Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm13/src/Run.cc 26 /// \file electromagnetic/TestEm13/src/Run.cc 27 /// \brief Implementation of the Run class 27 /// \brief Implementation of the Run class 28 // 28 // 29 // << 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "Run.hh" 33 #include "Run.hh" 34 << 35 #include "DetectorConstruction.hh" 34 #include "DetectorConstruction.hh" 36 #include "PrimaryGeneratorAction.hh" 35 #include "PrimaryGeneratorAction.hh" 37 36 >> 37 #include "G4UnitsTable.hh" >> 38 #include "G4SystemOfUnits.hh" 38 #include "G4EmCalculator.hh" 39 #include "G4EmCalculator.hh" 39 #include "G4Gamma.hh" 40 #include "G4Gamma.hh" 40 #include "G4SystemOfUnits.hh" << 41 #include "G4UnitsTable.hh" << 42 41 43 #include <iomanip> 42 #include <iomanip> 44 43 45 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 46 45 47 Run::Run(DetectorConstruction* det) : fDetecto << 46 Run::Run(DetectorConstruction* det) >> 47 : G4Run(), >> 48 fDetector(det), >> 49 fParticle(0), fEkin(0.) >> 50 { } >> 51 >> 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 53 >> 54 Run::~Run() >> 55 { } 48 56 49 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 50 58 51 void Run::SetPrimary(G4ParticleDefinition* par 59 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy) 52 { << 60 { 53 fParticle = particle; 61 fParticle = particle; 54 fEkin = energy; 62 fEkin = energy; 55 } 63 } 56 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 65 58 void Run::CountProcesses(G4String procName) << 66 void Run::CountProcesses(G4String procName) 59 { 67 { 60 std::map<G4String, G4int>::iterator it = fPr << 68 std::map<G4String,G4int>::iterator it = fProcCounter.find(procName); 61 if (it == fProcCounter.end()) { << 69 if ( it == fProcCounter.end()) { 62 fProcCounter[procName] = 1; 70 fProcCounter[procName] = 1; 63 } 71 } 64 else { 72 else { 65 fProcCounter[procName]++; << 73 fProcCounter[procName]++; 66 } 74 } 67 } 75 } 68 << 76 69 //....oooOO0OOooo........oooOO0OOooo........oo 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 78 71 void Run::Merge(const G4Run* run) 79 void Run::Merge(const G4Run* run) 72 { 80 { 73 const Run* localRun = static_cast<const Run* 81 const Run* localRun = static_cast<const Run*>(run); 74 82 75 // pass information about primary particle 83 // pass information about primary particle 76 fParticle = localRun->fParticle; 84 fParticle = localRun->fParticle; 77 fEkin = localRun->fEkin; << 85 fEkin = localRun->fEkin; 78 << 86 79 // map: processes count << 87 //map: processes count 80 std::map<G4String, G4int>::const_iterator it << 88 std::map<G4String,G4int>::const_iterator it; 81 for (it = localRun->fProcCounter.begin(); it << 89 for (it = localRun->fProcCounter.begin(); >> 90 it !=localRun->fProcCounter.end(); ++it) { >> 91 82 G4String procName = it->first; 92 G4String procName = it->first; 83 G4int localCount = it->second; << 93 G4int localCount = it->second; 84 if (fProcCounter.find(procName) == fProcCo << 94 if ( fProcCounter.find(procName) == fProcCounter.end()) { 85 fProcCounter[procName] = localCount; 95 fProcCounter[procName] = localCount; 86 } 96 } 87 else { 97 else { 88 fProcCounter[procName] += localCount; 98 fProcCounter[procName] += localCount; 89 } << 99 } 90 } 100 } 91 << 101 92 G4Run::Merge(run); << 102 G4Run::Merge(run); 93 } << 103 } 94 104 95 //....oooOO0OOooo........oooOO0OOooo........oo 105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 96 106 97 void Run::EndOfRun() 107 void Run::EndOfRun() 98 { 108 { 99 G4int prec = 5; << 109 G4int prec = 5; 100 G4int dfprec = G4cout.precision(prec); 110 G4int dfprec = G4cout.precision(prec); 101 << 111 102 // run condition << 112 //run condition 103 // << 113 // 104 G4String partName = fParticle->GetParticleNa << 114 G4String partName = fParticle->GetParticleName(); 105 G4Material* material = fDetector->GetMateria 115 G4Material* material = fDetector->GetMaterial(); 106 G4double density = material->GetDensity(); << 116 G4double density = material->GetDensity(); 107 G4double tickness = fDetector->GetSize(); 117 G4double tickness = fDetector->GetSize(); 108 << 118 109 G4cout << "\n ======================== run s 119 G4cout << "\n ======================== run summary ======================\n"; 110 G4cout << "\n The run is: " << numberOfEvent 120 G4cout << "\n The run is: " << numberOfEvent << " " << partName << " of " 111 << G4BestUnit(fEkin, "Energy") << " t << 121 << G4BestUnit(fEkin,"Energy") << " through " 112 << material->GetName() << " (density: << 122 << G4BestUnit(tickness,"Length") << " of " 113 << G4endl; << 123 << material->GetName() << " (density: " >> 124 << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; 114 125 115 // frequency of processes << 126 //frequency of processes 116 G4int totalCount = 0; 127 G4int totalCount = 0; 117 G4int survive = 0; << 128 G4int survive = 0; 118 G4cout << "\n Process calls frequency --->"; 129 G4cout << "\n Process calls frequency --->"; 119 std::map<G4String, G4int>::iterator it; << 130 std::map<G4String,G4int>::iterator it; 120 for (it = fProcCounter.begin(); it != fProcC 131 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 121 G4String procName = it->first; << 132 G4String procName = it->first; 122 G4int count = it->second; << 133 G4int count = it->second; 123 totalCount += count; << 134 totalCount += count; 124 G4cout << "\t" << procName << " = " << cou << 135 G4cout << "\t" << procName << " = " << count; 125 if (procName == "Transportation") survive << 136 if (procName == "Transportation") survive = count; 126 } 137 } 127 G4cout << G4endl; 138 G4cout << G4endl; 128 139 129 if (totalCount == 0) { << 140 if (totalCount == 0) { G4cout.precision(dfprec); return;}; 130 G4cout.precision(dfprec); << 141 G4double ratio = double(survive)/totalCount; 131 return; << 132 }; << 133 G4double ratio = double(survive) / totalCoun << 134 << 135 G4cout << "\n Nb of incident particles unalt << 136 << " of " << material->GetName() << " << 137 << " incident particles." << 138 << " Ratio = " << 100 * ratio << " % << 139 142 >> 143 G4cout << "\n Nb of incident particles unaltered after " >> 144 << G4BestUnit(tickness,"Length") << " of " >> 145 << material->GetName() << " : " << survive >> 146 << " over " << totalCount << " incident particles." >> 147 << " Ratio = " << 100*ratio << " %" << G4endl; >> 148 140 if (ratio == 0.) return; 149 if (ratio == 0.) return; 141 << 150 142 // compute cross section and related quantit << 151 //compute cross section and related quantities 143 // 152 // 144 G4double CrossSection = -std::log(ratio) / t << 153 G4double CrossSection = - std::log(ratio)/tickness; 145 G4double massicCS = CrossSection / density; << 154 G4double massicCS = CrossSection/density; 146 << 155 147 G4cout << " ---> CrossSection per volume:\t" << 156 G4cout << " ---> CrossSection per volume:\t" << CrossSection*cm << " cm^-1 " 148 << "\tCrossSection per mass: " << G4B << 157 << "\tCrossSection per mass: " << G4BestUnit(massicCS, "Surface/Mass") >> 158 << G4endl; 149 159 150 // check cross section from G4EmCalculator << 160 //check cross section from G4EmCalculator 151 // 161 // 152 G4cout << "\n Verification from G4EmCalculat << 162 G4cout << "\n Verification from G4EmCalculator: \n"; 153 G4EmCalculator emCalculator; 163 G4EmCalculator emCalculator; 154 G4double sumc = 0.0; << 164 G4double sumc = 0.0; 155 for (it = fProcCounter.begin(); it != fProcC 165 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 156 G4String procName = it->first; << 166 G4String procName = it->first; 157 G4double massSigma = << 167 G4double massSigma = 158 emCalculator.GetCrossSectionPerVolume(fE << 168 emCalculator.GetCrossSectionPerVolume(fEkin,fParticle, >> 169 procName,material)/density; 159 if (fParticle == G4Gamma::Gamma()) 170 if (fParticle == G4Gamma::Gamma()) 160 massSigma = << 171 massSigma = 161 emCalculator.ComputeCrossSectionPerVol << 172 emCalculator.ComputeCrossSectionPerVolume(fEkin,fParticle, >> 173 procName,material)/density; 162 sumc += massSigma; 174 sumc += massSigma; 163 if (procName != "Transportation") 175 if (procName != "Transportation") 164 G4cout << "\t" << procName << "= " << G4 << 176 G4cout << "\t" << procName << "= " 165 } << 177 << G4BestUnit(massSigma, "Surface/Mass"); 166 G4cout << "\ttotal= " << G4BestUnit(sumc, "S << 178 } 167 << 179 G4cout << "\ttotal= " 168 // expected ratio of transmitted particles << 180 << G4BestUnit(sumc, "Surface/Mass") << G4endl; 169 G4double Ratio = std::exp(-sumc * density * << 181 170 G4cout << "\tExpected ratio of transmitted p << 182 //expected ratio of transmitted particles 171 << 183 G4double Ratio = std::exp(-sumc*density*tickness); 172 // remove all contents in fProcCounter << 184 G4cout << "\tExpected ratio of transmitted particles= " >> 185 << 100*Ratio << " %" << G4endl; >> 186 >> 187 // remove all contents in fProcCounter 173 fProcCounter.clear(); 188 fProcCounter.clear(); 174 << 189 175 // restore default format << 190 //restore default format 176 G4cout.precision(dfprec); << 191 G4cout.precision(dfprec); 177 } 192 } 178 193 179 //....oooOO0OOooo........oooOO0OOooo........oo 194 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 180 195