Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file Run.cc << 26 /// \file electromagnetic/TestEm14/src/Run.cc 27 /// \brief Implementation of the Run class 27 /// \brief Implementation of the Run class 28 // 28 // 29 // << 29 // $Id: Run.cc 71376 2013-06-14 07:44:50Z maire $ >> 30 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 33 33 #include "Run.hh" 34 #include "Run.hh" 34 << 35 #include "DetectorConstruction.hh" 35 #include "DetectorConstruction.hh" 36 #include "PrimaryGeneratorAction.hh" 36 #include "PrimaryGeneratorAction.hh" 37 37 >> 38 #include "G4UnitsTable.hh" >> 39 #include "G4SystemOfUnits.hh" 38 #include "G4EmCalculator.hh" 40 #include "G4EmCalculator.hh" 39 #include "G4Gamma.hh" 41 #include "G4Gamma.hh" 40 #include "G4SystemOfUnits.hh" << 41 #include "G4UnitsTable.hh" << 42 42 43 #include <iomanip> 43 #include <iomanip> 44 44 45 //....oooOO0OOooo........oooOO0OOooo........oo 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 46 46 47 Run::Run(DetectorConstruction* det) : fDetecto << 47 Run::Run(DetectorConstruction* det) >> 48 : G4Run(), >> 49 fDetector(det), >> 50 fParticle(0), fEkin(0.), >> 51 fTotalCount(0), fSumTrack(0.), fSumTrack2(0.), fEnTransfer(0.) >> 52 { } >> 53 >> 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 55 >> 56 Run::~Run() >> 57 { } 48 58 49 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 50 60 51 void Run::SetPrimary(G4ParticleDefinition* par 61 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy) 52 { << 62 { 53 fParticle = particle; 63 fParticle = particle; 54 fEkin = energy; 64 fEkin = energy; 55 } 65 } 56 //....oooOO0OOooo........oooOO0OOooo........oo 66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 67 58 void Run::CountProcesses(G4String procName) << 68 void Run::CountProcesses(G4String procName) 59 { 69 { 60 std::map<G4String, G4int>::iterator it = fPr << 70 std::map<G4String,G4int>::iterator it = fProcCounter.find(procName); 61 if (it == fProcCounter.end()) { << 71 if ( it == fProcCounter.end()) { 62 fProcCounter[procName] = 1; 72 fProcCounter[procName] = 1; 63 } 73 } 64 else { 74 else { 65 fProcCounter[procName]++; << 75 fProcCounter[procName]++; 66 } 76 } 67 } 77 } 68 78 69 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 80 71 void Run::SumTrack(G4double track) << 81 void Run::SumTrack (G4double track) 72 { 82 { 73 fTotalCount++; 83 fTotalCount++; 74 fSumTrack += track; 84 fSumTrack += track; 75 fSumTrack2 += track * track; << 85 fSumTrack2 += track*track; 76 } 86 } 77 87 78 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 79 89 80 void Run::SumeTransf(G4double energy) << 90 void Run::SumeTransf (G4double energy) 81 { 91 { 82 fEnTransfer += energy; 92 fEnTransfer += energy; 83 } 93 } 84 94 85 //....oooOO0OOooo........oooOO0OOooo........oo 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 86 96 87 void Run::Merge(const G4Run* run) 97 void Run::Merge(const G4Run* run) 88 { 98 { 89 const Run* localRun = static_cast<const Run* 99 const Run* localRun = static_cast<const Run*>(run); 90 100 91 // pass information about primary particle 101 // pass information about primary particle 92 fParticle = localRun->fParticle; 102 fParticle = localRun->fParticle; 93 fEkin = localRun->fEkin; << 103 fEkin = localRun->fEkin; 94 << 104 95 // map: processes count << 105 //map: processes count 96 std::map<G4String, G4int>::const_iterator it << 106 std::map<G4String,G4int>::const_iterator it; 97 for (it = localRun->fProcCounter.begin(); it << 107 for (it = localRun->fProcCounter.begin(); >> 108 it !=localRun->fProcCounter.end(); ++it) { >> 109 98 G4String procName = it->first; 110 G4String procName = it->first; 99 G4int localCount = it->second; << 111 G4int localCount = it->second; 100 if (fProcCounter.find(procName) == fProcCo << 112 if ( fProcCounter.find(procName) == fProcCounter.end()) { 101 fProcCounter[procName] = localCount; 113 fProcCounter[procName] = localCount; 102 } 114 } 103 else { 115 else { 104 fProcCounter[procName] += localCount; 116 fProcCounter[procName] += localCount; 105 } 117 } 106 } 118 } 107 << 119 108 fTotalCount += localRun->fTotalCount; 120 fTotalCount += localRun->fTotalCount; 109 fSumTrack += localRun->fSumTrack; << 121 fSumTrack += localRun->fSumTrack; 110 fSumTrack2 += localRun->fSumTrack2; << 122 fSumTrack2 += localRun->fSumTrack2; 111 fEnTransfer += localRun->fEnTransfer; 123 fEnTransfer += localRun->fEnTransfer; 112 << 124 113 G4Run::Merge(run); << 125 G4Run::Merge(run); 114 } << 126 } 115 127 116 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 117 129 118 void Run::EndOfRun() 130 void Run::EndOfRun() 119 { 131 { 120 G4int prec = 5; << 132 G4int prec = 5; 121 G4int dfprec = G4cout.precision(prec); 133 G4int dfprec = G4cout.precision(prec); 122 << 134 123 // run condition << 135 //run condition 124 // << 136 // 125 G4String partName = fParticle->GetParticleNa << 137 G4String partName = fParticle->GetParticleName(); 126 G4Material* material = fDetector->GetMateria 138 G4Material* material = fDetector->GetMaterial(); 127 G4double density = material->GetDensity(); << 139 G4double density = material->GetDensity(); 128 G4double tickness = fDetector->GetSize(); << 140 G4double tickness = fDetector->GetSize(); 129 << 141 130 G4cout << "\n ======================== run s 142 G4cout << "\n ======================== run summary ======================\n"; 131 G4cout << "\n The run is: " << numberOfEvent 143 G4cout << "\n The run is: " << numberOfEvent << " " << partName << " of " 132 << G4BestUnit(fEkin, "Energy") << " t << 144 << G4BestUnit(fEkin,"Energy") << " through " 133 << material->GetName() << " (density: << 145 << G4BestUnit(tickness,"Length") << " of " 134 << G4endl; << 146 << material->GetName() << " (density: " >> 147 << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; 135 148 136 // frequency of processes << 149 //frequency of processes 137 G4int survive = 0; << 150 G4int survive = 0; 138 G4cout << "\n Process calls frequency --->"; 151 G4cout << "\n Process calls frequency --->"; 139 std::map<G4String, G4int>::iterator it; << 152 std::map<G4String,G4int>::iterator it; 140 for (it = fProcCounter.begin(); it != fProcC 153 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 141 G4String procName = it->first; << 154 G4String procName = it->first; 142 G4int count = it->second; << 155 G4int count = it->second; 143 G4cout << "\t" << procName << " = " << cou << 156 G4cout << "\t" << procName << " = " << count; 144 if (procName == "Transportation") survive << 157 if (procName == "Transportation") survive = count; 145 } 158 } 146 159 147 if (survive > 0) { 160 if (survive > 0) { 148 G4cout << "\n\n Nb of incident particles s 161 G4cout << "\n\n Nb of incident particles surviving after " 149 << G4BestUnit(fDetector->GetSize(), << 162 << G4BestUnit(fDetector->GetSize(),"Length") << " of " 150 << survive << G4endl; << 163 << material->GetName() << " : " << survive << G4endl; 151 } 164 } 152 165 153 if (fTotalCount == 0) fTotalCount = 1; // f << 166 if (fTotalCount == 0) fTotalCount = 1; //force printing anyway 154 << 155 // compute mean free path and related quanti << 156 // << 157 G4double MeanFreePath = fSumTrack / fTotalCo << 158 G4double MeanTrack2 = fSumTrack2 / fTotalCou << 159 G4double rms = std::sqrt(std::fabs(MeanTrack << 160 G4double CrossSection = 1. / MeanFreePath; << 161 G4double massicMFP = MeanFreePath * density; << 162 G4double massicCS = 1. / massicMFP; << 163 << 164 G4cout << "\n\n MeanFreePath:\t" << G4BestUn << 165 << G4BestUnit(rms, "Length") << "\tma << 166 << "\n CrossSection:\t" << CrossSecti << 167 << "\t\t\tmassic: " << G4BestUnit(mas << 168 167 169 // compute energy transfer coefficient << 168 //compute mean free path and related quantities 170 // 169 // 171 G4double MeanTransfer = fEnTransfer / fTotal << 170 G4double MeanFreePath = fSumTrack /fTotalCount; 172 G4double massTransfCoef = massicCS * MeanTra << 171 G4double MeanTrack2 = fSumTrack2/fTotalCount; 173 << 172 G4double rms = std::sqrt(std::fabs(MeanTrack2 - MeanFreePath*MeanFreePath)); 174 G4cout << "\n mean energy of charged seconda << 173 G4double CrossSection = 1./MeanFreePath; 175 << "\n ---> mass_energy_transfer << 174 G4double massicMFP = MeanFreePath*density; >> 175 G4double massicCS = 1./massicMFP; >> 176 >> 177 G4cout << "\n\n MeanFreePath:\t" << G4BestUnit(MeanFreePath,"Length") >> 178 << " +- " << G4BestUnit( rms,"Length") >> 179 << "\tmassic: " << G4BestUnit(massicMFP, "Mass/Surface") >> 180 << "\n CrossSection:\t" << CrossSection*cm << " cm^-1 " >> 181 << "\t\t\tmassic: " << G4BestUnit(massicCS, "Surface/Mass") 176 << G4endl; 182 << G4endl; >> 183 >> 184 //compute energy transfer coefficient >> 185 // >> 186 G4double MeanTransfer = fEnTransfer/fTotalCount; >> 187 G4double massTransfCoef = massicCS*MeanTransfer/fEkin; >> 188 >> 189 G4cout << "\n mean energy of charged secondaries: " >> 190 << G4BestUnit(MeanTransfer, "Energy") >> 191 << "\n ---> mass_energy_transfer coef: " >> 192 << G4BestUnit(massTransfCoef, "Surface/Mass") >> 193 << G4endl; 177 194 178 // check cross section from G4EmCalculator << 195 //check cross section from G4EmCalculator 179 // 196 // 180 G4cout << "\n Verification : " 197 G4cout << "\n Verification : " 181 << "crossSections from G4EmCalculator 198 << "crossSections from G4EmCalculator \n"; 182 199 183 G4EmCalculator emCalculator; 200 G4EmCalculator emCalculator; 184 G4double sumc = 0.0; << 201 G4double sumc = 0.0; 185 for (it = fProcCounter.begin(); it != fProcC 202 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 186 G4String procName = it->first; << 203 G4String procName = it->first; 187 G4double massSigma = << 204 G4double massSigma = 188 emCalculator.GetCrossSectionPerVolume(fE << 205 emCalculator.GetCrossSectionPerVolume(fEkin,fParticle, >> 206 procName,material)/density; 189 if (fParticle == G4Gamma::Gamma()) 207 if (fParticle == G4Gamma::Gamma()) 190 massSigma = << 208 massSigma = 191 emCalculator.ComputeCrossSectionPerVol << 209 emCalculator.ComputeCrossSectionPerVolume(fEkin,fParticle, >> 210 procName,material)/density; 192 sumc += massSigma; 211 sumc += massSigma; 193 G4cout << " " << procName << "= " << G4B << 212 G4cout << " " << procName << "= " >> 213 << G4BestUnit(massSigma, "Surface/Mass"); 194 } 214 } 195 G4cout << " total= " << G4BestUnit(sumc, " << 215 G4cout << " total= " >> 216 << G4BestUnit(sumc, "Surface/Mass") << G4endl; 196 217 197 // remove all contents in fProcCounter << 218 // remove all contents in fProcCounter 198 fProcCounter.clear(); 219 fProcCounter.clear(); 199 220 200 // restore default format << 221 //restore default format 201 G4cout.precision(dfprec); << 222 G4cout.precision(dfprec); 202 } 223 } 203 224 204 //....oooOO0OOooo........oooOO0OOooo........oo 225 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 205 226