Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm17/src/RunActi 26 /// \file electromagnetic/TestEm17/src/RunAction.cc 27 /// \brief Implementation of the RunAction cla 27 /// \brief Implementation of the RunAction class 28 // 28 // 29 // << 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "RunAction.hh" 33 #include "RunAction.hh" 34 34 35 #include "DetectorConstruction.hh" 35 #include "DetectorConstruction.hh" >> 36 #include "PrimaryGeneratorAction.hh" 36 #include "HistoManager.hh" 37 #include "HistoManager.hh" 37 #include "MuCrossSections.hh" 38 #include "MuCrossSections.hh" 38 #include "PrimaryGeneratorAction.hh" << 39 << 40 #include "G4EmCalculator.hh" << 41 #include "G4PhysicalConstants.hh" << 42 #include "G4ProductionCutsTable.hh" 39 #include "G4ProductionCutsTable.hh" >> 40 43 #include "G4Run.hh" 41 #include "G4Run.hh" 44 #include "G4RunManager.hh" 42 #include "G4RunManager.hh" 45 #include "G4SystemOfUnits.hh" << 46 #include "G4UnitsTable.hh" 43 #include "G4UnitsTable.hh" >> 44 >> 45 #include "G4PhysicalConstants.hh" >> 46 #include "G4SystemOfUnits.hh" 47 #include "Randomize.hh" 47 #include "Randomize.hh" 48 48 49 //....oooOO0OOooo........oooOO0OOooo........oo 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 50 50 51 RunAction::RunAction(DetectorConstruction* det << 51 RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* prim, 52 : G4UserRunAction(), fDetector(det), fPrimar << 52 HistoManager* HistM) >> 53 : G4UserRunAction(), >> 54 fDetector(det), fPrimary(prim), fProcCounter(0), fHistoManager(HistM) 53 { 55 { 54 fMucs = new MuCrossSections(); 56 fMucs = new MuCrossSections(); 55 } 57 } 56 58 57 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 60 59 RunAction::~RunAction() 61 RunAction::~RunAction() 60 { 62 { 61 delete fMucs; 63 delete fMucs; 62 } 64 } 63 65 64 //....oooOO0OOooo........oooOO0OOooo........oo 66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 67 66 void RunAction::BeginOfRunAction(const G4Run* 68 void RunAction::BeginOfRunAction(const G4Run* aRun) 67 { << 69 { 68 G4cout << "### Run " << aRun->GetRunID() << 70 G4cout << "### Run " << aRun->GetRunID() << " start." << G4endl; 69 << 71 70 // save Rndm status 72 // save Rndm status 71 CLHEP::HepRandom::showEngineStatus(); 73 CLHEP::HepRandom::showEngineStatus(); 72 74 73 fProcCounter = new ProcessesCount(); 75 fProcCounter = new ProcessesCount(); 74 fHistoManager->Book(); 76 fHistoManager->Book(); 75 } 77 } 76 78 77 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 78 80 79 void RunAction::CountProcesses(const G4String& 81 void RunAction::CountProcesses(const G4String& procName) 80 { 82 { 81 // does the process already encounted ? << 83 //does the process already encounted ? 82 size_t n = fProcCounter->size(); << 84 size_t n = fProcCounter->size(); 83 for (size_t i = 0; i < n; ++i) { << 85 for(size_t i = 0; i<n; ++i) { 84 if ((*fProcCounter)[i]->GetName() == procN << 86 if((*fProcCounter)[i]->GetName()==procName) { 85 (*fProcCounter)[i]->Count(); << 87 (*fProcCounter)[i]->Count(); 86 return; << 88 return; 87 } << 89 } 88 } << 90 } 89 OneProcessCount* count = new OneProcessCount << 91 OneProcessCount* count = new OneProcessCount(procName); 90 count->Count(); << 92 count->Count(); 91 fProcCounter->push_back(count); << 93 fProcCounter->push_back(count); 92 } 94 } 93 95 94 //....oooOO0OOooo........oooOO0OOooo........oo 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 95 97 96 void RunAction::EndOfRunAction(const G4Run* aR 98 void RunAction::EndOfRunAction(const G4Run* aRun) 97 { 99 { 98 G4int NbOfEvents = aRun->GetNumberOfEvent(); 100 G4int NbOfEvents = aRun->GetNumberOfEvent(); 99 if (NbOfEvents == 0) return; 101 if (NbOfEvents == 0) return; 100 << 102 101 // std::ios::fmtflags mode = G4cout.flags() 103 // std::ios::fmtflags mode = G4cout.flags(); 102 G4int prec = G4cout.precision(2); << 104 G4int prec = G4cout.precision(2); 103 << 105 104 const G4Material* material = fDetector->GetM 106 const G4Material* material = fDetector->GetMaterial(); 105 G4double length = fDetector->GetSize(); << 107 G4double length = fDetector->GetSize(); 106 G4double density = material->GetDensity(); 108 G4double density = material->GetDensity(); 107 << 109 108 G4String particle = fPrimary->GetParticleGun << 110 G4String particle = fPrimary->GetParticleGun()->GetParticleDefinition() >> 111 ->GetParticleName(); 109 G4double energy = fPrimary->GetParticleGun() 112 G4double energy = fPrimary->GetParticleGun()->GetParticleEnergy(); 110 << 113 111 G4cout << "\n The run consists of " << NbOfE << 114 G4cout << "\n The run consists of " << NbOfEvents << " "<< particle << " of " 112 << G4BestUnit(energy, "Energy") << " << 115 << G4BestUnit(energy,"Energy") << " through " 113 << material->GetName() << " (density: << 116 << G4BestUnit(length,"Length") << " of " 114 << G4endl; << 117 << material->GetName() << " (density: " 115 << 118 << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; 116 // total number of process calls << 119 >> 120 //total number of process calls 117 G4double countTot = 0.; 121 G4double countTot = 0.; 118 G4cout << "\n Number of process calls --->"; 122 G4cout << "\n Number of process calls --->"; 119 for (size_t i = 0; i < fProcCounter->size(); << 123 for (size_t i=0; i< fProcCounter->size();++i) { 120 G4String procName = (*fProcCounter)[i]->Ge << 124 G4String procName = (*fProcCounter)[i]->GetName(); 121 if (procName != "Transportation") { << 125 if (procName != "Transportation") { 122 G4int count = (*fProcCounter)[i]->GetCou << 126 G4int count = (*fProcCounter)[i]->GetCounter(); 123 G4cout << "\t" << procName << " : " << c << 127 G4cout << "\t" << procName << " : " << count; 124 countTot += count; << 128 countTot += count; 125 } << 129 } 126 } << 130 } 127 << 131 G4cout << G4endl; 128 // compute totalCrossSection, meanFreePath a << 132 >> 133 //compute totalCrossSection, meanFreePath and massicCrossSection 129 // 134 // 130 G4double totalCrossSection = countTot / (NbO << 135 G4double totalCrossSection = countTot/(NbOfEvents*length); 131 G4double MeanFreePath = 1. / totalCrossSecti << 136 G4double MeanFreePath = 1./totalCrossSection; 132 G4double massCrossSection = totalCrossSectio << 137 G4double massCrossSection = totalCrossSection/density; 133 << 138 134 G4cout.precision(5); 139 G4cout.precision(5); 135 G4cout << "\n Simulation: " 140 G4cout << "\n Simulation: " 136 << "total CrossSection = " << totalCr << 141 << "total CrossSection = " << totalCrossSection*cm << " /cm" 137 << "\t MeanFreePath = " << G4BestUnit << 142 << "\t MeanFreePath = " << G4BestUnit(MeanFreePath,"Length") 138 << "\t massicCrossSection = " << mass << 143 << "\t massicCrossSection = " << massCrossSection*g/cm2 << " cm2/g" 139 << 144 << G4endl; 140 // compute theoretical predictions << 145 >> 146 //compute theoretical predictions 141 // 147 // 142 if (particle == "mu+" || particle == "mu-") << 148 if(particle == "mu+" || particle == "mu-") { 143 totalCrossSection = 0.; 149 totalCrossSection = 0.; 144 for (size_t i = 0; i < fProcCounter->size( << 150 for (size_t i=0; i< fProcCounter->size();++i) { 145 G4String procName = (*fProcCounter)[i]-> 151 G4String procName = (*fProcCounter)[i]->GetName(); 146 if (procName != "Transportation") { 152 if (procName != "Transportation") { 147 totalCrossSection += ComputeTheory(pro 153 totalCrossSection += ComputeTheory(procName, NbOfEvents); 148 FillCrossSectionHisto(procName, NbOfEv << 149 } 154 } 150 } 155 } 151 << 156 152 MeanFreePath = 1. / totalCrossSection; << 157 MeanFreePath = 1./totalCrossSection; 153 massCrossSection = totalCrossSection / den << 158 massCrossSection = totalCrossSection/density; 154 << 159 155 G4cout << " Theory: " 160 G4cout << " Theory: " 156 << "total CrossSection = " << total << 161 << "total CrossSection = " << totalCrossSection*cm << " /cm" 157 << "\t MeanFreePath = " << G4BestUn << 162 << "\t MeanFreePath = " << G4BestUnit(MeanFreePath,"Length") 158 << "\t massicCrossSection = " << ma << 163 << "\t massicCrossSection = " << massCrossSection*g/cm2 << " cm2/g" >> 164 << G4endl; 159 } 165 } 160 << 166 161 // G4cout.setf(mode,std::ios::floatfield); 167 // G4cout.setf(mode,std::ios::floatfield); 162 G4cout.precision(prec); << 168 G4cout.precision(prec); 163 169 164 // delete and remove all contents in fProcCo << 170 // delete and remove all contents in fProcCounter 165 size_t n = fProcCounter->size(); 171 size_t n = fProcCounter->size(); 166 for (size_t i = 0; i < n; ++i) { << 172 for(size_t i = 0; i<n; ++i) { delete (*fProcCounter)[i]; } 167 delete (*fProcCounter)[i]; << 168 } << 169 delete fProcCounter; 173 delete fProcCounter; 170 << 174 171 fHistoManager->Save(); 175 fHistoManager->Save(); 172 << 176 173 // show Rndm status 177 // show Rndm status 174 // CLHEP::HepRandom::showEngineStatus(); << 178 //CLHEP::HepRandom::showEngineStatus(); 175 } 179 } 176 180 177 //....oooOO0OOooo........oooOO0OOooo........oo 181 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 178 182 179 G4double RunAction::ComputeTheory(const G4Stri << 183 G4double RunAction::ComputeTheory(const G4String& process, G4int NbOfMu) 180 { << 184 { 181 const G4Material* material = fDetector->GetM 185 const G4Material* material = fDetector->GetMaterial(); 182 G4double ekin = fPrimary->GetParticleGun()-> 186 G4double ekin = fPrimary->GetParticleGun()->GetParticleEnergy(); 183 G4double particleMass = fPrimary->GetParticl << 184 << 185 G4int id = 0; << 186 G4double cut = 1.e-10 * ekin; << 187 if (process == "muIoni") { << 188 id = 11; << 189 cut = GetEnergyCut(material, 1); << 190 } << 191 else if (process == "muPairProd") { << 192 id = 12; << 193 cut = 2 * (GetEnergyCut(material, 1) + ele << 194 } << 195 else if (process == "muBrems") { << 196 id = 13; << 197 cut = GetEnergyCut(material, 0); << 198 } << 199 else if (process == "muonNuclear") { << 200 id = 14; << 201 cut = 100 * MeV; << 202 } << 203 else if (process == "muToMuonPairProd") { << 204 id = 18; << 205 cut = 2 * particleMass; << 206 } << 207 if (id == 0) { << 208 return 0.; << 209 } << 210 187 >> 188 G4int id = 0; G4double cut = 1.e-10*ekin; >> 189 if (process == "muIoni") {id = 11; cut = GetEnergyCut(material,1);} >> 190 else if (process == "muPairProd") {id = 12; cut = 2*(GetEnergyCut(material,1) >> 191 + electron_mass_c2); } >> 192 else if (process == "muBrems") {id = 13; cut = GetEnergyCut(material,0);} >> 193 else if (process == "muonNuclear"){id = 14; cut = 100*MeV;} >> 194 if (id == 0) { return 0.; } >> 195 211 G4int nbOfBins = 100; 196 G4int nbOfBins = 100; 212 // G4double binMin = -10.; << 197 //G4double binMin = -10.; 213 G4double binMin = std::log10(cut / ekin); << 198 G4double binMin = std::log10(cut/ekin); 214 G4double binMax = 0.; 199 G4double binMax = 0.; 215 G4double binWidth = (binMax - binMin) / G4do << 200 G4double binWidth = (binMax-binMin)/G4double(nbOfBins); 216 201 217 // create histo for theoretical crossSection << 202 //create histo for theoretical crossSections, with same bining as simulation 218 // 203 // 219 G4AnalysisManager* analysisManager = G4Analy 204 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 220 << 205 221 G4H1* histoTh = 0; 206 G4H1* histoTh = 0; 222 if (fHistoManager->HistoExist(id)) { 207 if (fHistoManager->HistoExist(id)) { 223 histoTh = analysisManager->GetH1(fHistoMan << 208 histoTh = analysisManager->GetH1(fHistoManager->GetHistoID(id)); 224 nbOfBins = fHistoManager->GetNbins(id); 209 nbOfBins = fHistoManager->GetNbins(id); 225 binMin = fHistoManager->GetVmin(id); << 210 binMin = fHistoManager->GetVmin (id); 226 binMax = fHistoManager->GetVmax(id); << 211 binMax = fHistoManager->GetVmax (id); 227 binWidth = fHistoManager->GetBinWidth(id); << 212 binWidth = fHistoManager->GetBinWidth(id); 228 } << 213 } 229 << 214 230 // compute and plot differential crossSectio << 215 //compute and plot differential crossSection, as function of energy transfert. 231 // compute and return integrated crossSectio << 216 //compute and return integrated crossSection for a given process. 232 //(note: to compare with simulation, the int 217 //(note: to compare with simulation, the integrated crossSection is function 233 // of the energy cut.) << 218 // of the energy cut.) 234 // << 219 // 235 G4double lgeps, etransf, sigmaE, dsigma; 220 G4double lgeps, etransf, sigmaE, dsigma; 236 G4double sigmaTot = 0.; 221 G4double sigmaTot = 0.; 237 const G4double ln10 = std::log(10.); << 222 const G4double ln10 = std::log(10.); 238 G4double length = fDetector->GetSize(); 223 G4double length = fDetector->GetSize(); 239 224 240 // G4cout << "MU: " << process << " E= " << << 225 //G4cout << "MU: " << process << " E= " << ekin 241 // <<" binMin= " << binMin << " binW << 226 // <<" binMin= " << binMin << " binW= " << binWidth << G4endl; 242 227 243 for (G4int ibin = 0; ibin < nbOfBins; ibin++ << 228 for (G4int ibin=0; ibin<nbOfBins; ibin++) { 244 lgeps = binMin + (ibin + 0.5) * binWidth; << 229 lgeps = binMin + (ibin+0.5)*binWidth; 245 etransf = ekin * std::pow(10., lgeps); << 230 etransf = ekin*std::pow(10.,lgeps); 246 sigmaE = fMucs->CR_Macroscopic(process, ma << 231 sigmaE = fMucs->CR_Macroscopic(process,material,ekin,etransf); 247 dsigma = sigmaE * etransf * binWidth * ln1 << 232 dsigma = sigmaE*etransf*binWidth*ln10; 248 if (etransf > cut) sigmaTot += dsigma; << 233 if (etransf > cut) sigmaTot += dsigma; 249 if (histoTh) { 234 if (histoTh) { 250 G4double NbProcess = NbOfMu * length * d << 235 G4double NbProcess = NbOfMu*length*dsigma; 251 histoTh->fill(lgeps, NbProcess); 236 histoTh->fill(lgeps, NbProcess); 252 } 237 } 253 } 238 } 254 << 239 255 // return integrated crossSection << 240 //return integrated crossSection 256 // 241 // 257 return sigmaTot; << 242 return sigmaTot; 258 } << 259 << 260 //....oooOO0OOooo........oooOO0OOooo........oo << 261 << 262 void RunAction::FillCrossSectionHisto(const G4 << 263 { << 264 const G4Material* material = fDetector->GetM << 265 G4double ekin = fPrimary->GetParticleGun()-> << 266 G4ParticleDefinition* particle = fPrimary->G << 267 G4double particleMass = particle->GetPDGMass << 268 << 269 G4EmCalculator emCal; << 270 << 271 G4int id = 0; << 272 G4double cut = 1.e-10 * ekin; << 273 if (process == "muIoni") { << 274 id = 21; << 275 cut = GetEnergyCut(material, 1); << 276 } << 277 else if (process == "muPairProd") { << 278 id = 22; << 279 cut = 2 * (GetEnergyCut(material, 1) + ele << 280 } << 281 else if (process == "muBrems") { << 282 id = 23; << 283 cut = GetEnergyCut(material, 0); << 284 } << 285 else if (process == "muonNuclear") { << 286 id = 24; << 287 cut = 100 * MeV; << 288 } << 289 else if (process == "muToMuonPairProd") { << 290 id = 28; << 291 cut = 2 * particleMass; << 292 } << 293 if (id == 0) { << 294 return; << 295 } << 296 << 297 G4int nbOfBins = 100; << 298 G4double binMin = cut; << 299 G4double binMax = ekin; << 300 G4double binWidth = (binMax - binMin) / G4do << 301 << 302 G4AnalysisManager* analysisManager = G4Analy << 303 << 304 G4H1* histoTh = 0; << 305 if (fHistoManager->HistoExist(id)) { << 306 histoTh = analysisManager->GetH1(fHistoMan << 307 nbOfBins = fHistoManager->GetNbins(id); << 308 binMin = fHistoManager->GetVmin(id); << 309 binMax = fHistoManager->GetVmax(id); << 310 binWidth = fHistoManager->GetBinWidth(id); << 311 } << 312 << 313 G4double sigma, primaryEnergy; << 314 << 315 for (G4int ibin = 0; ibin < nbOfBins; ibin++ << 316 primaryEnergy = binMin + (ibin + 0.5) * bi << 317 sigma = emCal.GetCrossSectionPerVolume(pri << 318 if (histoTh) { << 319 histoTh->fill(primaryEnergy, sigma); << 320 } << 321 } << 322 } 243 } 323 244 324 //....oooOO0OOooo........oooOO0OOooo........oo 245 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 325 246 326 G4double RunAction::GetEnergyCut(const G4Mater 247 G4double RunAction::GetEnergyCut(const G4Material* material, G4int idParticle) 327 { << 248 { 328 G4ProductionCutsTable* table = G4ProductionC << 249 G4ProductionCutsTable* table = G4ProductionCutsTable::GetProductionCutsTable(); >> 250 >> 251 size_t index = 0; >> 252 while ( (table->GetMaterialCutsCouple(index)->GetMaterial() != material) && >> 253 (index < table->GetTableSize())) index++; 329 254 330 size_t index = 0; << 255 return (*(table->GetEnergyCutsVector(idParticle)))[index]; 331 while ((table->GetMaterialCutsCouple(index)- << 256 } 332 && (index < table->GetTableSize())) << 333 index++; << 334 << 335 return (*(table->GetEnergyCutsVector(idParti << 336 } << 337 257 338 //....oooOO0OOooo........oooOO0OOooo........oo 258 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 259 339 260