/angstrom,std::sqrt(sigopi)/angstrom); >> 538 // no collision, don't follow up with anything >> 539 validCollision=0; >> 540 } >> 541 } >> 542 >> 543 // find out what we hit, and record it in our kinematics block. >> 544 kinematics.targetMaterial=mat; >> 545 kinematics.a1=a1; >> 546 >> 547 if(validCollision) { >> 548 G4ScreenedCoulombCrossSection *xsect= >> 549 GetCrossSectionHandlers()[z1]; >> 550 G4ParticleDefinition *recoilIon= >> 551 xsect->SelectRandomUnweightedTarget(couple); >> 552 kinematics.crossSection=xsect; >> 553 kinematics.recoilIon=recoilIon; >> 554 kinematics.impactParameter=P; >> 555 kinematics.a2=recoilIon->GetPDGMass()/amu_c2; >> 556 } else { >> 557 kinematics.recoilIon=0; >> 558 kinematics.impactParameter=0; >> 559 kinematics.a2=0; >> 560 } >> 561 >> 562 std::vector<G4ScreenedCollisionStage *>::iterator stage= >> 563 collisionStages.begin(); >> 564 >> 565 for(; stage != collisionStages.end(); stage++) >> 566 (*stage)->DoCollisionStep(this,aTrack, aStep); >> 567 >> 568 if(registerDepositedEnergy) { >> 569 pParticleChange->ProposeLocalEnergyDeposit(IonizingLoss+NIEL); >> 570 pParticleChange->ProposeNonIonizingEnergyDeposit(NIEL); >> 571 //MHM G4cout << "depositing energy, total = " >> 572 //<< IonizingLoss+NIEL << " NIEL = " << NIEL << G4endl; >> 573 } 444 574 445 return meanFreePath * MFPScale; << 575 return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep ); 446 } 576 } 447 577 448 G4VParticleChange* G4ScreenedNuclearRecoil::Po << 578 G4ScreenedCoulombClassicalKinematics::G4ScreenedCoulombClassicalKinematics() : >> 579 // instantiate all the needed functions statically, so no allocation is >> 580 // done at run time >> 581 // we will be solving x^2 - x phi(x*au)/eps - beta^2 == 0.0 >> 582 // or, for easier scaling, x'^2 - x' au phi(x')/eps - beta^2 au^2 >> 583 // note that only the last of these gets deleted, since it owns the rest >> 584 phifunc(c2.const_plugin_function()), >> 585 xovereps(c2.linear(0., 0., 0.)), >> 586 // will fill this in with the right slope at run time >> 587 diff(c2.quadratic(0., 0., 0., 1.)-xovereps*phifunc) 449 { 588 { 450 validCollision = 1; << 451 pParticleChange->Initialize(aTrack); << 452 NIEL = 0.0; // default is no NIEL deposited << 453 IonizingLoss = 0.0; << 454 << 455 // do universal setup << 456 << 457 const G4DynamicParticle* incidentParticle = << 458 G4ParticleDefinition* baseParticle = aTrack. << 459 << 460 G4double fz1 = baseParticle->GetPDGCharge() << 461 G4int z1 = (G4int)(fz1 + 0.5); << 462 G4double a1 = baseParticle->GetPDGMass() / a << 463 G4double incidentEnergy = incidentParticle-> << 464 << 465 // Select randomly one element and (possibly << 466 // current material. << 467 const G4MaterialCutsCouple* couple = aTrack. << 468 << 469 const G4Material* mat = couple->GetMaterial( << 470 << 471 G4double P = 0.0; // the impact parameter o << 472 << 473 if (incidentEnergy < GetRecoilCutoff() * a1) << 474 // check energy sanity on entry << 475 DepositEnergy(z1, baseParticle->GetPDGMass << 476 GetParticleChange().ProposeEnergy(0.0); << 477 // stop the particle and bail out << 478 validCollision = 0; << 479 } << 480 else { << 481 G4double numberDensity = mat->GetTotNbOfAt << 482 G4double lattice = 0.5 / std::pow(numberDe << 483 // typical lattice half-spacing << 484 G4double length = GetCurrentInteractionLen << 485 G4double sigopi = 1.0 / (pi * numberDensit << 486 // this is sigma0/pi << 487 << 488 // compute the impact parameter very early << 489 // as too far away, little effort is waste << 490 // this is the TRIM method for determining << 491 // based on the flight path << 492 // this gives a cumulative distribution of << 493 // N(P)= 1-exp(-pi P^2 n l) << 494 // which says the probability of NOT hitti << 495 // sigma= pi P^2 =exp(-sigma N l) << 496 // which may be reasonable << 497 if (sigopi < lattice * lattice) { << 498 // normal long-flight approximation << 499 P = std::sqrt(-std::log(G4UniformRand()) << 500 } << 501 else { << 502 // short-flight limit << 503 P = std::sqrt(G4UniformRand()) * lattice << 504 } << 505 << 506 G4double fraction = GetHardeningFraction() << 507 if (fraction && G4UniformRand() < fraction << 508 // pick out some events, and increase th << 509 // section by reducing the impact parame << 510 P /= std::sqrt(GetHardeningFactor()); << 511 } << 512 << 513 // check if we are far enough away that th << 514 // must be below cutoff, << 515 // and leave everything alone if so, savin << 516 if (P * P > sigopi) { << 517 if (GetVerboseLevel() > 1) << 518 printf("ScreenedNuclear impact reject: << 519 P / angstrom, std::sqrt(sigopi) << 520 // no collision, don't follow up with an << 521 validCollision = 0; << 522 } << 523 } << 524 << 525 // find out what we hit, and record it in ou << 526 kinematics.targetMaterial = mat; << 527 kinematics.a1 = a1; << 528 << 529 if (validCollision) { << 530 G4ScreenedCoulombCrossSection* xsect = Get << 531 G4ParticleDefinition* recoilIon = xsect->S << 532 kinematics.crossSection = xsect; << 533 kinematics.recoilIon = recoilIon; << 534 kinematics.impactParameter = P; << 535 kinematics.a2 = recoilIon->GetPDGMass() / << 536 } << 537 else { << 538 kinematics.recoilIon = 0; << 539 kinematics.impactParameter = 0; << 540 kinematics.a2 = 0; << 541 } << 542 << 543 std::vector<G4ScreenedCollisionStage*>::iter << 544 << 545 for (; stage != collisionStages.end(); stage << 546 (*stage)->DoCollisionStep(this, aTrack, aS << 547 << 548 if (registerDepositedEnergy) { << 549 pParticleChange->ProposeLocalEnergyDeposit << 550 pParticleChange->ProposeNonIonizingEnergyD << 551 // MHM G4cout << "depositing energy, total << 552 //<< IonizingLoss+NIEL << " NIEL = " << NI << 553 } << 554 << 555 return G4VDiscreteProcess::PostStepDoIt(aTra << 556 } 589 } 557 590 558 G4ScreenedCoulombClassicalKinematics::G4Screen << 591 G4bool G4ScreenedCoulombClassicalKinematics::DoScreeningComputation( 559 : // instantiate all the needed functions s << 592 G4ScreenedNuclearRecoil *master, 560 // done at run time << 593 const G4ScreeningTables *screen, G4double eps, G4double beta) 561 // we will be solving x^2 - x phi(x*au)/e << 594 { 562 // or, for easier scaling, x'^2 - x' au p << 595 G4double au=screen->au; 563 // note that only the last of these gets << 596 G4CoulombKinematicsInfo &kin=master->GetKinematics(); 564 phifunc(c2.const_plugin_function()), << 597 G4double A=kin.a2; 565 xovereps(c2.linear(0., 0., 0.)), << 598 G4double a1=kin.a1; 566 // will fill this in with the right slope << 599 567 diff(c2.quadratic(0., 0., 0., 1.) - xovere << 600 G4double xx0; // first estimate of closest approach 568 {} << 601 if(eps < 5.0) { 569 << 602 G4double y=std::log(eps); 570 G4bool G4ScreenedCoulombClassicalKinematics::D << 603 G4double mlrho4=((((3.517e-4*y+1.401e-2)*y+2.393e-1)*y+2.734)*y+2.220); 571 << 604 G4double rho4=std::exp(-mlrho4); // W&M eq. 18 572 << 605 G4double bb2=0.5*beta*beta; 573 { << 606 xx0=std::sqrt(bb2+std::sqrt(bb2*bb2+rho4)); // W&M eq. 17 574 G4double au = screen->au; << 607 } else { 575 G4CoulombKinematicsInfo& kin = master->GetKi << 608 G4double ee=1.0/(2.0*eps); 576 G4double A = kin.a2; << 609 xx0=ee+std::sqrt(ee*ee+beta*beta); // W&M eq. 15 (Rutherford value) 577 G4double a1 = kin.a1; << 610 if(master->CheckNuclearCollision(A, a1, xx0*au)) return 0; 578 << 579 G4double xx0; // first estimate of closest << 580 if (eps < 5.0) { << 581 G4double y = std::log(eps); << 582 G4double mlrho4 = ((((3.517e-4 * y + 1.401 << 583 G4double rho4 = std::exp(-mlrho4); // W&M << 584 G4double bb2 = 0.5 * beta * beta; << 585 xx0 = std::sqrt(bb2 + std::sqrt(bb2 * bb2 << 586 } << 587 else { << 588 G4double ee = 1.0 / (2.0 * eps); << 589 xx0 = ee + std::sqrt(ee * ee + beta * beta << 590 if (master->CheckNuclearCollision(A, a1, x << 591 // nuclei too close 611 // nuclei too close >> 612 592 } 613 } 593 << 614 594 // we will be solving x^2 - x phi(x*au)/eps 615 // we will be solving x^2 - x phi(x*au)/eps - beta^2 == 0.0 595 // or, for easier scaling, x'^2 - x' au phi( 616 // or, for easier scaling, x'^2 - x' au phi(x')/eps - beta^2 au^2 596 xovereps.reset(0., 0.0, au / eps); // slope << 617 xovereps.reset(0., 0.0, au/eps); // slope of x*au/eps term 597 phifunc.set_function(&(screen->EMphiData.get << 618 phifunc.set_function(&(screen->EMphiData.get())); 598 // install interpolating table 619 // install interpolating table 599 G4double xx1, phip, phip2; 620 G4double xx1, phip, phip2; 600 G4int root_error; << 621 G4int root_error; 601 xx1 = diff->find_root(phifunc.xmin(), std::m << 622 xx1=diff->find_root(phifunc.xmin(), std::min(10*xx0*au,phifunc.xmax()), 602 std::min(xx0 * au, phi << 623 std::min(xx0*au, phifunc.xmax()), beta*beta*au*au, 603 &phip, &phip2) << 624 &root_error, &phip, &phip2)/au; 604 / au; << 625 605 << 626 if(root_error) { 606 if (root_error) { << 627 G4cout << "Screened Coulomb Root Finder Error" << G4endl; 607 G4cout << "Screened Coulomb Root Finder Er << 628 G4cout << "au " << au << " A " << A << " a1 " << a1 608 G4cout << "au " << au << " A " << A << " a << 629 << " xx1 " << xx1 << " eps " << eps 609 << " beta " << beta << G4endl; << 630 << " beta " << beta << G4endl; 610 G4cout << " xmin " << phifunc.xmin() << " << 631 G4cout << " xmin " << phifunc.xmin() << " xmax " 611 G4cout << " f(xmin) " << phifunc(phifunc.x << 632 << std::min(10*xx0*au,phifunc.xmax()) ; 612 << phifunc(std::min(10 * xx0 * au, << 633 G4cout << " f(xmin) " << phifunc(phifunc.xmin()) 613 G4cout << " xstart " << std::min(xx0 * au, << 634 << " f(xmax) " 614 << beta * beta * au * au; << 635 << phifunc(std::min(10*xx0*au,phifunc.xmax())) ; 615 G4cout << G4endl; << 636 G4cout << " xstart " << std::min(xx0*au, phifunc.xmax()) 616 throw c2_exception("Failed root find"); << 637 << " target " << beta*beta*au*au ; 617 } << 638 G4cout << G4endl; 618 << 639 throw c2_exception("Failed root find"); 619 // phiprime is scaled by one factor of au be << 640 } 620 // at (xx0*au), << 641 621 G4double phiprime = phip * au; << 642 // phiprime is scaled by one factor of au because phi is evaluated 622 << 643 // at (xx0*au), 623 // lambda0 is from W&M 19 << 644 G4double phiprime=phip*au; 624 G4double lambda0 = << 645 625 1.0 / std::sqrt(0.5 + beta * beta / (2.0 * << 646 //lambda0 is from W&M 19 626 << 647 G4double lambda0=1.0/std::sqrt(0.5+beta*beta/(2.0*xx1*xx1) 627 // compute the 6-term Lobatto integral alpha << 648 -phiprime/(2.0*eps)); 628 // different coefficients) << 649 629 // this is probably completely un-needed but << 650 // compute the 6-term Lobatto integral alpha (per W&M 21, with 630 // quality results, << 651 // different coefficients) 631 G4double alpha = (1.0 + lambda0) / 30.0; << 652 // this is probably completely un-needed but gives the highest 632 G4double xvals[] = {0.98302349, 0.84652241, << 653 // quality results, 633 G4double weights[] = {0.03472124, 0.14769029 << 654 G4double alpha=(1.0+ lambda0)/30.0; 634 for (G4int k = 0; k < 4; k++) { << 655 G4double xvals[]={0.98302349, 0.84652241, 0.53235309, 0.18347974}; 635 G4double x, ff; << 656 G4double weights[]={0.03472124, 0.14769029, 0.23485003, 0.18602489}; 636 x = xx1 / xvals[k]; << 657 for(G4int k=0; k<4; k++) { 637 ff = 1.0 / std::sqrt(1.0 - phifunc(x * au) << 658 G4double x, ff; 638 alpha += weights[k] * ff; << 659 x=xx1/xvals[k]; 639 } << 660 ff=1.0/std::sqrt(1.0-phifunc(x*au)/(x*eps)-beta*beta/(x*x)); 640 << 661 alpha+=weights[k]*ff; 641 phifunc.unset_function(); << 662 } 642 // throws an exception if used without setti << 663 643 << 664 phifunc.unset_function(); 644 G4double thetac1 = pi * beta * alpha / xx1; << 665 // throws an exception if used without setting again 645 // complement of CM scattering angle << 666 646 G4double sintheta = std::sin(thetac1); // n << 667 G4double thetac1=pi*beta*alpha/xx1; 647 G4double costheta = -std::cos(thetac1); // << 668 // complement of CM scattering angle 648 // G4double psi=std::atan2(sintheta, costhet << 669 G4double sintheta=std::sin(thetac1); //note sin(pi-theta)=sin(theta) 649 // lab scattering angle (M&T 3rd eq. 8.69) << 670 G4double costheta=-std::cos(thetac1); // note cos(pi-theta)=-cos(theta) 650 << 671 // G4double psi=std::atan2(sintheta, costheta+a1/A); 651 // numerics note: because we checked above << 672 // lab scattering angle (M&T 3rd eq. 8.69) 652 // of beta which give real recoils, << 673 653 // we don't have to look too closely for the << 674 // numerics note: because we checked above for reasonable values 654 // (which would cause sin(theta) << 675 // of beta which give real recoils, 655 // and 1-cos(theta) to both vanish and make << 676 // we don't have to look too closely for theta -> 0 here 656 G4double zeta = std::atan2(sintheta, 1 - cos << 677 // (which would cause sin(theta) 657 // lab recoil angle (M&T 3rd eq. 8.73) << 678 // and 1-cos(theta) to both vanish and make the atan2 ill behaved). 658 G4double coszeta = std::cos(zeta); << 679 G4double zeta=std::atan2(sintheta, 1-costheta); 659 G4double sinzeta = std::sin(zeta); << 680 // lab recoil angle (M&T 3rd eq. 8.73) 660 << 681 G4double coszeta=std::cos(zeta); 661 kin.sinTheta = sintheta; << 682 G4double sinzeta=std::sin(zeta); 662 kin.cosTheta = costheta; << 683 663 kin.sinZeta = sinzeta; << 684 kin.sinTheta=sintheta; 664 kin.cosZeta = coszeta; << 685 kin.cosTheta=costheta; 665 return 1; // all OK, collision is valid << 686 kin.sinZeta=sinzeta; 666 } << 687 kin.cosZeta=coszeta; 667 << 688 return 1; // all OK, collision is valid 668 void G4ScreenedCoulombClassicalKinematics::DoC << 689 } 669 << 690 670 { << 691 void G4ScreenedCoulombClassicalKinematics::DoCollisionStep( 671 if (!master->GetValidCollision()) return; << 692 G4ScreenedNuclearRecoil *master, 672 << 693 const G4Track& aTrack, const G4Step&) { 673 G4ParticleChange& aParticleChange = master-> << 694 674 G4CoulombKinematicsInfo& kin = master->GetKi << 695 if(!master->GetValidCollision()) return; 675 << 696 676 const G4DynamicParticle* incidentParticle = << 697 G4ParticleChange &aParticleChange=master->GetParticleChange(); 677 G4ParticleDefinition* baseParticle = aTrack. << 698 G4CoulombKinematicsInfo &kin=master->GetKinematics(); 678 << 699 679 G4double incidentEnergy = incidentParticle-> << 700 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); 680 << 701 G4ParticleDefinition *baseParticle=aTrack.GetDefinition(); 681 // this adjustment to a1 gives the right res << 702 682 // (constant gamma) << 703 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); 683 // relativistic collisions. Hard collisions << 704 684 // Coulombic and hadronic terms interfere an << 705 // this adjustment to a1 gives the right results for soft 685 G4double gamma = (1.0 + incidentEnergy / bas << 706 // (constant gamma) 686 G4double a1 = kin.a1 * gamma; // relativist << 707 // relativistic collisions. Hard collisions are wrong anyway, since the 687 << 708 // Coulombic and hadronic terms interfere and cannot be added. 688 G4ParticleDefinition* recoilIon = kin.recoil << 709 G4double gamma=(1.0+incidentEnergy/baseParticle->GetPDGMass()); 689 G4double A = recoilIon->GetPDGMass() / amu_c << 710 G4double a1=kin.a1*gamma; // relativistic gamma correction 690 G4int Z = (G4int)((recoilIon->GetPDGCharge() << 711 691 << 712 G4ParticleDefinition *recoilIon=kin.recoilIon; 692 G4double Ec = incidentEnergy * (A / (A + a1) << 713 G4double A=recoilIon->GetPDGMass()/amu_c2; 693 // energy in CM frame (non-relativistic!) << 714 G4int Z=(G4int)((recoilIon->GetPDGCharge()/eplus)+0.5); 694 const G4ScreeningTables* screen = kin.crossS << 715 695 G4double au = screen->au; // screening leng << 716 G4double Ec = incidentEnergy*(A/(A+a1)); 696 << 717 // energy in CM frame (non-relativistic!) 697 G4double beta = kin.impactParameter / au; << 718 const G4ScreeningTables *screen=kin.crossSection->GetScreening(Z); 698 // dimensionless impact parameter << 719 G4double au=screen->au; // screening length 699 G4double eps = Ec / (screen->z1 * Z * elm_co << 720 700 // dimensionless energy << 721 G4double beta = kin.impactParameter/au; 701 << 722 // dimensionless impact parameter 702 G4bool ok = DoScreeningComputation(master, s << 723 G4double eps = Ec/(screen->z1*Z*elm_coupling/au); 703 if (!ok) { << 724 // dimensionless energy 704 master->SetValidCollision(0); // flag bad << 725 705 return; // just bail out without setting << 726 G4bool ok=DoScreeningComputation(master, screen, eps, beta); 706 } << 727 if(!ok) { 707 << 728 master->SetValidCollision(0); // flag bad collision 708 G4double eRecoil = << 729 return; // just bail out without setting valid flag 709 4 * incidentEnergy * a1 * A * kin.cosZeta << 730 } 710 kin.eRecoil = eRecoil; << 731 711 << 732 G4double eRecoil=4*incidentEnergy*a1*A*kin.cosZeta*kin.cosZeta 712 if (incidentEnergy - eRecoil < master->GetRe << 733 /((a1+A)*(a1+A)); 713 aParticleChange.ProposeEnergy(0.0); << 734 kin.eRecoil=eRecoil; 714 master->DepositEnergy(int(screen->z1), a1, << 735 715 } << 736 if(incidentEnergy-eRecoil < master->GetRecoilCutoff()*a1) { 716 << 737 aParticleChange.ProposeEnergy(0.0); 717 if (master->GetEnableRecoils() && eRecoil > << 738 master->DepositEnergy(int(screen->z1), a1, kin.targetMaterial, 718 kin.recoilIon = recoilIon; << 739 incidentEnergy-eRecoil); 719 } << 740 } 720 else { << 741 721 kin.recoilIon = 0; // this flags no recoi << 742 if(master->GetEnableRecoils() && 722 master->DepositEnergy(Z, A, kin.targetMate << 743 eRecoil > master->GetRecoilCutoff() * kin.a2) { 723 } << 744 kin.recoilIon=recoilIon; 724 } << 745 } else { 725 << 746 kin.recoilIon=0; // this flags no recoil to be generated 726 void G4SingleScatter::DoCollisionStep(G4Screen << 747 master->DepositEnergy(Z, A, kin.targetMaterial, eRecoil) ; 727 const G4 << 748 } 728 { << 749 } 729 if (!master->GetValidCollision()) return; << 750 730 << 751 void G4SingleScatter::DoCollisionStep(G4ScreenedNuclearRecoil *master, 731 G4CoulombKinematicsInfo& kin = master->GetKi << 752 const G4Track& aTrack, const G4Step&) { 732 G4ParticleChange& aParticleChange = master-> << 753 733 << 754 if(!master->GetValidCollision()) return; 734 const G4DynamicParticle* incidentParticle = << 755 735 G4double incidentEnergy = incidentParticle-> << 756 G4CoulombKinematicsInfo &kin=master->GetKinematics(); 736 G4double eRecoil = kin.eRecoil; << 757 G4ParticleChange &aParticleChange=master->GetParticleChange(); 737 << 758 738 G4double azimuth = G4UniformRand() * (2.0 * << 759 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); 739 G4double sa = std::sin(azimuth); << 760 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); 740 G4double ca = std::cos(azimuth); << 761 G4double eRecoil=kin.eRecoil; 741 << 762 742 G4ThreeVector recoilMomentumDirection(kin.si << 763 G4double azimuth=G4UniformRand()*(2.0*pi); 743 G4ParticleMomentum incidentDirection = incid << 764 G4double sa=std::sin(azimuth); 744 recoilMomentumDirection = recoilMomentumDire << 765 G4double ca=std::cos(azimuth); 745 G4ThreeVector recoilMomentum = << 766 746 recoilMomentumDirection * std::sqrt(2.0 * << 767 G4ThreeVector recoilMomentumDirection(kin.sinZeta*ca, 747 << 768 kin.sinZeta*sa, kin.cosZeta); 748 if (aParticleChange.GetEnergy() != 0.0) { << 769 G4ParticleMomentum incidentDirection = 749 // DoKinematics hasn't stopped it! << 770 incidentParticle->GetMomentumDirection(); 750 G4ThreeVector beamMomentum = incidentParti << 771 recoilMomentumDirection= 751 aParticleChange.ProposeMomentumDirection(b << 772 recoilMomentumDirection.rotateUz(incidentDirection); 752 aParticleChange.ProposeEnergy(incidentEner << 773 G4ThreeVector recoilMomentum= 753 } << 774 recoilMomentumDirection*std::sqrt(2.0*eRecoil*kin.a2*amu_c2); 754 << 775 755 if (kin.recoilIon) { << 776 if(aParticleChange.GetEnergy() != 0.0) { 756 G4DynamicParticle* recoil = << 777 // DoKinematics hasn't stopped it! 757 new G4DynamicParticle(kin.recoilIon, rec << 778 G4ThreeVector beamMomentum= 758 << 779 incidentParticle->GetMomentum()-recoilMomentum; 759 aParticleChange.SetNumberOfSecondaries(1); << 780 aParticleChange.ProposeMomentumDirection(beamMomentum.unit()) ; 760 aParticleChange.AddSecondary(recoil); << 781 aParticleChange.ProposeEnergy(incidentEnergy-eRecoil); 761 } << 782 } >> 783 >> 784 if(kin.recoilIon) { >> 785 G4DynamicParticle* recoil = >> 786 new G4DynamicParticle (kin.recoilIon, >> 787 recoilMomentumDirection,eRecoil) ; >> 788 >> 789 aParticleChange.SetNumberOfSecondaries(1); >> 790 aParticleChange.AddSecondary(recoil); >> 791 } 762 } 792 } 763 793 764 G4bool G4ScreenedNuclearRecoil::IsApplicable(c << 794 G4bool G4ScreenedNuclearRecoil:: >> 795 IsApplicable(const G4ParticleDefinition& aParticleType) 765 { 796 { 766 return aParticleType == *(G4Proton::Proton() << 797 return aParticleType == *(G4Proton::Proton()) || 767 || aParticleType.GetParticleType() == << 798 aParticleType.GetParticleType() == "nucleus" || >> 799 aParticleType.GetParticleType() == "static_nucleus"; 768 } 800 } 769 801 770 void G4ScreenedNuclearRecoil::BuildPhysicsTabl << 802 void >> 803 G4ScreenedNuclearRecoil:: >> 804 BuildPhysicsTable(const G4ParticleDefinition& aParticleType) 771 { 805 { 772 G4String nam = aParticleType.GetParticleName 806 G4String nam = aParticleType.GetParticleName(); 773 if (nam == "GenericIon" || nam == "proton" | << 807 if(nam == "GenericIon" || nam == "proton" 774 || nam == "alpha" || nam == "He3") << 808 || nam == "deuteron" || nam == "triton" 775 { << 809 || nam == "alpha" || nam == "He3") { 776 G4cout << G4endl << GetProcessName() << ": 810 G4cout << G4endl << GetProcessName() << ": for " << nam 777 << " SubType= " << GetProcessSub << 811 << " SubType= " << GetProcessSubType() 778 << " maxEnergy(MeV)= " << proces << 812 << " maxEnergy(MeV)= " << processMaxEnergy/MeV << G4endl; 779 } 813 } 780 } 814 } 781 815 782 void G4ScreenedNuclearRecoil::DumpPhysicsTable << 816 void >> 817 G4ScreenedNuclearRecoil:: >> 818 DumpPhysicsTable(const G4ParticleDefinition&) >> 819 { >> 820 } 783 821 784 // This used to be the file mhmScreenedNuclear 822 // This used to be the file mhmScreenedNuclearRecoil_native.cc 785 // it has been included here to collect this f << 823 // it has been included here to collect this file into a smaller 786 // number of packages 824 // number of packages 787 825 788 #include "G4DataVector.hh" 826 #include "G4DataVector.hh" >> 827 #include "G4Material.hh" 789 #include "G4Element.hh" 828 #include "G4Element.hh" 790 #include "G4ElementVector.hh" << 791 #include "G4Isotope.hh" 829 #include "G4Isotope.hh" 792 #include "G4Material.hh" << 793 #include "G4MaterialCutsCouple.hh" 830 #include "G4MaterialCutsCouple.hh" 794 << 831 #include "G4ElementVector.hh" 795 #include <vector> 832 #include <vector> 796 833 797 G4_c2_function& ZBLScreening(G4int z1, G4int z << 834 G4_c2_function &ZBLScreening(G4int z1, G4int z2, size_t npoints, >> 835 G4double rMax, G4double *auval) 798 { 836 { 799 static const size_t ncoef = 4; << 837 static const size_t ncoef=4; 800 static G4double scales[ncoef] = {-3.2, -0.94 << 838 static G4double scales[ncoef]={-3.2, -0.9432, -0.4028, -0.2016}; 801 static G4double coefs[ncoef] = {0.1818, 0.50 << 839 static G4double coefs[ncoef]={0.1818,0.5099,0.2802,0.0281}; 802 << 840 803 G4double au = 0.8854 * angstrom * 0.529 / (s << 841 G4double au= 804 std::vector<G4double> r(npoints), phi(npoint << 842 0.8854*angstrom*0.529/(std::pow(z1, 0.23)+std::pow(z2,0.23)); 805 << 843 std::vector<G4double> r(npoints), phi(npoints); 806 for (size_t i = 0; i < npoints; i++) { << 844 807 G4double rr = (float)i / (float)(npoints - << 845 for(size_t i=0; i<npoints; i++) { 808 r[i] = rr * rr * rMax; << 846 G4double rr=(float)i/(float)(npoints-1); 809 // use quadratic r scale to make sampling << 847 r[i]=rr*rr*rMax; 810 G4double sum = 0.0; << 848 // use quadratic r scale to make sampling fine near the center 811 for (size_t j = 0; j < ncoef; j++) << 849 G4double sum=0.0; 812 sum += coefs[j] * std::exp(scales[j] * r << 850 for(size_t j=0; j<ncoef; j++) 813 phi[i] = sum; << 851 sum+=coefs[j]*std::exp(scales[j]*r[i]/au); 814 } << 852 phi[i]=sum; 815 << 853 } 816 // compute the derivative at the origin for << 817 G4double phiprime0 = 0.0; << 818 for (size_t j = 0; j < ncoef; j++) << 819 phiprime0 += scales[j] * coefs[j] * std::e << 820 phiprime0 *= (1.0 / au); // put back in nat << 821 << 822 *auval = au; << 823 return c2.lin_log_interpolating_function().l << 824 } << 825 << 826 G4_c2_function& MoliereScreening(G4int z1, G4i << 827 { << 828 static const size_t ncoef = 3; << 829 static G4double scales[ncoef] = {-6.0, -1.2, << 830 static G4double coefs[ncoef] = {0.10, 0.55, << 831 << 832 G4double au = 0.8853 * 0.529 * angstrom / st << 833 std::vector<G4double> r(npoints), phi(npoint << 834 << 835 for (size_t i = 0; i < npoints; i++) { << 836 G4double rr = (float)i / (float)(npoints - << 837 r[i] = rr * rr * rMax; << 838 // use quadratic r scale to make sampling << 839 G4double sum = 0.0; << 840 for (size_t j = 0; j < ncoef; j++) << 841 sum += coefs[j] * std::exp(scales[j] * r << 842 phi[i] = sum; << 843 } << 844 << 845 // compute the derivative at the origin for << 846 G4double phiprime0 = 0.0; << 847 for (size_t j = 0; j < ncoef; j++) << 848 phiprime0 += scales[j] * coefs[j] * std::e << 849 phiprime0 *= (1.0 / au); // put back in nat << 850 << 851 *auval = au; << 852 return c2.lin_log_interpolating_function().l << 853 } << 854 << 855 G4_c2_function& LJScreening(G4int z1, G4int z2 << 856 { << 857 // from Loftager, Besenbacher, Jensen & Sore << 858 // PhysRev A20, 1443++, 1979 << 859 G4double au = 0.8853 * 0.529 * angstrom / st << 860 std::vector<G4double> r(npoints), phi(npoint << 861 << 862 for (size_t i = 0; i < npoints; i++) { << 863 G4double rr = (float)i / (float)(npoints - << 864 r[i] = rr * rr * rMax; << 865 // use quadratic r scale to make sampling << 866 << 867 G4double y = std::sqrt(9.67 * r[i] / au); << 868 G4double ysq = y * y; << 869 G4double phipoly = 1 + y + 0.3344 * ysq + << 870 phi[i] = phipoly * std::exp(-y); << 871 // G4cout << r[i] << " " << phi[i] << G4en << 872 } << 873 << 874 // compute the derivative at the origin for << 875 G4double logphiprime0 = (9.67 / 2.0) * (2 * << 876 // #avoid 0/0 on first element << 877 logphiprime0 *= (1.0 / au); // #put back in << 878 << 879 *auval = au; << 880 return c2.lin_log_interpolating_function().l << 881 } << 882 << 883 G4_c2_function& LJZBLScreening(G4int z1, G4int << 884 { << 885 // hybrid of LJ and ZBL, uses LJ if x < 0.25 << 886 /// connector in between. These numbers are << 887 // is very near the point where the function << 888 G4double auzbl, aulj; << 889 << 890 c2p zbl = ZBLScreening(z1, z2, npoints, rMax << 891 c2p lj = LJScreening(z1, z2, npoints, rMax, << 892 << 893 G4double au = (auzbl + aulj) * 0.5; << 894 lj->set_domain(lj->xmin(), 0.25 * au); << 895 zbl->set_domain(1.5 * au, zbl->xmax()); << 896 << 897 c2p conn = c2.connector_function(lj->xmax(), << 898 c2_piecewise_function_p<G4double>& pw = c2.p << 899 c2p keepit(pw); << 900 pw.append_function(lj); << 901 pw.append_function(conn); << 902 pw.append_function(zbl); << 903 << 904 *auval = au; << 905 keepit.release_for_return(); << 906 return pw; << 907 } << 908 854 909 G4NativeScreenedCoulombCrossSection::~G4Native << 855 // compute the derivative at the origin for the spline >> 856 G4double phiprime0=0.0; >> 857 for(size_t j=0; j<ncoef; j++) >> 858 phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au); >> 859 phiprime0*=(1.0/au); // put back in natural units; >> 860 >> 861 *auval=au; >> 862 return c2.lin_log_interpolating_function().load(r, phi, false, >> 863 phiprime0,true,0); >> 864 } >> 865 >> 866 G4_c2_function &MoliereScreening(G4int z1, G4int z2, size_t npoints, >> 867 G4double rMax, G4double *auval) >> 868 { >> 869 static const size_t ncoef=3; >> 870 static G4double scales[ncoef]={-6.0, -1.2, -0.3}; >> 871 static G4double coefs[ncoef]={0.10, 0.55, 0.35}; >> 872 >> 873 G4double au=0.8853*0.529*angstrom/std::sqrt(std::pow(z1, 0.6667) >> 874 +std::pow(z2,0.6667)); >> 875 std::vector<G4double> r(npoints), phi(npoints); >> 876 >> 877 for(size_t i=0; i<npoints; i++) { >> 878 G4double rr=(float)i/(float)(npoints-1); >> 879 r[i]=rr*rr*rMax; >> 880 // use quadratic r scale to make sampling fine near the center >> 881 G4double sum=0.0; >> 882 for(size_t j=0; j<ncoef; j++) >> 883 sum+=coefs[j]*std::exp(scales[j]*r[i]/au); >> 884 phi[i]=sum; >> 885 } >> 886 >> 887 // compute the derivative at the origin for the spline >> 888 G4double phiprime0=0.0; >> 889 for(size_t j=0; j<ncoef; j++) >> 890 phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au); >> 891 phiprime0*=(1.0/au); // put back in natural units; >> 892 >> 893 *auval=au; >> 894 return c2.lin_log_interpolating_function().load(r, phi, false, >> 895 phiprime0,true,0); >> 896 } >> 897 >> 898 G4_c2_function &LJScreening(G4int z1, G4int z2, size_t npoints, >> 899 G4double rMax, G4double *auval) >> 900 { >> 901 //from Loftager, Besenbacher, Jensen & Sorensen >> 902 //PhysRev A20, 1443++, 1979 >> 903 G4double au=0.8853*0.529*angstrom/std::sqrt(std::pow(z1, 0.6667) >> 904 +std::pow(z2,0.6667)); >> 905 std::vector<G4double> r(npoints), phi(npoints); >> 906 >> 907 for(size_t i=0; i<npoints; i++) { >> 908 G4double rr=(float)i/(float)(npoints-1); >> 909 r[i]=rr*rr*rMax; >> 910 // use quadratic r scale to make sampling fine near the center >> 911 >> 912 G4double y=std::sqrt(9.67*r[i]/au); >> 913 G4double ysq=y*y; >> 914 G4double phipoly=1+y+0.3344*ysq+0.0485*y*ysq+0.002647*ysq*ysq; >> 915 phi[i]=phipoly*std::exp(-y); >> 916 // G4cout << r[i] << " " << phi[i] << G4endl; >> 917 } 910 918 911 G4NativeScreenedCoulombCrossSection::G4NativeS << 919 // compute the derivative at the origin for the spline 912 { << 920 G4double logphiprime0=(9.67/2.0)*(2*0.3344-1.0); 913 AddScreeningFunction("zbl", ZBLScreening); << 921 // #avoid 0/0 on first element 914 AddScreeningFunction("lj", LJScreening); << 922 logphiprime0 *= (1.0/au); // #put back in natural units 915 AddScreeningFunction("mol", MoliereScreening << 923 916 AddScreeningFunction("ljzbl", LJZBLScreening << 924 *auval=au; >> 925 return c2.lin_log_interpolating_function().load(r, phi, false, >> 926 logphiprime0*phi[0], >> 927 true,0); >> 928 } >> 929 >> 930 G4_c2_function &LJZBLScreening(G4int z1, G4int z2, size_t npoints, >> 931 G4double rMax, G4double *auval) >> 932 { >> 933 // hybrid of LJ and ZBL, uses LJ if x < 0.25*auniv, ZBL if x > 1.5*auniv, and >> 934 /// connector in between. These numbers are selected so the switchover >> 935 // is very near the point where the functions naturally cross. >> 936 G4double auzbl, aulj; >> 937 >> 938 c2p zbl=ZBLScreening(z1, z2, npoints, rMax, &auzbl); >> 939 c2p lj=LJScreening(z1, z2, npoints, rMax, &aulj); >> 940 >> 941 G4double au=(auzbl+aulj)*0.5; >> 942 lj->set_domain(lj->xmin(), 0.25*au); >> 943 zbl->set_domain(1.5*au,zbl->xmax()); >> 944 >> 945 c2p conn= >> 946 c2.connector_function(lj->xmax(), lj, zbl->xmin(), zbl, true,0); >> 947 c2_piecewise_function_p<G4double> &pw=c2.piecewise_function(); >> 948 c2p keepit(pw); >> 949 pw.append_function(lj); >> 950 pw.append_function(conn); >> 951 pw.append_function(zbl); >> 952 >> 953 *auval=au; >> 954 keepit.release_for_return(); >> 955 return pw; >> 956 } >> 957 >> 958 G4NativeScreenedCoulombCrossSection::~G4NativeScreenedCoulombCrossSection() { >> 959 } >> 960 >> 961 G4NativeScreenedCoulombCrossSection::G4NativeScreenedCoulombCrossSection() { >> 962 AddScreeningFunction("zbl", ZBLScreening); >> 963 AddScreeningFunction("lj", LJScreening); >> 964 AddScreeningFunction("mol", MoliereScreening); >> 965 AddScreeningFunction("ljzbl", LJZBLScreening); 917 } 966 } 918 967 919 std::vector<G4String> G4NativeScreenedCoulombC << 968 std::vector<G4String> 920 { << 969 G4NativeScreenedCoulombCrossSection::GetScreeningKeys() const { 921 std::vector<G4String> keys; 970 std::vector<G4String> keys; 922 // find the available screening keys 971 // find the available screening keys 923 std::map<std::string, ScreeningFunc>::const_ << 972 std::map<std::string, ScreeningFunc>::const_iterator sfunciter=phiMap.begin(); 924 for (; sfunciter != phiMap.end(); sfunciter+ << 973 for(; sfunciter != phiMap.end(); sfunciter++) 925 keys.push_back((*sfunciter).first); 974 keys.push_back((*sfunciter).first); 926 return keys; 975 return keys; 927 } 976 } 928 977 929 static inline G4double cm_energy(G4double a1, << 978 static inline G4double cm_energy(G4double a1, G4double a2, G4double t0) { 930 { << 979 // "relativistically correct energy in CM frame" 931 // "relativistically correct energy in CM fr << 980 G4double m1=a1*amu_c2, mass2=a2*amu_c2; 932 G4double m1 = a1 * amu_c2, mass2 = a2 * amu_ << 981 G4double mc2=(m1+mass2); 933 G4double mc2 = (m1 + mass2); << 982 G4double f=2.0*mass2*t0/(mc2*mc2); 934 G4double f = 2.0 * mass2 * t0 / (mc2 * mc2); << 983 // old way: return (f < 1e-6) ? 0.5*mc2*f : mc2*(std::sqrt(1.0+f)-1.0); 935 // old way: return (f < 1e-6) ? 0.5*mc2*f : << 984 // formally equivalent to previous, but numerically stable for all 936 // formally equivalent to previous, but nume << 985 // f without conditional 937 // f without conditional << 986 // uses identity (sqrt(1+x) - 1)(sqrt(1+x) + 1) = x 938 // uses identity (sqrt(1+x) - 1)(sqrt(1+x) + << 987 return mc2*f/(std::sqrt(1.0+f)+1.0); 939 return mc2 * f / (std::sqrt(1.0 + f) + 1.0); << 988 } 940 } << 989 941 << 990 static inline G4double thetac(G4double m1, G4double mass2, G4double eratio) { 942 static inline G4double thetac(G4double m1, G4d << 991 G4double s2th2=eratio*( (m1+mass2)*(m1+mass2)/(4.0*m1*mass2) ); 943 { << 992 G4double sth2=std::sqrt(s2th2); 944 G4double s2th2 = eratio * ((m1 + mass2) * (m << 993 return 2.0*std::asin(sth2); 945 G4double sth2 = std::sqrt(s2th2); << 946 return 2.0 * std::asin(sth2); << 947 } 994 } 948 995 949 void G4NativeScreenedCoulombCrossSection::Load << 996 void G4NativeScreenedCoulombCrossSection::LoadData(G4String screeningKey, >> 997 G4int z1, G4double a1, 950 998 G4double recoilCutoff) 951 { << 999 { 952 static const size_t sigLen = 200; << 1000 static const size_t sigLen=200; 953 // since sigma doesn't matter much, a very c << 1001 // since sigma doesn't matter much, a very coarse table will do 954 G4DataVector energies(sigLen); << 1002 G4DataVector energies(sigLen); 955 G4DataVector data(sigLen); << 1003 G4DataVector data(sigLen); 956 << 1004 957 a1 = standardmass(z1); << 1005 a1=standardmass(z1); 958 // use standardized values for mass for buil << 1006 // use standardized values for mass for building tables 959 << 1007 960 const G4MaterialTable* materialTable = G4Mat << 1008 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 961 G4int nMaterials = G4Material::GetNumberOfMa << 1009 G4int nMaterials = G4Material::GetNumberOfMaterials(); 962 << 1010 963 for (G4int im = 0; im < nMaterials; im++) { << 1011 for (G4int im=0; im<nMaterials; im++) 964 const G4Material* material = (*materialTab << 1012 { 965 const G4ElementVector* elementVector = mat << 1013 const G4Material* material= (*materialTable)[im]; 966 const G4int nMatElements = material->GetNu << 1014 const G4ElementVector* elementVector = material->GetElementVector(); 967 << 1015 const G4int nMatElements = material->GetNumberOfElements(); 968 for (G4int iEl = 0; iEl < nMatElements; iE << 1016 969 const G4Element* element = (*elementVect << 1017 for (G4int iEl=0; iEl<nMatElements; iEl++) 970 G4int Z = element->GetZasInt(); << 1018 { 971 G4double a2 = element->GetA() * (mole / << 1019 const G4Element* element = (*elementVector)[iEl]; 972 << 1020 G4int Z = element->GetZasInt(); 973 if (sigmaMap.find(Z) != sigmaMap.end()) << 1021 G4double a2=element->GetA()*(mole/gram); 974 // we've already got this element << 1022 975 << 1023 if(sigmaMap.find(Z)!=sigmaMap.end()) continue; 976 // find the screening function generator << 1024 // we've already got this element 977 std::map<std::string, ScreeningFunc>::it << 1025 978 if (sfunciter == phiMap.end()) { << 1026 // find the screening function generator we need 979 G4ExceptionDescription ed; << 1027 std::map<std::string, ScreeningFunc>::iterator sfunciter= 980 ed << "No such screening key <" << scr << 1028 phiMap.find(screeningKey); 981 G4Exception("G4NativeScreenedCoulombCr << 1029 if(sfunciter==phiMap.end()) { 982 } << 1030 G4ExceptionDescription ed; 983 ScreeningFunc sfunc = (*sfunciter).secon << 1031 ed << "No such screening key <" 984 << 1032 << screeningKey << ">"; 985 G4double au; << 1033 G4Exception("G4NativeScreenedCoulombCrossSection::LoadData", 986 G4_c2_ptr screen = sfunc(z1, Z, 200, 50. << 1034 "em0003",FatalException,ed); 987 // generate the screening data << 1035 } 988 G4ScreeningTables st; << 1036 ScreeningFunc sfunc=(*sfunciter).second; 989 << 1037 990 st.EMphiData = screen; // save our phi << 1038 G4double au; 991 st.z1 = z1; << 1039 G4_c2_ptr screen=sfunc(z1, Z, 200, 50.0*angstrom, &au); 992 st.m1 = a1; << 1040 // generate the screening data 993 st.z2 = Z; << 1041 G4ScreeningTables st; 994 st.m2 = a2; << 1042 995 st.emin = recoilCutoff; << 1043 st.EMphiData=screen; //save our phi table 996 st.au = au; << 1044 st.z1=z1; st.m1=a1; st.z2=Z; st.m2=a2; st.emin=recoilCutoff; 997 << 1045 st.au=au; 998 // now comes the hard part... build the << 1046 999 // tables from the phi table << 1047 // now comes the hard part... build the total cross section 1000 // based on (pi-thetac) = pi*beta*alpha << 1048 // tables from the phi table 1001 // alpha is very nearly unity, always << 1049 // based on (pi-thetac) = pi*beta*alpha/x0, but noting that 1002 // so just solve it wth alpha=1, which << 1050 // alpha is very nearly unity, always 1003 // much easier << 1051 // so just solve it wth alpha=1, which makes the solution 1004 // this function returns an approximati << 1052 // much easier 1005 // (beta/x0)^2=phi(x0)/(eps*x0)-1 ~ ((p << 1053 // this function returns an approximation to 1006 // Since we don't need exact sigma valu << 1054 // (beta/x0)^2=phi(x0)/(eps*x0)-1 ~ ((pi-thetac)/pi)^2 1007 // (within a factor of 2 almost always) << 1055 // Since we don't need exact sigma values, this is good enough 1008 // this rearranges to phi(x0)/(x0*eps) << 1056 // (within a factor of 2 almost always) 1009 // 2*theta/pi - theta^2/pi^2 << 1057 // this rearranges to phi(x0)/(x0*eps) = 1010 << 1058 // 2*theta/pi - theta^2/pi^2 1011 c2_linear_p<G4double>& c2eps = c2.linea << 1059 1012 // will store an appropriate eps inside << 1060 c2_linear_p<G4double> &c2eps=c2.linear(0.0, 0.0, 1.0); 1013 G4_c2_ptr phiau = screen(c2.linear(0.0, << 1061 // will store an appropriate eps inside this in loop 1014 G4_c2_ptr x0func(phiau / c2eps); << 1062 G4_c2_ptr phiau=screen(c2.linear(0.0, 0.0, au)); 1015 // this will be phi(x)/(x*eps) when c2e << 1063 G4_c2_ptr x0func(phiau/c2eps); 1016 x0func->set_domain(1e-6 * angstrom / au << 1064 // this will be phi(x)/(x*eps) when c2eps is correctly set 1017 // needed for inverse function << 1065 x0func->set_domain(1e-6*angstrom/au, 0.9999*screen->xmax()/au); 1018 // use the c2_inverse_function interfac << 1066 // needed for inverse function 1019 // it is more efficient for an ordered << 1067 // use the c2_inverse_function interface for the root finder 1020 // computation of values. << 1068 // it is more efficient for an ordered 1021 G4_c2_ptr x0_solution(c2.inverse_functi << 1069 // computation of values. 1022 << 1070 G4_c2_ptr x0_solution(c2.inverse_function(x0func)); 1023 G4double m1c2 = a1 * amu_c2; << 1071 1024 G4double escale = z1 * Z * elm_coupling << 1072 G4double m1c2=a1*amu_c2; 1025 // energy at screening distance << 1073 G4double escale=z1*Z*elm_coupling/au; 1026 G4double emax = m1c2; << 1074 // energy at screening distance 1027 // model is doubtful in very relativist << 1075 G4double emax=m1c2; 1028 G4double eratkin = 0.9999 * (4 * a1 * a << 1076 // model is doubtful in very relativistic range 1029 // #maximum kinematic ratio possible at << 1077 G4double eratkin=0.9999*(4*a1*a2)/((a1+a2)*(a1+a2)); 1030 G4double cmfact0 = st.emin / cm_energy( << 1078 // #maximum kinematic ratio possible at 180 degrees 1031 G4double l1 = std::log(emax); << 1079 G4double cmfact0=st.emin/cm_energy(a1, a2, st.emin); 1032 G4double l0 = std::log(st.emin * cmfact << 1080 G4double l1=std::log(emax); 1033 << 1081 G4double l0=std::log(st.emin*cmfact0/eratkin); 1034 if (verbosity >= 1) << 1082 1035 G4cout << "Native Screening: " << scr << 1083 if(verbosity >=1) 1036 << a2 << " " << recoilCutoff < << 1084 G4cout << "Native Screening: " << screeningKey << " " 1037 << 1085 << z1 << " " << a1 << " " << 1038 for (size_t idx = 0; idx < sigLen; idx+ << 1086 Z << " " << a2 << " " << recoilCutoff << G4endl; 1039 G4double ee = std::exp(idx * ((l1 - l << 1087 1040 G4double gamma = 1.0 + ee / m1c2; << 1088 for(size_t idx=0; idx<sigLen; idx++) { 1041 G4double eratio = (cmfact0 * st.emin) << 1089 G4double ee=std::exp(idx*((l1-l0)/sigLen)+l0); 1042 // factor by which ee needs to be red << 1090 G4double gamma=1.0+ee/m1c2; 1043 G4double theta = thetac(gamma * a1, a << 1091 G4double eratio=(cmfact0*st.emin)/ee; 1044 << 1092 // factor by which ee needs to be reduced to get emin 1045 G4double eps = cm_energy(a1, a2, ee) << 1093 G4double theta=thetac(gamma*a1, a2, eratio); 1046 // #make sure lab energy is converted << 1094 1047 // calculations << 1095 G4double eps=cm_energy(a1, a2, ee)/escale; 1048 c2eps.reset(0.0, 0.0, eps); << 1096 // #make sure lab energy is converted to CM for these 1049 // set correct slope in this function << 1097 // calculations 1050 << 1098 c2eps.reset(0.0, 0.0, eps); 1051 G4double q = theta / pi; << 1099 // set correct slope in this function 1052 // G4cout << ee << " " << m1c2 << " " << 1100 1053 // << eps << " " << theta << " " << q << 1101 G4double q=theta/pi; 1054 // old way using root finder << 1102 // G4cout << ee << " " << m1c2 << " " << gamma << " " 1055 // G4double x0= x0func->find_root(1e- << 1103 // << eps << " " << theta << " " << q << G4endl; 1056 // 0.9999*screen.xmax()/au, 1.0, 2*q- << 1104 // old way using root finder 1057 // new way using c2_inverse_function << 1105 // G4double x0= x0func->find_root(1e-6*angstrom/au, 1058 // useful information so should be a << 1106 // 0.9999*screen.xmax()/au, 1.0, 2*q-q*q); 1059 // since we are scanning this in stri << 1107 // new way using c2_inverse_function which caches 1060 G4double x0 = 0; << 1108 // useful information so should be a bit faster 1061 try { << 1109 // since we are scanning this in strict order. 1062 x0 = x0_solution(2 * q - q * q); << 1110 G4double x0=0; 1063 } << 1111 try { 1064 catch (c2_exception&) { << 1112 x0=x0_solution(2*q-q*q); 1065 G4Exception("G4ScreenedNuclearRecoi << 1113 } catch(c2_exception&) { >> 1114 G4Exception("G4ScreenedNuclearRecoil::LoadData", >> 1115 "em0003",FatalException, 1066 "failure in inverse sol 1116 "failure in inverse solution to generate MFP tables"); 1067 } << 1117 } 1068 G4double betasquared = x0 * x0 - x0 * << 1118 G4double betasquared=x0*x0 - x0*phiau(x0)/eps; 1069 G4double sigma = pi * betasquared * a << 1119 G4double sigma=pi*betasquared*au*au; 1070 energies[idx] = ee; << 1120 energies[idx]=ee; 1071 data[idx] = sigma; << 1121 data[idx]=sigma; 1072 } << 1122 } 1073 screeningData[Z] = st; << 1123 screeningData[Z]=st; 1074 sigmaMap[Z] = c2.log_log_interpolating_ << 1124 sigmaMap[Z] = 1075 } << 1125 c2.log_log_interpolating_function().load(energies, data, 1076 } << 1126 true,0,true,0); >> 1127 } >> 1128 } 1077 } 1129 } 1078 1130