Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm7/src/G4Screen 26 /// \file electromagnetic/TestEm7/src/G4ScreenedNuclearRecoil.cc 27 /// \brief Implementation of the G4ScreenedNuc 27 /// \brief Implementation of the G4ScreenedNuclearRecoil class 28 // 28 // >> 29 // $Id: G4ScreenedNuclearRecoil.cc 66854 2013-01-14 16:56:24Z vnivanch $ 29 // 30 // 30 // 31 // 31 // Class Description 32 // Class Description 32 // Process for screened electromagnetic nuclea << 33 // Process for screened electromagnetic nuclear elastic scattering; 33 // Physics comes from: 34 // Physics comes from: 34 // Marcus H. Mendenhall and Robert A. Weller, << 35 // Marcus H. Mendenhall and Robert A. Weller, 35 // "Algorithms for the rapid computation o << 36 // "Algorithms for the rapid computation of classical cross 36 // sections for screened Coulomb collision 37 // sections for screened Coulomb collisions " 37 // Nuclear Instruments and Methods in Phy << 38 // Nuclear Instruments and Methods in Physics Research B58 (1991) 11-17 38 // The only input required is a screening func 39 // The only input required is a screening function phi(r/a) which is the ratio 39 // of the actual interatomic potential for two << 40 // of the actual interatomic potential for two atoms with atomic numbers Z1 and Z2, 40 // numbers Z1 and Z2, << 41 // to the unscreened potential Z1*Z2*e^2/r where e^2 is elm_coupling in Geant4 units 41 // to the unscreened potential Z1*Z2*e^2/r whe << 42 // Geant4 units << 43 // 42 // 44 // First version, April 2004, Marcus H. Menden 43 // First version, April 2004, Marcus H. Mendenhall, Vanderbilt University 45 // 44 // 46 // 5 May, 2004, Marcus Mendenhall 45 // 5 May, 2004, Marcus Mendenhall 47 // Added an option for enhancing hard collisio << 46 // Added an option for enhancing hard collisions statistically, to allow 48 // backscattering calculations to be carried o 47 // backscattering calculations to be carried out with much improved event rates, 49 // without distorting the multiple-scattering 48 // without distorting the multiple-scattering broadening too much. 50 // the method SetCrossSectionHardening(G4doubl << 49 // the method SetCrossSectionHardening(G4double fraction, G4double HardeningFactor) 51 // Hardeni << 52 // sets what fraction of the events will be ra 50 // sets what fraction of the events will be randomly hardened, 53 // and the factor by which the impact area is 51 // and the factor by which the impact area is reduced for such selected events. 54 // 52 // 55 // 21 November, 2004, Marcus Mendenhall 53 // 21 November, 2004, Marcus Mendenhall 56 // added static_nucleus to IsApplicable 54 // added static_nucleus to IsApplicable 57 // << 55 // 58 // 7 December, 2004, Marcus Mendenhall 56 // 7 December, 2004, Marcus Mendenhall 59 // changed mean free path of stopping particle 57 // changed mean free path of stopping particle from 0.0 to 1.0*nanometer 60 // to avoid new verbose warning about 0 MFP in 58 // to avoid new verbose warning about 0 MFP in 4.6.2p02 61 // << 59 // 62 // 17 December, 2004, Marcus Mendenhall 60 // 17 December, 2004, Marcus Mendenhall 63 // added code to permit screening out overly c << 61 // added code to permit screening out overly close collisions which are 64 // expected to be hadronic, not Coulombic 62 // expected to be hadronic, not Coulombic 65 // 63 // 66 // 19 December, 2004, Marcus Mendenhall 64 // 19 December, 2004, Marcus Mendenhall 67 // massive rewrite to add modular physics stag 65 // massive rewrite to add modular physics stages and plug-in cross section table 68 // computation. This allows one to select (e. << 66 // computation. This allows one to select (e.g.) between the normal external python 69 // python process and an embedded python inter << 67 // process and an embedded python interpreter (which is much faster) for generating 70 // for generating the tables. << 68 // the tables. 71 // It also allows one to switch between sub-sa << 69 // It also allows one to switch between sub-sampled scattering (event biasing) and 72 // and normal scattering, and between non-rela << 70 // normal scattering, and between non-relativistic kinematics and relativistic 73 // relativistic kinematic approximations, with << 71 // kinematic approximations, without having a class for every combination. Further, one can 74 // combination. Further, one can add extra sta << 72 // add extra stages to the scattering, which can implement various book-keeping processes. 75 // implement various book-keeping processes. << 73 // 76 // << 77 // January 2007, Marcus Mendenhall 74 // January 2007, Marcus Mendenhall 78 // Reorganized heavily for inclusion in Geant4 << 75 // Reorganized heavily for inclusion in Geant4 Core. All modules merged into 79 // one source and header, all historic code re 76 // one source and header, all historic code removed. 80 // << 77 // 81 // Class Description - End 78 // Class Description - End 82 79 83 //....oooOO0OOooo........oooOO0OOooo........oo << 84 80 85 #include "G4ScreenedNuclearRecoil.hh" << 81 #include <stdio.h> 86 82 87 #include "globals.hh" 83 #include "globals.hh" 88 84 89 #include <stdio.h> << 85 #include "G4ScreenedNuclearRecoil.hh" 90 86 91 const char* G4ScreenedCoulombCrossSectionInfo: << 87 const char* G4ScreenedCoulombCrossSectionInfo::CVSFileVers() { return 92 { << 88 "G4ScreenedNuclearRecoil.cc,v 1.57 2008/05/07 11:51:26 marcus Exp GEANT4 tag "; 93 return "G4ScreenedNuclearRecoil.cc,v 1.57 20 << 94 } 89 } 95 90 96 #include "c2_factory.hh" << 91 #include "G4ParticleTypes.hh" 97 << 92 #include "G4ParticleTable.hh" >> 93 #include "G4VParticleChange.hh" >> 94 #include "G4ParticleChangeForLoss.hh" 98 #include "G4DataVector.hh" 95 #include "G4DataVector.hh" 99 #include "G4DynamicParticle.hh" << 96 #include "G4Track.hh" >> 97 #include "G4Step.hh" >> 98 >> 99 #include "G4Material.hh" 100 #include "G4Element.hh" 100 #include "G4Element.hh" 101 #include "G4ElementVector.hh" << 102 #include "G4EmProcessSubType.hh" << 103 #include "G4IonTable.hh" << 104 #include "G4Isotope.hh" 101 #include "G4Isotope.hh" 105 #include "G4IsotopeVector.hh" << 106 #include "G4LindhardPartition.hh" << 107 #include "G4Material.hh" << 108 #include "G4MaterialCutsCouple.hh" 102 #include "G4MaterialCutsCouple.hh" 109 #include "G4ParticleChangeForLoss.hh" << 103 #include "G4ElementVector.hh" >> 104 #include "G4IsotopeVector.hh" >> 105 >> 106 #include "G4EmProcessSubType.hh" >> 107 110 #include "G4ParticleDefinition.hh" 108 #include "G4ParticleDefinition.hh" 111 #include "G4ParticleTable.hh" << 109 #include "G4DynamicParticle.hh" 112 #include "G4ParticleTypes.hh" << 113 #include "G4ProcessManager.hh" 110 #include "G4ProcessManager.hh" 114 #include "G4StableIsotopes.hh" 111 #include "G4StableIsotopes.hh" 115 #include "G4Step.hh" << 112 #include "G4LindhardPartition.hh" 116 #include "G4Track.hh" << 113 117 #include "G4VParticleChange.hh" << 114 #include "G4PhysicalConstants.hh" >> 115 #include "G4SystemOfUnits.hh" 118 #include "Randomize.hh" 116 #include "Randomize.hh" 119 117 120 #include <iomanip> << 121 #include <iostream> 118 #include <iostream> 122 static c2_factory<G4double> c2; // this makes << 119 #include <iomanip> >> 120 >> 121 #include "c2_factory.hh" >> 122 static c2_factory<G4double> c2; // this makes a lot of notation shorter 123 typedef c2_ptr<G4double> c2p; 123 typedef c2_ptr<G4double> c2p; 124 124 125 G4ScreenedCoulombCrossSection::~G4ScreenedCoul 125 G4ScreenedCoulombCrossSection::~G4ScreenedCoulombCrossSection() 126 { 126 { 127 screeningData.clear(); << 127 screeningData.clear(); 128 MFPTables.clear(); << 128 MFPTables.clear(); 129 } 129 } 130 130 131 const G4double G4ScreenedCoulombCrossSection:: << 131 const G4double G4ScreenedCoulombCrossSection::massmap[nMassMapElements+1]={ 132 0, 1.007940, 4.002602, 6.941000 << 132 0, 1.007940, 4.002602, 6.941000, 9.012182, 10.811000, 12.010700, 133 15.999400, 18.998403, 20.179700, 22.98977 << 133 14.006700, 15.999400, 18.998403, 20.179700, 22.989770, 24.305000, 26.981538, 28.085500, 134 32.065000, 35.453000, 39.948000, 39.09830 << 134 30.973761, 32.065000, 35.453000, 39.948000, 39.098300, 40.078000, 44.955910, 47.867000, 135 51.996100, 54.938049, 55.845000, 58.93320 << 135 50.941500, 51.996100, 54.938049, 55.845000, 58.933200, 58.693400, 63.546000, 65.409000, 136 72.640000, 74.921600, 78.960000, 79.90400 << 136 69.723000, 72.640000, 74.921600, 78.960000, 79.904000, 83.798000, 85.467800, 87.620000, 137 91.224000, 92.906380, 95.940000, 98.00000 << 137 88.905850, 91.224000, 92.906380, 95.940000, 98.000000, 101.070000, 102.905500, 106.420000, 138 112.411000, 114.818000, 118.710000, 121.7600 << 138 107.868200, 112.411000, 114.818000, 118.710000, 121.760000, 127.600000, 126.904470, 131.293000, 139 137.327000, 138.905500, 140.116000, 140.9076 << 139 132.905450, 137.327000, 138.905500, 140.116000, 140.907650, 144.240000, 145.000000, 150.360000, 140 157.250000, 158.925340, 162.500000, 164.9303 << 140 151.964000, 157.250000, 158.925340, 162.500000, 164.930320, 167.259000, 168.934210, 173.040000, 141 178.490000, 180.947900, 183.840000, 186.2070 << 141 174.967000, 178.490000, 180.947900, 183.840000, 186.207000, 190.230000, 192.217000, 195.078000, 142 200.590000, 204.383300, 207.200000, 208.9803 << 142 196.966550, 200.590000, 204.383300, 207.200000, 208.980380, 209.000000, 210.000000, 222.000000, 143 226.000000, 227.000000, 232.038100, 231.0358 << 143 223.000000, 226.000000, 227.000000, 232.038100, 231.035880, 238.028910, 237.000000, 244.000000, 144 247.000000, 247.000000, 251.000000, 252.0000 << 144 243.000000, 247.000000, 247.000000, 251.000000, 252.000000, 257.000000, 258.000000, 259.000000, 145 261.000000, 262.000000, 266.000000, 264.0000 << 145 262.000000, 261.000000, 262.000000, 266.000000, 264.000000, 277.000000, 268.000000, 281.000000, 146 285.000000, 282.500000, 289.000000, 287.5000 << 146 272.000000, 285.000000, 282.500000, 289.000000, 287.500000, 292.000000}; 147 << 147 148 G4ParticleDefinition* << 148 G4ParticleDefinition* G4ScreenedCoulombCrossSection::SelectRandomUnweightedTarget(const G4MaterialCutsCouple* couple) 149 G4ScreenedCoulombCrossSection::SelectRandomUnw << 149 { 150 { << 150 // Select randomly an element within the material, according to number density only 151 // Select randomly an element within the mat << 151 const G4Material* material = couple->GetMaterial(); 152 // density only << 152 G4int nMatElements = material->GetNumberOfElements(); 153 const G4Material* material = couple->GetMate << 153 const G4ElementVector* elementVector = material->GetElementVector(); 154 G4int nMatElements = material->GetNumberOfEl << 154 const G4Element *element=0; 155 const G4ElementVector* elementVector = mater << 155 G4ParticleDefinition*target=0; 156 const G4Element* element = 0; << 156 157 G4ParticleDefinition* target = 0; << 157 // Special case: the material consists of one element 158 << 158 if (nMatElements == 1) 159 // Special case: the material consists of on << 159 { 160 if (nMatElements == 1) { << 160 element= (*elementVector)[0]; 161 element = (*elementVector)[0]; << 161 } 162 } << 162 else 163 else { << 163 { 164 // Composite material << 164 // Composite material 165 G4double random = G4UniformRand() * materi << 165 G4double random = G4UniformRand() * material->GetTotNbOfAtomsPerVolume(); 166 G4double nsum = 0.0; << 166 G4double nsum=0.0; 167 const G4double* atomDensities = material-> << 167 const G4double *atomDensities=material->GetVecNbOfAtomsPerVolume(); 168 << 168 169 for (G4int k = 0; k < nMatElements; k++) { << 169 for (G4int k=0 ; k < nMatElements ; k++ ) 170 nsum += atomDensities[k]; << 170 { 171 element = (*elementVector)[k]; << 171 nsum+=atomDensities[k]; 172 if (nsum >= random) break; << 172 element= (*elementVector)[k]; 173 } << 173 if (nsum >= random) break; 174 } << 174 } 175 << 176 G4int N = 0; << 177 G4int Z = element->GetZasInt(); << 178 << 179 G4int nIsotopes = element->GetNumberOfIsotop << 180 if (0 < nIsotopes) { << 181 if (Z <= 92) { << 182 // we have no detailed material isotopic << 183 // so use G4StableIsotopes table up to Z << 184 static G4StableIsotopes theIso; << 185 // get a stable isotope table for defaul << 186 nIsotopes = theIso.GetNumberOfIsotopes(Z << 187 G4double random = 100.0 * G4UniformRand( << 188 // values are expressed as percent, sum << 189 G4int tablestart = theIso.GetFirstIsotop << 190 G4double asum = 0.0; << 191 for (G4int i = 0; i < nIsotopes; i++) { << 192 asum += theIso.GetAbundance(i + tables << 193 N = theIso.GetIsotopeNucleonCount(i + << 194 if (asum >= random) break; << 195 } << 196 } << 197 else { << 198 // too heavy for stable isotope table, j << 199 N = (G4int)std::floor(element->GetN() + << 200 } << 201 } << 202 else { << 203 G4int i; << 204 const G4IsotopeVector* isoV = element->Get << 205 G4double random = G4UniformRand(); << 206 G4double* abundance = element->GetRelative << 207 G4double asum = 0.0; << 208 for (i = 0; i < nIsotopes; i++) { << 209 asum += abundance[i]; << 210 N = (*isoV)[i]->GetN(); << 211 if (asum >= random) break; << 212 } 175 } 213 } << 214 176 215 // get the official definition of this nucle << 177 G4int N=0; 216 // value of A note that GetIon is very slow, << 178 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 217 // we have already found ourselves. << 179 218 ParticleCache::iterator p = targetMap.find(Z << 180 G4int nIsotopes=element->GetNumberOfIsotopes(); 219 if (p != targetMap.end()) { << 181 if(!nIsotopes) { 220 target = (*p).second; << 182 if(Z<=92) { 221 } << 183 // we have no detailed material isotopic info available, 222 else { << 184 // so use G4StableIsotopes table up to Z=92 223 target = G4IonTable::GetIonTable()->GetIon << 185 static G4StableIsotopes theIso; // get a stable isotope table for default results 224 targetMap[Z * 1000 + N] = target; << 186 nIsotopes=theIso.GetNumberOfIsotopes(Z); 225 } << 187 G4double random = 100.0*G4UniformRand(); // values are expressed as percent, sum is 100 226 return target; << 188 G4int tablestart=theIso.GetFirstIsotope(Z); >> 189 G4double asum=0.0; >> 190 for(G4int i=0; i<nIsotopes; i++) { >> 191 asum+=theIso.GetAbundance(i+tablestart); >> 192 N=theIso.GetIsotopeNucleonCount(i+tablestart); >> 193 if(asum >= random) break; >> 194 } >> 195 } else { >> 196 // too heavy for stable isotope table, just use mean mass >> 197 N=(G4int)std::floor(element->GetN()+0.5); >> 198 } >> 199 } else { >> 200 G4int i; >> 201 const G4IsotopeVector *isoV=element->GetIsotopeVector(); >> 202 G4double random = G4UniformRand(); >> 203 G4double *abundance=element->GetRelativeAbundanceVector(); >> 204 G4double asum=0.0; >> 205 for(i=0; i<nIsotopes; i++) { >> 206 asum+=abundance[i]; >> 207 N=(*isoV)[i]->GetN(); >> 208 if(asum >= random) break; >> 209 } >> 210 } >> 211 >> 212 // get the official definition of this nucleus, to get the correct value of A >> 213 // note that GetIon is very slow, so we will cache ones we have already found ourselves. >> 214 ParticleCache::iterator p=targetMap.find(Z*1000+N); >> 215 if (p != targetMap.end()) { >> 216 target=(*p).second; >> 217 } else{ >> 218 target=G4ParticleTable::GetParticleTable()->GetIon(Z, N, 0.0); >> 219 targetMap[Z*1000+N]=target; >> 220 } >> 221 return target; 227 } 222 } 228 223 229 void G4ScreenedCoulombCrossSection::BuildMFPTa 224 void G4ScreenedCoulombCrossSection::BuildMFPTables() 230 { 225 { 231 const G4int nmfpvals = 200; << 226 const G4int nmfpvals=200; 232 227 233 std::vector<G4double> evals(nmfpvals), mfpva << 228 std::vector<G4double> evals(nmfpvals), mfpvals(nmfpvals); 234 229 235 // sum up inverse MFPs per element for each << 230 // sum up inverse MFPs per element for each material 236 const G4MaterialTable* materialTable = G4Mat << 231 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 237 if (materialTable == 0) { << 232 if (materialTable == 0) { return; } 238 return; << 233 //G4Exception("G4ScreenedCoulombCrossSection::BuildMFPTables - no MaterialTable found)"); 239 } << 234 240 // G4Exception("G4ScreenedCoulombCrossSectio << 235 G4int nMaterials = G4Material::GetNumberOfMaterials(); 241 //- no MaterialTable found)"); << 236 242 << 237 for (G4int matidx=0; matidx < nMaterials; matidx++) { 243 G4int nMaterials = G4Material::GetNumberOfMa << 238 244 << 239 const G4Material* material= (*materialTable)[matidx]; 245 for (G4int matidx = 0; matidx < nMaterials; << 240 const G4ElementVector &elementVector = *(material->GetElementVector()); 246 const G4Material* material = (*materialTab << 241 const G4int nMatElements = material->GetNumberOfElements(); 247 const G4ElementVector& elementVector = *(m << 242 248 const G4int nMatElements = material->GetNu << 243 const G4Element *element=0; 249 << 244 const G4double *atomDensities=material->GetVecNbOfAtomsPerVolume(); 250 const G4Element* element = 0; << 245 251 const G4double* atomDensities = material-> << 246 G4double emin=0, emax=0; // find innermost range of cross section functions 252 << 247 for (G4int kel=0 ; kel < nMatElements ; kel++ ) 253 G4double emin = 0, emax = 0; << 248 { 254 // find innermost range of cross section f << 249 element=elementVector[kel]; 255 for (G4int kel = 0; kel < nMatElements; ke << 250 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 256 element = elementVector[kel]; << 251 const G4_c2_function &ifunc=sigmaMap[Z]; 257 G4int Z = (G4int)std::floor(element->Get << 252 if(!kel || ifunc.xmin() > emin) emin=ifunc.xmin(); 258 const G4_c2_function& ifunc = sigmaMap[Z << 253 if(!kel || ifunc.xmax() < emax) emax=ifunc.xmax(); 259 if (!kel || ifunc.xmin() > emin) emin = << 254 } 260 if (!kel || ifunc.xmax() < emax) emax = << 255 261 } << 256 G4double logint=std::log(emax/emin) / (nmfpvals-1) ; // logarithmic increment for tables 262 << 257 263 G4double logint = std::log(emax / emin) / << 258 // compute energy scale for interpolator. Force exact values at both ends to avoid range errors 264 // logarithmic increment for tables << 259 for (G4int i=1; i<nmfpvals-1; i++) evals[i]=emin*std::exp(logint*i); 265 << 260 evals.front()=emin; 266 // compute energy scale for interpolator. << 261 evals.back()=emax; 267 // both ends to avoid range errors << 262 268 for (G4int i = 1; i < nmfpvals - 1; i++) << 263 // zero out the inverse mfp sums to start 269 evals[i] = emin * std::exp(logint * i); << 264 for (G4int eidx=0; eidx < nmfpvals; eidx++) mfpvals[eidx] = 0.0; 270 evals.front() = emin; << 265 271 evals.back() = emax; << 266 // sum inverse mfp for each element in this material and for each energy 272 << 267 for (G4int kel=0 ; kel < nMatElements ; kel++ ) 273 // zero out the inverse mfp sums to start << 268 { 274 for (G4int eidx = 0; eidx < nmfpvals; eidx << 269 element=elementVector[kel]; 275 mfpvals[eidx] = 0.0; << 270 G4int Z=(G4int)std::floor(element->GetZ()+0.5); 276 << 271 const G4_c2_function &sigma=sigmaMap[Z]; 277 // sum inverse mfp for each element in thi << 272 G4double ndens = atomDensities[kel]; // compute atom fraction for this element in this material 278 // energy << 273 279 for (G4int kel = 0; kel < nMatElements; ke << 274 for (G4int eidx=0; eidx < nmfpvals; eidx++) { 280 element = elementVector[kel]; << 275 mfpvals[eidx] += ndens*sigma(evals[eidx]); 281 G4int Z = (G4int)std::floor(element->Get << 276 } 282 const G4_c2_function& sigma = sigmaMap[Z << 277 } 283 G4double ndens = atomDensities[kel]; << 278 284 // compute atom fraction for this elemen << 279 // convert inverse mfp to regular mfp 285 << 280 for (G4int eidx=0; eidx < nmfpvals; eidx++) { 286 for (G4int eidx = 0; eidx < nmfpvals; ei << 281 mfpvals[eidx] = 1.0/mfpvals[eidx]; 287 mfpvals[eidx] += ndens * sigma(evals[e << 282 } 288 } << 283 // and make a new interpolating function out of the sum 289 } << 284 MFPTables[matidx] = c2.log_log_interpolating_function().load(evals, mfpvals,true,0,true,0); 290 << 291 // convert inverse mfp to regular mfp << 292 for (G4int eidx = 0; eidx < nmfpvals; eidx << 293 mfpvals[eidx] = 1.0 / mfpvals[eidx]; << 294 } 285 } 295 // and make a new interpolating function o << 296 MFPTables[matidx] = c2.log_log_interpolati << 297 } << 298 } 286 } 299 287 300 G4ScreenedNuclearRecoil::G4ScreenedNuclearReco << 288 G4ScreenedNuclearRecoil:: 301 << 289 G4ScreenedNuclearRecoil(const G4String& processName, 302 << 290 const G4String &ScreeningKey, 303 << 291 G4bool GenerateRecoils, 304 : G4VDiscreteProcess(processName, fElectroma << 292 G4double RecoilCutoff, G4double PhysicsCutoff) : 305 screeningKey(ScreeningKey), << 293 G4VDiscreteProcess(processName, fElectromagnetic), 306 generateRecoils(GenerateRecoils), << 294 screeningKey(ScreeningKey), 307 avoidReactions(1), << 295 generateRecoils(GenerateRecoils), avoidReactions(1), 308 recoilCutoff(RecoilCutoff), << 296 recoilCutoff(RecoilCutoff), physicsCutoff(PhysicsCutoff), 309 physicsCutoff(PhysicsCutoff), << 297 hardeningFraction(0.0), hardeningFactor(1.0), 310 hardeningFraction(0.0), << 298 externalCrossSectionConstructor(0), 311 hardeningFactor(1.0), << 299 NIELPartitionFunction(new G4LindhardRobinsonPartition) 312 externalCrossSectionConstructor(0), << 300 { 313 NIELPartitionFunction(new G4LindhardRobins << 301 // for now, point to class instance of this. Doing it by creating a new one fails 314 { << 302 // to correctly update NIEL 315 // for now, point to class instance of this. << 303 // not even this is needed... done in G4VProcess(). 316 // one fails << 304 // pParticleChange=&aParticleChange; 317 // to correctly update NIEL << 305 processMaxEnergy=50000.0*MeV; 318 // not even this is needed... done in G4VPro << 306 highEnergyLimit=100.0*MeV; 319 // pParticleChange=&aParticleChange; << 307 lowEnergyLimit=physicsCutoff; 320 processMaxEnergy = 50000.0 * MeV; << 308 registerDepositedEnergy=1; // by default, don't hide NIEL 321 highEnergyLimit = 100.0 * MeV; << 309 MFPScale=1.0; 322 lowEnergyLimit = physicsCutoff; << 310 // SetVerboseLevel(2); 323 registerDepositedEnergy = 1; // by default, << 311 AddStage(new G4ScreenedCoulombClassicalKinematics); 324 MFPScale = 1.0; << 312 AddStage(new G4SingleScatter); 325 // SetVerboseLevel(2); << 313 SetProcessSubType(fCoulombScattering); 326 AddStage(new G4ScreenedCoulombClassicalKinem << 327 AddStage(new G4SingleScatter); << 328 SetProcessSubType(fCoulombScattering); << 329 } 314 } 330 315 331 void G4ScreenedNuclearRecoil::ResetTables() 316 void G4ScreenedNuclearRecoil::ResetTables() 332 { 317 { 333 std::map<G4int, G4ScreenedCoulombCrossSectio << 318 334 for (; xt != crossSectionHandlers.end(); xt+ << 319 std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xt=crossSectionHandlers.begin(); 335 delete (*xt).second; << 320 for(;xt != crossSectionHandlers.end(); xt++) { 336 } << 321 delete (*xt).second; 337 crossSectionHandlers.clear(); << 322 } >> 323 crossSectionHandlers.clear(); 338 } 324 } 339 325 340 void G4ScreenedNuclearRecoil::ClearStages() 326 void G4ScreenedNuclearRecoil::ClearStages() 341 { 327 { 342 // I don't think I like deleting the process << 328 // I don't think I like deleting the processes here... they are better abandoned 343 // abandoned << 329 // if the creator doesn't get rid of them 344 // if the creator doesn't get rid of them << 330 // std::vector<G4ScreenedCollisionStage *>::iterator stage=collisionStages.begin(); 345 // std::vector<G4ScreenedCollisionStage *>:: << 331 //for(; stage != collisionStages.end(); stage++) delete (*stage); 346 // collisionStages.begin(); << 347 // for(; stage != collisionStages.end(); sta << 348 332 349 collisionStages.clear(); << 333 collisionStages.clear(); 350 } 334 } 351 335 352 void G4ScreenedNuclearRecoil::SetNIELPartition << 336 void G4ScreenedNuclearRecoil::SetNIELPartitionFunction(const G4VNIELPartition *part) 353 { 337 { 354 if (NIELPartitionFunction) delete NIELPartit << 338 if(NIELPartitionFunction) delete NIELPartitionFunction; 355 NIELPartitionFunction = part; << 339 NIELPartitionFunction=part; 356 } 340 } 357 341 358 void G4ScreenedNuclearRecoil::DepositEnergy(G4 << 342 void G4ScreenedNuclearRecoil::DepositEnergy(G4int z1, G4double a1, const G4Material *material, G4double energy) 359 G4 << 360 { 343 { 361 if (!NIELPartitionFunction) { << 344 if(!NIELPartitionFunction) { 362 IonizingLoss += energy; << 345 IonizingLoss+=energy; 363 } << 346 } else { 364 else { << 347 G4double part=NIELPartitionFunction->PartitionNIEL(z1, a1, material, energy); 365 G4double part = NIELPartitionFunction->Par << 348 IonizingLoss+=energy*(1-part); 366 IonizingLoss += energy * (1 - part); << 349 NIEL += energy*part; 367 NIEL += energy * part; << 350 } 368 } << 369 } 351 } 370 352 371 G4ScreenedNuclearRecoil::~G4ScreenedNuclearRec 353 G4ScreenedNuclearRecoil::~G4ScreenedNuclearRecoil() 372 { 354 { 373 ResetTables(); << 355 ResetTables(); 374 } 356 } 375 357 376 // returns true if it appears the nuclei colli << 358 // returns true if it appears the nuclei collided, and we are interested in checking 377 // in checking << 359 G4bool G4ScreenedNuclearRecoil::CheckNuclearCollision( 378 G4bool G4ScreenedNuclearRecoil::CheckNuclearCo << 360 G4double A, G4double a1, G4double apsis) { 379 { << 361 return avoidReactions && (apsis < (1.1*(std::pow(A,1.0/3.0)+std::pow(a1,1.0/3.0)) + 1.4)*fermi); 380 return avoidReactions << 362 // nuclei are within 1.4 fm (reduced pion Compton wavelength) of each other at apsis, 381 && (apsis < (1.1 * (std::pow(A, 1.0 / << 363 // this is hadronic, skip it 382 // nuclei are within 1.4 fm (reduced pion Co << 383 // other at apsis, << 384 // this is hadronic, skip it << 385 } 364 } 386 365 387 G4ScreenedCoulombCrossSection* G4ScreenedNucle << 366 G4ScreenedCoulombCrossSection *G4ScreenedNuclearRecoil::GetNewCrossSectionHandler(void) { 388 { << 367 G4ScreenedCoulombCrossSection *xc; 389 G4ScreenedCoulombCrossSection* xc; << 368 if(!externalCrossSectionConstructor) xc=new G4NativeScreenedCoulombCrossSection; 390 if (!externalCrossSectionConstructor) << 369 else xc=externalCrossSectionConstructor->create(); 391 xc = new G4NativeScreenedCoulombCrossSecti << 370 xc->SetVerbosity(verboseLevel); 392 else << 371 return xc; 393 xc = externalCrossSectionConstructor->crea << 394 xc->SetVerbosity(verboseLevel); << 395 return xc; << 396 } 372 } 397 373 398 G4double G4ScreenedNuclearRecoil::GetMeanFreeP << 374 G4double G4ScreenedNuclearRecoil::GetMeanFreePath(const G4Track& track, >> 375 G4double, 399 376 G4ForceCondition* cond) 400 { 377 { 401 const G4DynamicParticle* incoming = track.Ge << 378 const G4DynamicParticle* incoming = track.GetDynamicParticle(); 402 G4double energy = incoming->GetKineticEnergy << 379 G4double energy = incoming->GetKineticEnergy(); 403 G4double a1 = incoming->GetDefinition()->Get << 380 G4double a1=incoming->GetDefinition()->GetPDGMass()/amu_c2; 404 << 381 405 G4double meanFreePath; << 382 G4double meanFreePath; 406 *cond = NotForced; << 383 *cond=NotForced; 407 << 384 408 if (energy < lowEnergyLimit || energy < reco << 385 if (energy < lowEnergyLimit || energy < recoilCutoff*a1) { 409 *cond = Forced; << 386 *cond=Forced; 410 return 1.0 * nm; << 387 return 1.0*nm; /* catch and stop slow particles to collect their NIEL! */ 411 /* catch and stop slow particles to collec << 388 } else if (energy > processMaxEnergy*a1) { 412 } << 389 return DBL_MAX; // infinite mean free path 413 else if (energy > processMaxEnergy * a1) { << 390 } else if (energy > highEnergyLimit*a1) energy=highEnergyLimit*a1; /* constant MFP at high energy */ 414 return DBL_MAX; // infinite mean free pat << 391 415 } << 392 G4double fz1=incoming->GetDefinition()->GetPDGCharge(); 416 else if (energy > highEnergyLimit * a1) << 393 G4int z1=(G4int)(fz1/eplus + 0.5); 417 energy = highEnergyLimit * a1; << 394 418 /* constant MFP at high energy */ << 395 std::map<G4int, G4ScreenedCoulombCrossSection*>::iterator xh= 419 << 396 crossSectionHandlers.find(z1); 420 G4double fz1 = incoming->GetDefinition()->Ge << 397 G4ScreenedCoulombCrossSection *xs; 421 G4int z1 = (G4int)(fz1 / eplus + 0.5); << 398 422 << 399 if (xh==crossSectionHandlers.end()) { 423 std::map<G4int, G4ScreenedCoulombCrossSectio << 400 xs =crossSectionHandlers[z1]=GetNewCrossSectionHandler(); 424 G4ScreenedCoulombCrossSection* xs; << 401 xs->LoadData(screeningKey, z1, a1, physicsCutoff); 425 << 402 xs->BuildMFPTables(); 426 if (xh == crossSectionHandlers.end()) { << 403 } else xs=(*xh).second; 427 xs = crossSectionHandlers[z1] = GetNewCros << 404 428 xs->LoadData(screeningKey, z1, a1, physics << 405 const G4MaterialCutsCouple* materialCouple = track.GetMaterialCutsCouple(); 429 xs->BuildMFPTables(); << 406 size_t materialIndex = materialCouple->GetMaterial()->GetIndex(); 430 } << 407 431 else << 408 const G4_c2_function &mfp=*(*xs)[materialIndex]; 432 xs = (*xh).second; << 409 433 << 410 // make absolutely certain we don't get an out-of-range energy 434 const G4MaterialCutsCouple* materialCouple = << 411 meanFreePath = mfp(std::min(std::max(energy, mfp.xmin()), mfp.xmax())); 435 size_t materialIndex = materialCouple->GetMa << 412 436 << 413 // G4cout << "MFP: " << meanFreePath << " index " << materialIndex << " energy " << energy << " MFPScale " << MFPScale << G4endl; 437 const G4_c2_function& mfp = *(*xs)[materialI << 414 438 << 415 return meanFreePath*MFPScale; 439 // make absolutely certain we don't get an o << 440 meanFreePath = mfp(std::min(std::max(energy, << 441 << 442 // G4cout << "MFP: " << meanFreePath << " in << 443 //<< " energy " << energy << " MFPScale " << << 444 << 445 return meanFreePath * MFPScale; << 446 } 416 } 447 417 448 G4VParticleChange* G4ScreenedNuclearRecoil::Po 418 G4VParticleChange* G4ScreenedNuclearRecoil::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 449 { 419 { 450 validCollision = 1; << 420 validCollision=1; 451 pParticleChange->Initialize(aTrack); << 421 pParticleChange->Initialize(aTrack); 452 NIEL = 0.0; // default is no NIEL deposited << 422 NIEL=0.0; // default is no NIEL deposited 453 IonizingLoss = 0.0; << 423 IonizingLoss=0.0; 454 << 424 455 // do universal setup << 425 // do universal setup 456 << 426 457 const G4DynamicParticle* incidentParticle = << 427 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); 458 G4ParticleDefinition* baseParticle = aTrack. << 428 G4ParticleDefinition *baseParticle=aTrack.GetDefinition(); 459 << 429 460 G4double fz1 = baseParticle->GetPDGCharge() << 430 G4double fz1=baseParticle->GetPDGCharge()/eplus; 461 G4int z1 = (G4int)(fz1 + 0.5); << 431 G4int z1=(G4int)(fz1+0.5); 462 G4double a1 = baseParticle->GetPDGMass() / a << 432 G4double a1=baseParticle->GetPDGMass()/amu_c2; 463 G4double incidentEnergy = incidentParticle-> << 433 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); 464 << 434 465 // Select randomly one element and (possibly << 435 // Select randomly one element and (possibly) isotope in the current material. 466 // current material. << 436 const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple(); 467 const G4MaterialCutsCouple* couple = aTrack. << 437 468 << 438 const G4Material* mat = couple->GetMaterial(); 469 const G4Material* mat = couple->GetMaterial( << 439 470 << 440 G4double P=0.0; // the impact parameter of this collision 471 G4double P = 0.0; // the impact parameter o << 441 472 << 442 if(incidentEnergy < GetRecoilCutoff()*a1) { // check energy sanity on entry 473 if (incidentEnergy < GetRecoilCutoff() * a1) << 443 DepositEnergy(z1, baseParticle->GetPDGMass()/amu_c2, mat, incidentEnergy); 474 // check energy sanity on entry << 444 GetParticleChange().ProposeEnergy(0.0); 475 DepositEnergy(z1, baseParticle->GetPDGMass << 445 // stop the particle and bail out 476 GetParticleChange().ProposeEnergy(0.0); << 446 validCollision=0; 477 // stop the particle and bail out << 447 } else { 478 validCollision = 0; << 448 479 } << 449 G4double numberDensity=mat->GetTotNbOfAtomsPerVolume(); 480 else { << 450 G4double lattice=0.5/std::pow(numberDensity,1.0/3.0); // typical lattice half-spacing 481 G4double numberDensity = mat->GetTotNbOfAt << 451 G4double length=GetCurrentInteractionLength(); 482 G4double lattice = 0.5 / std::pow(numberDe << 452 G4double sigopi=1.0/(CLHEP::pi*numberDensity*length); // this is sigma0/pi 483 // typical lattice half-spacing << 453 484 G4double length = GetCurrentInteractionLen << 454 // compute the impact parameter very early, so if is rejected as too far away, little effort is wasted 485 G4double sigopi = 1.0 / (pi * numberDensit << 455 // this is the TRIM method for determining an impact parameter based on the flight path 486 // this is sigma0/pi << 456 // this gives a cumulative distribution of N(P)= 1-exp(-pi P^2 n l) 487 << 457 // which says the probability of NOT hitting a disk of area sigma= pi P^2 =exp(-sigma N l) 488 // compute the impact parameter very early << 458 // which may be reasonable 489 // as too far away, little effort is waste << 459 if(sigopi < lattice*lattice) { 490 // this is the TRIM method for determining << 460 // normal long-flight approximation 491 // based on the flight path << 461 P = std::sqrt(-std::log(G4UniformRand()) *sigopi); 492 // this gives a cumulative distribution of << 462 } else { 493 // N(P)= 1-exp(-pi P^2 n l) << 463 // short-flight limit 494 // which says the probability of NOT hitti << 464 P = std::sqrt(G4UniformRand())*lattice; 495 // sigma= pi P^2 =exp(-sigma N l) << 465 } 496 // which may be reasonable << 466 497 if (sigopi < lattice * lattice) { << 467 G4double fraction=GetHardeningFraction(); 498 // normal long-flight approximation << 468 if(fraction && G4UniformRand() < fraction) { 499 P = std::sqrt(-std::log(G4UniformRand()) << 469 // pick out some events, and increase the central cross section 500 } << 470 // by reducing the impact parameter 501 else { << 471 P /= std::sqrt(GetHardeningFactor()); 502 // short-flight limit << 472 } 503 P = std::sqrt(G4UniformRand()) * lattice << 473 504 } << 474 505 << 475 // check if we are far enough away that the energy transfer must be below cutoff, 506 G4double fraction = GetHardeningFraction() << 476 // and leave everything alone if so, saving a lot of time. 507 if (fraction && G4UniformRand() < fraction << 477 if(P*P > sigopi) { 508 // pick out some events, and increase th << 478 if(GetVerboseLevel() > 1) 509 // section by reducing the impact parame << 479 printf("ScreenedNuclear impact reject: length=%.3f P=%.4f limit=%.4f\n", 510 P /= std::sqrt(GetHardeningFactor()); << 480 length/angstrom, P/angstrom,std::sqrt(sigopi)/angstrom); 511 } << 481 // no collision, don't follow up with anything 512 << 482 validCollision=0; 513 // check if we are far enough away that th << 483 } 514 // must be below cutoff, << 484 } 515 // and leave everything alone if so, savin << 485 516 if (P * P > sigopi) { << 486 // find out what we hit, and record it in our kinematics block. 517 if (GetVerboseLevel() > 1) << 487 kinematics.targetMaterial=mat; 518 printf("ScreenedNuclear impact reject: << 488 kinematics.a1=a1; 519 P / angstrom, std::sqrt(sigopi) << 489 520 // no collision, don't follow up with an << 490 if(validCollision) { 521 validCollision = 0; << 491 G4ScreenedCoulombCrossSection *xsect=GetCrossSectionHandlers()[z1]; 522 } << 492 G4ParticleDefinition *recoilIon= 523 } << 493 xsect->SelectRandomUnweightedTarget(couple); 524 << 494 kinematics.crossSection=xsect; 525 // find out what we hit, and record it in ou << 495 kinematics.recoilIon=recoilIon; 526 kinematics.targetMaterial = mat; << 496 kinematics.impactParameter=P; 527 kinematics.a1 = a1; << 497 kinematics.a2=recoilIon->GetPDGMass()/amu_c2; 528 << 498 } else { 529 if (validCollision) { << 499 kinematics.recoilIon=0; 530 G4ScreenedCoulombCrossSection* xsect = Get << 500 kinematics.impactParameter=0; 531 G4ParticleDefinition* recoilIon = xsect->S << 501 kinematics.a2=0; 532 kinematics.crossSection = xsect; << 502 } 533 kinematics.recoilIon = recoilIon; << 503 534 kinematics.impactParameter = P; << 504 std::vector<G4ScreenedCollisionStage *>::iterator stage=collisionStages.begin(); 535 kinematics.a2 = recoilIon->GetPDGMass() / << 505 536 } << 506 for(; stage != collisionStages.end(); stage++) 537 else { << 507 (*stage)->DoCollisionStep(this,aTrack, aStep); 538 kinematics.recoilIon = 0; << 508 539 kinematics.impactParameter = 0; << 509 if(registerDepositedEnergy) { 540 kinematics.a2 = 0; << 510 pParticleChange->ProposeLocalEnergyDeposit(IonizingLoss+NIEL); 541 } << 511 pParticleChange->ProposeNonIonizingEnergyDeposit(NIEL); 542 << 512 //MHM G4cout << "depositing energy, total = " << IonizingLoss+NIEL << " NIEL = " << NIEL << G4endl; 543 std::vector<G4ScreenedCollisionStage*>::iter << 513 } 544 << 545 for (; stage != collisionStages.end(); stage << 546 (*stage)->DoCollisionStep(this, aTrack, aS << 547 << 548 if (registerDepositedEnergy) { << 549 pParticleChange->ProposeLocalEnergyDeposit << 550 pParticleChange->ProposeNonIonizingEnergyD << 551 // MHM G4cout << "depositing energy, total << 552 //<< IonizingLoss+NIEL << " NIEL = " << NI << 553 } << 554 << 555 return G4VDiscreteProcess::PostStepDoIt(aTra << 556 } << 557 << 558 G4ScreenedCoulombClassicalKinematics::G4Screen << 559 : // instantiate all the needed functions s << 560 // done at run time << 561 // we will be solving x^2 - x phi(x*au)/e << 562 // or, for easier scaling, x'^2 - x' au p << 563 // note that only the last of these gets << 564 phifunc(c2.const_plugin_function()), << 565 xovereps(c2.linear(0., 0., 0.)), << 566 // will fill this in with the right slope << 567 diff(c2.quadratic(0., 0., 0., 1.) - xovere << 568 {} << 569 << 570 G4bool G4ScreenedCoulombClassicalKinematics::D << 571 << 572 << 573 { << 574 G4double au = screen->au; << 575 G4CoulombKinematicsInfo& kin = master->GetKi << 576 G4double A = kin.a2; << 577 G4double a1 = kin.a1; << 578 << 579 G4double xx0; // first estimate of closest << 580 if (eps < 5.0) { << 581 G4double y = std::log(eps); << 582 G4double mlrho4 = ((((3.517e-4 * y + 1.401 << 583 G4double rho4 = std::exp(-mlrho4); // W&M << 584 G4double bb2 = 0.5 * beta * beta; << 585 xx0 = std::sqrt(bb2 + std::sqrt(bb2 * bb2 << 586 } << 587 else { << 588 G4double ee = 1.0 / (2.0 * eps); << 589 xx0 = ee + std::sqrt(ee * ee + beta * beta << 590 if (master->CheckNuclearCollision(A, a1, x << 591 // nuclei too close << 592 } << 593 << 594 // we will be solving x^2 - x phi(x*au)/eps << 595 // or, for easier scaling, x'^2 - x' au phi( << 596 xovereps.reset(0., 0.0, au / eps); // slope << 597 phifunc.set_function(&(screen->EMphiData.get << 598 // install interpolating table << 599 G4double xx1, phip, phip2; << 600 G4int root_error; << 601 xx1 = diff->find_root(phifunc.xmin(), std::m << 602 std::min(xx0 * au, phi << 603 &phip, &phip2) << 604 / au; << 605 << 606 if (root_error) { << 607 G4cout << "Screened Coulomb Root Finder Er << 608 G4cout << "au " << au << " A " << A << " a << 609 << " beta " << beta << G4endl; << 610 G4cout << " xmin " << phifunc.xmin() << " << 611 G4cout << " f(xmin) " << phifunc(phifunc.x << 612 << phifunc(std::min(10 * xx0 * au, << 613 G4cout << " xstart " << std::min(xx0 * au, << 614 << beta * beta * au * au; << 615 G4cout << G4endl; << 616 throw c2_exception("Failed root find"); << 617 } << 618 << 619 // phiprime is scaled by one factor of au be << 620 // at (xx0*au), << 621 G4double phiprime = phip * au; << 622 << 623 // lambda0 is from W&M 19 << 624 G4double lambda0 = << 625 1.0 / std::sqrt(0.5 + beta * beta / (2.0 * << 626 << 627 // compute the 6-term Lobatto integral alpha << 628 // different coefficients) << 629 // this is probably completely un-needed but << 630 // quality results, << 631 G4double alpha = (1.0 + lambda0) / 30.0; << 632 G4double xvals[] = {0.98302349, 0.84652241, << 633 G4double weights[] = {0.03472124, 0.14769029 << 634 for (G4int k = 0; k < 4; k++) { << 635 G4double x, ff; << 636 x = xx1 / xvals[k]; << 637 ff = 1.0 / std::sqrt(1.0 - phifunc(x * au) << 638 alpha += weights[k] * ff; << 639 } << 640 << 641 phifunc.unset_function(); << 642 // throws an exception if used without setti << 643 514 644 G4double thetac1 = pi * beta * alpha / xx1; << 515 return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep ); 645 // complement of CM scattering angle << 646 G4double sintheta = std::sin(thetac1); // n << 647 G4double costheta = -std::cos(thetac1); // << 648 // G4double psi=std::atan2(sintheta, costhet << 649 // lab scattering angle (M&T 3rd eq. 8.69) << 650 << 651 // numerics note: because we checked above << 652 // of beta which give real recoils, << 653 // we don't have to look too closely for the << 654 // (which would cause sin(theta) << 655 // and 1-cos(theta) to both vanish and make << 656 G4double zeta = std::atan2(sintheta, 1 - cos << 657 // lab recoil angle (M&T 3rd eq. 8.73) << 658 G4double coszeta = std::cos(zeta); << 659 G4double sinzeta = std::sin(zeta); << 660 << 661 kin.sinTheta = sintheta; << 662 kin.cosTheta = costheta; << 663 kin.sinZeta = sinzeta; << 664 kin.cosZeta = coszeta; << 665 return 1; // all OK, collision is valid << 666 } 516 } 667 517 668 void G4ScreenedCoulombClassicalKinematics::DoC << 518 G4ScreenedCoulombClassicalKinematics::G4ScreenedCoulombClassicalKinematics() : 669 << 519 // instantiate all the needed functions statically, so no allocation is done at run time >> 520 // we will be solving x^2 - x phi(x*au)/eps - beta^2 == 0.0 >> 521 // or, for easier scaling, x'^2 - x' au phi(x')/eps - beta^2 au^2 >> 522 // note that only the last of these gets deleted, since it owns the rest >> 523 phifunc(c2.const_plugin_function()), >> 524 xovereps(c2.linear(0., 0., 0.)), // will fill this in with the right slope at run time >> 525 diff(c2.quadratic(0., 0., 0., 1.)-xovereps*phifunc) 670 { 526 { 671 if (!master->GetValidCollision()) return; << 672 << 673 G4ParticleChange& aParticleChange = master-> << 674 G4CoulombKinematicsInfo& kin = master->GetKi << 675 << 676 const G4DynamicParticle* incidentParticle = << 677 G4ParticleDefinition* baseParticle = aTrack. << 678 << 679 G4double incidentEnergy = incidentParticle-> << 680 << 681 // this adjustment to a1 gives the right res << 682 // (constant gamma) << 683 // relativistic collisions. Hard collisions << 684 // Coulombic and hadronic terms interfere an << 685 G4double gamma = (1.0 + incidentEnergy / bas << 686 G4double a1 = kin.a1 * gamma; // relativist << 687 << 688 G4ParticleDefinition* recoilIon = kin.recoil << 689 G4double A = recoilIon->GetPDGMass() / amu_c << 690 G4int Z = (G4int)((recoilIon->GetPDGCharge() << 691 << 692 G4double Ec = incidentEnergy * (A / (A + a1) << 693 // energy in CM frame (non-relativistic!) << 694 const G4ScreeningTables* screen = kin.crossS << 695 G4double au = screen->au; // screening leng << 696 << 697 G4double beta = kin.impactParameter / au; << 698 // dimensionless impact parameter << 699 G4double eps = Ec / (screen->z1 * Z * elm_co << 700 // dimensionless energy << 701 << 702 G4bool ok = DoScreeningComputation(master, s << 703 if (!ok) { << 704 master->SetValidCollision(0); // flag bad << 705 return; // just bail out without setting << 706 } << 707 << 708 G4double eRecoil = << 709 4 * incidentEnergy * a1 * A * kin.cosZeta << 710 kin.eRecoil = eRecoil; << 711 << 712 if (incidentEnergy - eRecoil < master->GetRe << 713 aParticleChange.ProposeEnergy(0.0); << 714 master->DepositEnergy(int(screen->z1), a1, << 715 } << 716 << 717 if (master->GetEnableRecoils() && eRecoil > << 718 kin.recoilIon = recoilIon; << 719 } << 720 else { << 721 kin.recoilIon = 0; // this flags no recoi << 722 master->DepositEnergy(Z, A, kin.targetMate << 723 } << 724 } 527 } 725 528 726 void G4SingleScatter::DoCollisionStep(G4Screen << 529 G4bool G4ScreenedCoulombClassicalKinematics::DoScreeningComputation(G4ScreenedNuclearRecoil *master, 727 const G4 << 530 const G4ScreeningTables *screen, G4double eps, G4double beta) 728 { << 531 { 729 if (!master->GetValidCollision()) return; << 532 G4double au=screen->au; 730 << 533 G4CoulombKinematicsInfo &kin=master->GetKinematics(); 731 G4CoulombKinematicsInfo& kin = master->GetKi << 534 G4double A=kin.a2; 732 G4ParticleChange& aParticleChange = master-> << 535 G4double a1=kin.a1; 733 << 536 734 const G4DynamicParticle* incidentParticle = << 537 G4double xx0; // first estimate of closest approach 735 G4double incidentEnergy = incidentParticle-> << 538 if(eps < 5.0) { 736 G4double eRecoil = kin.eRecoil; << 539 G4double y=std::log(eps); 737 << 540 G4double mlrho4=((((3.517e-4*y+1.401e-2)*y+2.393e-1)*y+2.734)*y+2.220); 738 G4double azimuth = G4UniformRand() * (2.0 * << 541 G4double rho4=std::exp(-mlrho4); // W&M eq. 18 739 G4double sa = std::sin(azimuth); << 542 G4double bb2=0.5*beta*beta; 740 G4double ca = std::cos(azimuth); << 543 xx0=std::sqrt(bb2+std::sqrt(bb2*bb2+rho4)); // W&M eq. 17 741 << 544 } else { 742 G4ThreeVector recoilMomentumDirection(kin.si << 545 G4double ee=1.0/(2.0*eps); 743 G4ParticleMomentum incidentDirection = incid << 546 xx0=ee+std::sqrt(ee*ee+beta*beta); // W&M eq. 15 (Rutherford value) 744 recoilMomentumDirection = recoilMomentumDire << 547 if(master->CheckNuclearCollision(A, a1, xx0*au)) return 0; // nuclei too close 745 G4ThreeVector recoilMomentum = << 548 746 recoilMomentumDirection * std::sqrt(2.0 * << 549 } 747 << 550 748 if (aParticleChange.GetEnergy() != 0.0) { << 551 // we will be solving x^2 - x phi(x*au)/eps - beta^2 == 0.0 749 // DoKinematics hasn't stopped it! << 552 // or, for easier scaling, x'^2 - x' au phi(x')/eps - beta^2 au^2 750 G4ThreeVector beamMomentum = incidentParti << 553 xovereps.reset(0., 0.0, au/eps); // slope of x*au/eps term 751 aParticleChange.ProposeMomentumDirection(b << 554 phifunc.set_function(&(screen->EMphiData.get())); // install interpolating table 752 aParticleChange.ProposeEnergy(incidentEner << 555 G4double xx1, phip, phip2; 753 } << 556 G4int root_error; 754 << 557 xx1=diff->find_root(phifunc.xmin(), std::min(10*xx0*au,phifunc.xmax()), 755 if (kin.recoilIon) { << 558 std::min(xx0*au, phifunc.xmax()), beta*beta*au*au, &root_error, &phip, &phip2)/au; 756 G4DynamicParticle* recoil = << 559 757 new G4DynamicParticle(kin.recoilIon, rec << 560 if(root_error) { >> 561 G4cout << "Screened Coulomb Root Finder Error" << G4endl; >> 562 G4cout << "au " << au << " A " << A << " a1 " << a1 << " xx1 " << xx1 << " eps " << eps << " beta " << beta << G4endl; >> 563 G4cout << " xmin " << phifunc.xmin() << " xmax " << std::min(10*xx0*au,phifunc.xmax()) ; >> 564 G4cout << " f(xmin) " << phifunc(phifunc.xmin()) << " f(xmax) " << phifunc(std::min(10*xx0*au,phifunc.xmax())) ; >> 565 G4cout << " xstart " << std::min(xx0*au, phifunc.xmax()) << " target " << beta*beta*au*au ; >> 566 G4cout << G4endl; >> 567 throw c2_exception("Failed root find"); >> 568 } >> 569 >> 570 // phiprime is scaled by one factor of au because phi is evaluated at (xx0*au), >> 571 G4double phiprime=phip*au; >> 572 >> 573 //lambda0 is from W&M 19 >> 574 G4double lambda0=1.0/std::sqrt(0.5+beta*beta/(2.0*xx1*xx1)-phiprime/(2.0*eps)); >> 575 >> 576 //compute the 6-term Lobatto integral alpha (per W&M 21, with different coefficients) >> 577 // this is probably completely un-needed but gives the highest quality results, >> 578 G4double alpha=(1.0+ lambda0)/30.0; >> 579 G4double xvals[]={0.98302349, 0.84652241, 0.53235309, 0.18347974}; >> 580 G4double weights[]={0.03472124, 0.14769029, 0.23485003, 0.18602489}; >> 581 for(G4int k=0; k<4; k++) { >> 582 G4double x, ff; >> 583 x=xx1/xvals[k]; >> 584 ff=1.0/std::sqrt(1.0-phifunc(x*au)/(x*eps)-beta*beta/(x*x)); >> 585 alpha+=weights[k]*ff; >> 586 } >> 587 >> 588 phifunc.unset_function(); // throws an exception if used without setting again 758 589 759 aParticleChange.SetNumberOfSecondaries(1); << 590 G4double thetac1=CLHEP::pi*beta*alpha/xx1; // complement of CM scattering angle 760 aParticleChange.AddSecondary(recoil); << 591 G4double sintheta=std::sin(thetac1); //note sin(pi-theta)=sin(theta) 761 } << 592 G4double costheta=-std::cos(thetac1); // note cos(pi-theta)=-cos(theta) >> 593 // G4double psi=std::atan2(sintheta, costheta+a1/A); // lab scattering angle (M&T 3rd eq. 8.69) >> 594 >> 595 // numerics note: because we checked above for reasonable values of beta which give real recoils, >> 596 // we don't have to look too closely for theta -> 0 here (which would cause sin(theta) >> 597 // and 1-cos(theta) to both vanish and make the atan2 ill behaved). >> 598 G4double zeta=std::atan2(sintheta, 1-costheta); // lab recoil angle (M&T 3rd eq. 8.73) >> 599 G4double coszeta=std::cos(zeta); >> 600 G4double sinzeta=std::sin(zeta); >> 601 >> 602 kin.sinTheta=sintheta; >> 603 kin.cosTheta=costheta; >> 604 kin.sinZeta=sinzeta; >> 605 kin.cosZeta=coszeta; >> 606 return 1; // all OK, collision is valid >> 607 } >> 608 >> 609 void G4ScreenedCoulombClassicalKinematics::DoCollisionStep(G4ScreenedNuclearRecoil *master, >> 610 const G4Track& aTrack, const G4Step&) { >> 611 >> 612 if(!master->GetValidCollision()) return; >> 613 >> 614 G4ParticleChange &aParticleChange=master->GetParticleChange(); >> 615 G4CoulombKinematicsInfo &kin=master->GetKinematics(); >> 616 >> 617 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); >> 618 G4ParticleDefinition *baseParticle=aTrack.GetDefinition(); >> 619 >> 620 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); >> 621 >> 622 // this adjustment to a1 gives the right results for soft (constant gamma) >> 623 // relativistic collisions. Hard collisions are wrong anyway, since the >> 624 // Coulombic and hadronic terms interfere and cannot be added. >> 625 G4double gamma=(1.0+incidentEnergy/baseParticle->GetPDGMass()); >> 626 G4double a1=kin.a1*gamma; // relativistic gamma correction >> 627 >> 628 G4ParticleDefinition *recoilIon=kin.recoilIon; >> 629 G4double A=recoilIon->GetPDGMass()/amu_c2; >> 630 G4int Z=(G4int)((recoilIon->GetPDGCharge()/eplus)+0.5); >> 631 >> 632 G4double Ec = incidentEnergy*(A/(A+a1)); // energy in CM frame (non-relativistic!) >> 633 const G4ScreeningTables *screen=kin.crossSection->GetScreening(Z); >> 634 G4double au=screen->au; // screening length >> 635 >> 636 G4double beta = kin.impactParameter/au; // dimensionless impact parameter >> 637 G4double eps = Ec/(screen->z1*Z*elm_coupling/au); // dimensionless energy >> 638 >> 639 G4bool ok=DoScreeningComputation(master, screen, eps, beta); >> 640 if(!ok) { >> 641 master->SetValidCollision(0); // flag bad collision >> 642 return; // just bail out without setting valid flag >> 643 } >> 644 >> 645 G4double eRecoil=4*incidentEnergy*a1*A*kin.cosZeta*kin.cosZeta/((a1+A)*(a1+A)); >> 646 kin.eRecoil=eRecoil; >> 647 >> 648 if(incidentEnergy-eRecoil < master->GetRecoilCutoff()*a1) { >> 649 aParticleChange.ProposeEnergy(0.0); >> 650 master->DepositEnergy(int(screen->z1), a1, kin.targetMaterial, incidentEnergy-eRecoil); >> 651 } >> 652 >> 653 if(master->GetEnableRecoils() && eRecoil > master->GetRecoilCutoff() * kin.a2) { >> 654 kin.recoilIon=recoilIon; >> 655 } else { >> 656 kin.recoilIon=0; // this flags no recoil to be generated >> 657 master->DepositEnergy(Z, A, kin.targetMaterial, eRecoil) ; >> 658 } >> 659 } >> 660 >> 661 void G4SingleScatter::DoCollisionStep(G4ScreenedNuclearRecoil *master, >> 662 const G4Track& aTrack, const G4Step&) { >> 663 >> 664 if(!master->GetValidCollision()) return; >> 665 >> 666 G4CoulombKinematicsInfo &kin=master->GetKinematics(); >> 667 G4ParticleChange &aParticleChange=master->GetParticleChange(); >> 668 >> 669 const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle(); >> 670 G4double incidentEnergy = incidentParticle->GetKineticEnergy(); >> 671 G4double eRecoil=kin.eRecoil; >> 672 >> 673 G4double azimuth=G4UniformRand()*(2.0*CLHEP::pi); >> 674 G4double sa=std::sin(azimuth); >> 675 G4double ca=std::cos(azimuth); >> 676 >> 677 G4ThreeVector recoilMomentumDirection(kin.sinZeta*ca, kin.sinZeta*sa, kin.cosZeta); >> 678 G4ParticleMomentum incidentDirection = incidentParticle->GetMomentumDirection(); >> 679 recoilMomentumDirection=recoilMomentumDirection.rotateUz(incidentDirection); >> 680 G4ThreeVector recoilMomentum=recoilMomentumDirection*std::sqrt(2.0*eRecoil*kin.a2*amu_c2); >> 681 >> 682 if(aParticleChange.GetEnergy() != 0.0) { // DoKinematics hasn't stopped it! >> 683 G4ThreeVector beamMomentum=incidentParticle->GetMomentum()-recoilMomentum; >> 684 aParticleChange.ProposeMomentumDirection(beamMomentum.unit()) ; >> 685 aParticleChange.ProposeEnergy(incidentEnergy-eRecoil); >> 686 } >> 687 >> 688 if(kin.recoilIon) { >> 689 G4DynamicParticle* recoil = new G4DynamicParticle (kin.recoilIon, >> 690 recoilMomentumDirection,eRecoil) ; >> 691 >> 692 aParticleChange.SetNumberOfSecondaries(1); >> 693 aParticleChange.AddSecondary(recoil); >> 694 } 762 } 695 } 763 696 764 G4bool G4ScreenedNuclearRecoil::IsApplicable(c << 697 G4bool G4ScreenedNuclearRecoil:: >> 698 IsApplicable(const G4ParticleDefinition& aParticleType) 765 { 699 { 766 return aParticleType == *(G4Proton::Proton() << 700 return aParticleType == *(G4Proton::Proton()) || 767 || aParticleType.GetParticleType() == << 701 aParticleType.GetParticleType() == "nucleus" || >> 702 aParticleType.GetParticleType() == "static_nucleus"; 768 } 703 } 769 704 770 void G4ScreenedNuclearRecoil::BuildPhysicsTabl << 705 void >> 706 G4ScreenedNuclearRecoil:: >> 707 BuildPhysicsTable(const G4ParticleDefinition& aParticleType) 771 { 708 { 772 G4String nam = aParticleType.GetParticleName 709 G4String nam = aParticleType.GetParticleName(); 773 if (nam == "GenericIon" || nam == "proton" | << 710 if(nam == "GenericIon" || nam == "proton" 774 || nam == "alpha" || nam == "He3") << 711 || nam == "deuteron" || nam == "triton" || nam == "alpha" || nam == "He3") { 775 { << 776 G4cout << G4endl << GetProcessName() << ": 712 G4cout << G4endl << GetProcessName() << ": for " << nam 777 << " SubType= " << GetProcessSub << 713 << " SubType= " << GetProcessSubType() 778 << " maxEnergy(MeV)= " << proces << 714 << " maxEnergy(MeV)= " << processMaxEnergy/MeV << G4endl; 779 } 715 } 780 } 716 } 781 717 782 void G4ScreenedNuclearRecoil::DumpPhysicsTable << 718 void >> 719 G4ScreenedNuclearRecoil:: >> 720 DumpPhysicsTable(const G4ParticleDefinition&) >> 721 { >> 722 } 783 723 784 // This used to be the file mhmScreenedNuclear 724 // This used to be the file mhmScreenedNuclearRecoil_native.cc 785 // it has been included here to collect this f << 725 // it has been included here to collect this file into a smaller number of packages 786 // number of packages << 787 726 788 #include "G4DataVector.hh" 727 #include "G4DataVector.hh" >> 728 #include "G4Material.hh" 789 #include "G4Element.hh" 729 #include "G4Element.hh" 790 #include "G4ElementVector.hh" << 791 #include "G4Isotope.hh" 730 #include "G4Isotope.hh" 792 #include "G4Material.hh" << 793 #include "G4MaterialCutsCouple.hh" 731 #include "G4MaterialCutsCouple.hh" 794 << 732 #include "G4ElementVector.hh" 795 #include <vector> 733 #include <vector> 796 734 797 G4_c2_function& ZBLScreening(G4int z1, G4int z << 735 G4_c2_function &ZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) 798 { << 799 static const size_t ncoef = 4; << 800 static G4double scales[ncoef] = {-3.2, -0.94 << 801 static G4double coefs[ncoef] = {0.1818, 0.50 << 802 << 803 G4double au = 0.8854 * angstrom * 0.529 / (s << 804 std::vector<G4double> r(npoints), phi(npoint << 805 << 806 for (size_t i = 0; i < npoints; i++) { << 807 G4double rr = (float)i / (float)(npoints - << 808 r[i] = rr * rr * rMax; << 809 // use quadratic r scale to make sampling << 810 G4double sum = 0.0; << 811 for (size_t j = 0; j < ncoef; j++) << 812 sum += coefs[j] * std::exp(scales[j] * r << 813 phi[i] = sum; << 814 } << 815 << 816 // compute the derivative at the origin for << 817 G4double phiprime0 = 0.0; << 818 for (size_t j = 0; j < ncoef; j++) << 819 phiprime0 += scales[j] * coefs[j] * std::e << 820 phiprime0 *= (1.0 / au); // put back in nat << 821 << 822 *auval = au; << 823 return c2.lin_log_interpolating_function().l << 824 } << 825 << 826 G4_c2_function& MoliereScreening(G4int z1, G4i << 827 { << 828 static const size_t ncoef = 3; << 829 static G4double scales[ncoef] = {-6.0, -1.2, << 830 static G4double coefs[ncoef] = {0.10, 0.55, << 831 << 832 G4double au = 0.8853 * 0.529 * angstrom / st << 833 std::vector<G4double> r(npoints), phi(npoint << 834 << 835 for (size_t i = 0; i < npoints; i++) { << 836 G4double rr = (float)i / (float)(npoints - << 837 r[i] = rr * rr * rMax; << 838 // use quadratic r scale to make sampling << 839 G4double sum = 0.0; << 840 for (size_t j = 0; j < ncoef; j++) << 841 sum += coefs[j] * std::exp(scales[j] * r << 842 phi[i] = sum; << 843 } << 844 << 845 // compute the derivative at the origin for << 846 G4double phiprime0 = 0.0; << 847 for (size_t j = 0; j < ncoef; j++) << 848 phiprime0 += scales[j] * coefs[j] * std::e << 849 phiprime0 *= (1.0 / au); // put back in nat << 850 << 851 *auval = au; << 852 return c2.lin_log_interpolating_function().l << 853 } << 854 << 855 G4_c2_function& LJScreening(G4int z1, G4int z2 << 856 { << 857 // from Loftager, Besenbacher, Jensen & Sore << 858 // PhysRev A20, 1443++, 1979 << 859 G4double au = 0.8853 * 0.529 * angstrom / st << 860 std::vector<G4double> r(npoints), phi(npoint << 861 << 862 for (size_t i = 0; i < npoints; i++) { << 863 G4double rr = (float)i / (float)(npoints - << 864 r[i] = rr * rr * rMax; << 865 // use quadratic r scale to make sampling << 866 << 867 G4double y = std::sqrt(9.67 * r[i] / au); << 868 G4double ysq = y * y; << 869 G4double phipoly = 1 + y + 0.3344 * ysq + << 870 phi[i] = phipoly * std::exp(-y); << 871 // G4cout << r[i] << " " << phi[i] << G4en << 872 } << 873 << 874 // compute the derivative at the origin for << 875 G4double logphiprime0 = (9.67 / 2.0) * (2 * << 876 // #avoid 0/0 on first element << 877 logphiprime0 *= (1.0 / au); // #put back in << 878 << 879 *auval = au; << 880 return c2.lin_log_interpolating_function().l << 881 } << 882 << 883 G4_c2_function& LJZBLScreening(G4int z1, G4int << 884 { << 885 // hybrid of LJ and ZBL, uses LJ if x < 0.25 << 886 /// connector in between. These numbers are << 887 // is very near the point where the function << 888 G4double auzbl, aulj; << 889 << 890 c2p zbl = ZBLScreening(z1, z2, npoints, rMax << 891 c2p lj = LJScreening(z1, z2, npoints, rMax, << 892 << 893 G4double au = (auzbl + aulj) * 0.5; << 894 lj->set_domain(lj->xmin(), 0.25 * au); << 895 zbl->set_domain(1.5 * au, zbl->xmax()); << 896 << 897 c2p conn = c2.connector_function(lj->xmax(), << 898 c2_piecewise_function_p<G4double>& pw = c2.p << 899 c2p keepit(pw); << 900 pw.append_function(lj); << 901 pw.append_function(conn); << 902 pw.append_function(zbl); << 903 << 904 *auval = au; << 905 keepit.release_for_return(); << 906 return pw; << 907 } << 908 << 909 G4NativeScreenedCoulombCrossSection::~G4Native << 910 << 911 G4NativeScreenedCoulombCrossSection::G4NativeS << 912 { << 913 AddScreeningFunction("zbl", ZBLScreening); << 914 AddScreeningFunction("lj", LJScreening); << 915 AddScreeningFunction("mol", MoliereScreening << 916 AddScreeningFunction("ljzbl", LJZBLScreening << 917 } << 918 << 919 std::vector<G4String> G4NativeScreenedCoulombC << 920 { 736 { 921 std::vector<G4String> keys; << 737 static const size_t ncoef=4; 922 // find the available screening keys << 738 static G4double scales[ncoef]={-3.2, -0.9432, -0.4028, -0.2016}; 923 std::map<std::string, ScreeningFunc>::const_ << 739 static G4double coefs[ncoef]={0.1818,0.5099,0.2802,0.0281}; 924 for (; sfunciter != phiMap.end(); sfunciter+ << 740 925 keys.push_back((*sfunciter).first); << 741 G4double au=0.8854*angstrom*0.529/(std::pow(z1, 0.23)+std::pow(z2,0.23)); 926 return keys; << 742 std::vector<G4double> r(npoints), phi(npoints); 927 } << 743 928 << 744 for(size_t i=0; i<npoints; i++) { 929 static inline G4double cm_energy(G4double a1, << 745 G4double rr=(float)i/(float)(npoints-1); 930 { << 746 r[i]=rr*rr*rMax; // use quadratic r scale to make sampling fine near the center 931 // "relativistically correct energy in CM fr << 747 G4double sum=0.0; 932 G4double m1 = a1 * amu_c2, mass2 = a2 * amu_ << 748 for(size_t j=0; j<ncoef; j++) sum+=coefs[j]*std::exp(scales[j]*r[i]/au); 933 G4double mc2 = (m1 + mass2); << 749 phi[i]=sum; 934 G4double f = 2.0 * mass2 * t0 / (mc2 * mc2); << 750 } 935 // old way: return (f < 1e-6) ? 0.5*mc2*f : << 936 // formally equivalent to previous, but nume << 937 // f without conditional << 938 // uses identity (sqrt(1+x) - 1)(sqrt(1+x) + << 939 return mc2 * f / (std::sqrt(1.0 + f) + 1.0); << 940 } << 941 << 942 static inline G4double thetac(G4double m1, G4d << 943 { << 944 G4double s2th2 = eratio * ((m1 + mass2) * (m << 945 G4double sth2 = std::sqrt(s2th2); << 946 return 2.0 * std::asin(sth2); << 947 } << 948 751 949 void G4NativeScreenedCoulombCrossSection::Load << 752 // compute the derivative at the origin for the spline 950 << 753 G4double phiprime0=0.0; 951 { << 754 for(size_t j=0; j<ncoef; j++) phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au); 952 static const size_t sigLen = 200; << 755 phiprime0*=(1.0/au); // put back in natural units; 953 // since sigma doesn't matter much, a very c << 756 954 G4DataVector energies(sigLen); << 757 *auval=au; 955 G4DataVector data(sigLen); << 758 return c2.lin_log_interpolating_function().load(r, phi, false, phiprime0,true,0); 956 << 759 } 957 a1 = standardmass(z1); << 760 958 // use standardized values for mass for buil << 761 G4_c2_function &MoliereScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) 959 << 762 { 960 const G4MaterialTable* materialTable = G4Mat << 763 static const size_t ncoef=3; 961 G4int nMaterials = G4Material::GetNumberOfMa << 764 static G4double scales[ncoef]={-6.0, -1.2, -0.3}; 962 << 765 static G4double coefs[ncoef]={0.10, 0.55, 0.35}; 963 for (G4int im = 0; im < nMaterials; im++) { << 766 964 const G4Material* material = (*materialTab << 767 G4double au=0.8853*0.529*angstrom/std::sqrt(std::pow(z1, 0.6667)+std::pow(z2,0.6667)); 965 const G4ElementVector* elementVector = mat << 768 std::vector<G4double> r(npoints), phi(npoints); 966 const G4int nMatElements = material->GetNu << 769 967 << 770 for(size_t i=0; i<npoints; i++) { 968 for (G4int iEl = 0; iEl < nMatElements; iE << 771 G4double rr=(float)i/(float)(npoints-1); 969 const G4Element* element = (*elementVect << 772 r[i]=rr*rr*rMax; // use quadratic r scale to make sampling fine near the center 970 G4int Z = element->GetZasInt(); << 773 G4double sum=0.0; 971 G4double a2 = element->GetA() * (mole / << 774 for(size_t j=0; j<ncoef; j++) sum+=coefs[j]*std::exp(scales[j]*r[i]/au); 972 << 775 phi[i]=sum; 973 if (sigmaMap.find(Z) != sigmaMap.end()) << 974 // we've already got this element << 975 << 976 // find the screening function generator << 977 std::map<std::string, ScreeningFunc>::it << 978 if (sfunciter == phiMap.end()) { << 979 G4ExceptionDescription ed; << 980 ed << "No such screening key <" << scr << 981 G4Exception("G4NativeScreenedCoulombCr << 982 } << 983 ScreeningFunc sfunc = (*sfunciter).secon << 984 << 985 G4double au; << 986 G4_c2_ptr screen = sfunc(z1, Z, 200, 50. << 987 // generate the screening data << 988 G4ScreeningTables st; << 989 << 990 st.EMphiData = screen; // save our phi << 991 st.z1 = z1; << 992 st.m1 = a1; << 993 st.z2 = Z; << 994 st.m2 = a2; << 995 st.emin = recoilCutoff; << 996 st.au = au; << 997 << 998 // now comes the hard part... build the << 999 // tables from the phi table << 1000 // based on (pi-thetac) = pi*beta*alpha << 1001 // alpha is very nearly unity, always << 1002 // so just solve it wth alpha=1, which << 1003 // much easier << 1004 // this function returns an approximati << 1005 // (beta/x0)^2=phi(x0)/(eps*x0)-1 ~ ((p << 1006 // Since we don't need exact sigma valu << 1007 // (within a factor of 2 almost always) << 1008 // this rearranges to phi(x0)/(x0*eps) << 1009 // 2*theta/pi - theta^2/pi^2 << 1010 << 1011 c2_linear_p<G4double>& c2eps = c2.linea << 1012 // will store an appropriate eps inside << 1013 G4_c2_ptr phiau = screen(c2.linear(0.0, << 1014 G4_c2_ptr x0func(phiau / c2eps); << 1015 // this will be phi(x)/(x*eps) when c2e << 1016 x0func->set_domain(1e-6 * angstrom / au << 1017 // needed for inverse function << 1018 // use the c2_inverse_function interfac << 1019 // it is more efficient for an ordered << 1020 // computation of values. << 1021 G4_c2_ptr x0_solution(c2.inverse_functi << 1022 << 1023 G4double m1c2 = a1 * amu_c2; << 1024 G4double escale = z1 * Z * elm_coupling << 1025 // energy at screening distance << 1026 G4double emax = m1c2; << 1027 // model is doubtful in very relativist << 1028 G4double eratkin = 0.9999 * (4 * a1 * a << 1029 // #maximum kinematic ratio possible at << 1030 G4double cmfact0 = st.emin / cm_energy( << 1031 G4double l1 = std::log(emax); << 1032 G4double l0 = std::log(st.emin * cmfact << 1033 << 1034 if (verbosity >= 1) << 1035 G4cout << "Native Screening: " << scr << 1036 << a2 << " " << recoilCutoff < << 1037 << 1038 for (size_t idx = 0; idx < sigLen; idx+ << 1039 G4double ee = std::exp(idx * ((l1 - l << 1040 G4double gamma = 1.0 + ee / m1c2; << 1041 G4double eratio = (cmfact0 * st.emin) << 1042 // factor by which ee needs to be red << 1043 G4double theta = thetac(gamma * a1, a << 1044 << 1045 G4double eps = cm_energy(a1, a2, ee) << 1046 // #make sure lab energy is converted << 1047 // calculations << 1048 c2eps.reset(0.0, 0.0, eps); << 1049 // set correct slope in this function << 1050 << 1051 G4double q = theta / pi; << 1052 // G4cout << ee << " " << m1c2 << " " << 1053 // << eps << " " << theta << " " << q << 1054 // old way using root finder << 1055 // G4double x0= x0func->find_root(1e- << 1056 // 0.9999*screen.xmax()/au, 1.0, 2*q- << 1057 // new way using c2_inverse_function << 1058 // useful information so should be a << 1059 // since we are scanning this in stri << 1060 G4double x0 = 0; << 1061 try { << 1062 x0 = x0_solution(2 * q - q * q); << 1063 } 776 } 1064 catch (c2_exception&) { << 777 1065 G4Exception("G4ScreenedNuclearRecoi << 778 // compute the derivative at the origin for the spline 1066 "failure in inverse sol << 779 G4double phiprime0=0.0; >> 780 for(size_t j=0; j<ncoef; j++) phiprime0+=scales[j]*coefs[j]*std::exp(scales[j]*r[0]/au); >> 781 phiprime0*=(1.0/au); // put back in natural units; >> 782 >> 783 *auval=au; >> 784 return c2.lin_log_interpolating_function().load(r, phi, false, phiprime0,true,0); >> 785 } >> 786 >> 787 G4_c2_function &LJScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) >> 788 { >> 789 //from Loftager, Besenbacher, Jensen & Sorensen >> 790 //PhysRev A20, 1443++, 1979 >> 791 G4double au=0.8853*0.529*angstrom/std::sqrt(std::pow(z1, 0.6667)+std::pow(z2,0.6667)); >> 792 std::vector<G4double> r(npoints), phi(npoints); >> 793 >> 794 for(size_t i=0; i<npoints; i++) { >> 795 G4double rr=(float)i/(float)(npoints-1); >> 796 r[i]=rr*rr*rMax; // use quadratic r scale to make sampling fine near the center >> 797 >> 798 G4double y=std::sqrt(9.67*r[i]/au); >> 799 G4double ysq=y*y; >> 800 G4double phipoly=1+y+0.3344*ysq+0.0485*y*ysq+0.002647*ysq*ysq; >> 801 phi[i]=phipoly*std::exp(-y); >> 802 // G4cout << r[i] << " " << phi[i] << G4endl; >> 803 } >> 804 >> 805 // compute the derivative at the origin for the spline >> 806 G4double logphiprime0=(9.67/2.0)*(2*0.3344-1.0); // #avoid 0/0 on first element >> 807 logphiprime0 *= (1.0/au); // #put back in natural units >> 808 >> 809 *auval=au; >> 810 return c2.lin_log_interpolating_function().load(r, phi, false, logphiprime0*phi[0],true,0); >> 811 } >> 812 >> 813 G4_c2_function &LJZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval) >> 814 { >> 815 // hybrid of LJ and ZBL, uses LJ if x < 0.25*auniv, ZBL if x > 1.5*auniv, and >> 816 /// connector in between. These numbers are selected so the switchover >> 817 // is very near the point where the functions naturally cross. >> 818 G4double auzbl, aulj; >> 819 >> 820 c2p zbl=ZBLScreening(z1, z2, npoints, rMax, &auzbl); >> 821 c2p lj=LJScreening(z1, z2, npoints, rMax, &aulj); >> 822 >> 823 G4double au=(auzbl+aulj)*0.5; >> 824 lj->set_domain(lj->xmin(), 0.25*au); >> 825 zbl->set_domain(1.5*au,zbl->xmax()); >> 826 >> 827 c2p conn=c2.connector_function(lj->xmax(), lj, zbl->xmin(), zbl, true,0); >> 828 c2_piecewise_function_p<G4double> &pw=c2.piecewise_function(); >> 829 c2p keepit(pw); >> 830 pw.append_function(lj); >> 831 pw.append_function(conn); >> 832 pw.append_function(zbl); >> 833 >> 834 *auval=au; >> 835 keepit.release_for_return(); >> 836 return pw; >> 837 } >> 838 >> 839 G4NativeScreenedCoulombCrossSection::~G4NativeScreenedCoulombCrossSection() { >> 840 } >> 841 >> 842 G4NativeScreenedCoulombCrossSection::G4NativeScreenedCoulombCrossSection() { >> 843 AddScreeningFunction("zbl", ZBLScreening); >> 844 AddScreeningFunction("lj", LJScreening); >> 845 AddScreeningFunction("mol", MoliereScreening); >> 846 AddScreeningFunction("ljzbl", LJZBLScreening); >> 847 } >> 848 >> 849 std::vector<G4String> G4NativeScreenedCoulombCrossSection::GetScreeningKeys() const { >> 850 std::vector<G4String> keys; >> 851 // find the available screening keys >> 852 std::map<std::string, ScreeningFunc>::const_iterator sfunciter=phiMap.begin(); >> 853 for(; sfunciter != phiMap.end(); sfunciter++) keys.push_back((*sfunciter).first); >> 854 return keys; >> 855 } >> 856 >> 857 static inline G4double cm_energy(G4double a1, G4double a2, G4double t0) { >> 858 // "relativistically correct energy in CM frame" >> 859 G4double m1=a1*amu_c2, mass2=a2*amu_c2; >> 860 G4double mc2=(m1+mass2); >> 861 G4double f=2.0*mass2*t0/(mc2*mc2); >> 862 // old way: return (f < 1e-6) ? 0.5*mc2*f : mc2*(std::sqrt(1.0+f)-1.0); >> 863 // formally equivalent to previous, but numerically stable for all f without conditional >> 864 // uses identity (sqrt(1+x) - 1)(sqrt(1+x) + 1) = x >> 865 return mc2*f/(std::sqrt(1.0+f)+1.0); >> 866 } >> 867 >> 868 static inline G4double thetac(G4double m1, G4double mass2, G4double eratio) { >> 869 G4double s2th2=eratio*( (m1+mass2)*(m1+mass2)/(4.0*m1*mass2) ); >> 870 G4double sth2=std::sqrt(s2th2); >> 871 return 2.0*std::asin(sth2); >> 872 } >> 873 >> 874 void G4NativeScreenedCoulombCrossSection::LoadData(G4String screeningKey, G4int z1, G4double a1, G4double recoilCutoff) >> 875 { >> 876 static const size_t sigLen=200; // since sigma doesn't matter much, a very coarse table will do >> 877 G4DataVector energies(sigLen); >> 878 G4DataVector data(sigLen); >> 879 >> 880 a1=standardmass(z1); // use standardized values for mass for building tables >> 881 >> 882 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); >> 883 if (materialTable == 0) { return; } >> 884 //G4Exception("mhmNativeCrossSection::LoadData - no MaterialTable found)"); >> 885 >> 886 G4int nMaterials = G4Material::GetNumberOfMaterials(); >> 887 >> 888 for (G4int im=0; im<nMaterials; im++) >> 889 { >> 890 const G4Material* material= (*materialTable)[im]; >> 891 const G4ElementVector* elementVector = material->GetElementVector(); >> 892 const G4int nMatElements = material->GetNumberOfElements(); >> 893 >> 894 for (G4int iEl=0; iEl<nMatElements; iEl++) >> 895 { >> 896 G4Element* element = (*elementVector)[iEl]; >> 897 G4int Z = (G4int) element->GetZ(); >> 898 G4double a2=element->GetA()*(mole/gram); >> 899 >> 900 if(sigmaMap.find(Z)!=sigmaMap.end()) continue; // we've already got this element >> 901 >> 902 // find the screening function generator we need >> 903 std::map<std::string, ScreeningFunc>::iterator sfunciter=phiMap.find(screeningKey); >> 904 if(sfunciter==phiMap.end()) { >> 905 G4cout << "no such screening key " << screeningKey << G4endl; // FIXME later >> 906 exit(1); >> 907 } >> 908 ScreeningFunc sfunc=(*sfunciter).second; >> 909 >> 910 G4double au; >> 911 G4_c2_ptr screen=sfunc(z1, Z, 200, 50.0*angstrom, &au); // generate the screening data >> 912 G4ScreeningTables st; >> 913 >> 914 st.EMphiData=screen; //save our phi table >> 915 st.z1=z1; st.m1=a1; st.z2=Z; st.m2=a2; st.emin=recoilCutoff; >> 916 st.au=au; >> 917 >> 918 // now comes the hard part... build the total cross section tables from the phi table >> 919 //based on (pi-thetac) = pi*beta*alpha/x0, but noting that alpha is very nearly unity, always >> 920 //so just solve it wth alpha=1, which makes the solution much easier >> 921 //this function returns an approximation to (beta/x0)^2=phi(x0)/(eps*x0)-1 ~ ((pi-thetac)/pi)^2 >> 922 //Since we don't need exact sigma values, this is good enough (within a factor of 2 almost always) >> 923 //this rearranges to phi(x0)/(x0*eps) = 2*theta/pi - theta^2/pi^2 >> 924 >> 925 c2_linear_p<G4double> &c2eps=c2.linear(0.0, 0.0, 1.0); // will store an appropriate eps inside this in loop >> 926 G4_c2_ptr phiau=screen(c2.linear(0.0, 0.0, au)); >> 927 G4_c2_ptr x0func(phiau/c2eps); // this will be phi(x)/(x*eps) when c2eps is correctly set >> 928 x0func->set_domain(1e-6*angstrom/au, 0.9999*screen->xmax()/au); // needed for inverse function >> 929 // use the c2_inverse_function interface for the root finder... it is more efficient for an ordered >> 930 // computation of values. >> 931 G4_c2_ptr x0_solution(c2.inverse_function(x0func)); >> 932 >> 933 G4double m1c2=a1*amu_c2; >> 934 G4double escale=z1*Z*elm_coupling/au; // energy at screening distance >> 935 G4double emax=m1c2; // model is doubtful in very relativistic range >> 936 G4double eratkin=0.9999*(4*a1*a2)/((a1+a2)*(a1+a2)); // #maximum kinematic ratio possible at 180 degrees >> 937 G4double cmfact0=st.emin/cm_energy(a1, a2, st.emin); >> 938 G4double l1=std::log(emax); >> 939 G4double l0=std::log(st.emin*cmfact0/eratkin); >> 940 >> 941 if(verbosity >=1) >> 942 G4cout << "Native Screening: " << screeningKey << " " << z1 << " " << a1 << " " << >> 943 Z << " " << a2 << " " << recoilCutoff << G4endl; >> 944 >> 945 for(size_t idx=0; idx<sigLen; idx++) { >> 946 G4double ee=std::exp(idx*((l1-l0)/sigLen)+l0); >> 947 G4double gamma=1.0+ee/m1c2; >> 948 G4double eratio=(cmfact0*st.emin)/ee; // factor by which ee needs to be reduced to get emin >> 949 G4double theta=thetac(gamma*a1, a2, eratio); >> 950 >> 951 G4double eps=cm_energy(a1, a2, ee)/escale; // #make sure lab energy is converted to CM for these calculations >> 952 c2eps.reset(0.0, 0.0, eps); // set correct slope in this function >> 953 >> 954 G4double q=theta/pi; >> 955 // G4cout << ee << " " << m1c2 << " " << gamma << " " << eps << " " << theta << " " << q << G4endl; >> 956 // old way using root finder >> 957 // G4double x0= x0func->find_root(1e-6*angstrom/au, 0.9999*screen.xmax()/au, 1.0, 2*q-q*q); >> 958 // new way using c2_inverse_function which caches useful information so should be a bit faster >> 959 // since we are scanning this in strict order. >> 960 G4double x0=0; >> 961 try { >> 962 x0=x0_solution(2*q-q*q); >> 963 } catch(c2_exception e) { >> 964 //G4Exception(G4String("G4ScreenedNuclearRecoil: failure in inverse solution to generate MFP Tables: ")+e.what()); >> 965 } >> 966 G4double betasquared=x0*x0 - x0*phiau(x0)/eps; >> 967 G4double sigma=pi*betasquared*au*au; >> 968 energies[idx]=ee; >> 969 data[idx]=sigma; >> 970 } >> 971 screeningData[Z]=st; >> 972 sigmaMap[Z] = c2.log_log_interpolating_function().load(energies, data, true,0,true,0); >> 973 } 1067 } 974 } 1068 G4double betasquared = x0 * x0 - x0 * << 1069 G4double sigma = pi * betasquared * a << 1070 energies[idx] = ee; << 1071 data[idx] = sigma; << 1072 } << 1073 screeningData[Z] = st; << 1074 sigmaMap[Z] = c2.log_log_interpolating_ << 1075 } << 1076 } << 1077 } 975 } 1078 976