Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm0/src/RunActio << 26 // $Id: RunAction.cc,v 1.10 2007/12/17 17:22:44 maire Exp $ 27 /// \brief Implementation of the RunAction cla << 27 // GEANT4 tag $Name: geant4-09-02-patch-03 $ 28 // << 28 // 29 // << 30 //....oooOO0OOooo........oooOO0OOooo........oo 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 31 33 #include "RunAction.hh" 32 #include "RunAction.hh" 34 << 35 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 36 #include "PrimaryGeneratorAction.hh" 34 #include "PrimaryGeneratorAction.hh" 37 35 38 #include "G4Electron.hh" << 39 #include "G4EmCalculator.hh" << 40 #include "G4LossTableManager.hh" << 41 #include "G4PhysicalConstants.hh" << 42 #include "G4Positron.hh" << 43 #include "G4ProcessManager.hh" << 44 #include "G4Run.hh" 36 #include "G4Run.hh" 45 #include "G4SystemOfUnits.hh" << 37 #include "G4ProcessManager.hh" 46 #include "G4UnitsTable.hh" 38 #include "G4UnitsTable.hh" >> 39 #include "G4EmCalculator.hh" >> 40 #include "G4Electron.hh" 47 41 48 #include <vector> 42 #include <vector> 49 43 50 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 45 52 RunAction::RunAction(DetectorConstruction* det 46 RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* kin) 53 : fDetector(det), fPrimary(kin) << 47 :detector(det), primary(kin) 54 {} << 48 { } >> 49 >> 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 51 >> 52 RunAction::~RunAction() >> 53 { } >> 54 55 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 56 57 void RunAction::BeginOfRunAction(const G4Run*) 57 void RunAction::BeginOfRunAction(const G4Run*) 58 { 58 { 59 // set precision for printing << 59 //set precision for printing 60 G4int prec = G4cout.precision(6); 60 G4int prec = G4cout.precision(6); 61 << 61 62 // instanciate EmCalculator << 62 //instanciate EmCalculator 63 G4EmCalculator emCal; 63 G4EmCalculator emCal; 64 // emCal.SetVerbose(2); 64 // emCal.SetVerbose(2); 65 << 65 66 // get particle << 66 // get particle 67 G4ParticleDefinition* particle = fPrimary->G << 67 G4ParticleDefinition* particle = primary->GetParticleGun() >> 68 ->GetParticleDefinition(); 68 G4String partName = particle->GetParticleNam 69 G4String partName = particle->GetParticleName(); 69 G4double charge = particle->GetPDGCharge(); << 70 G4double charge = particle->GetPDGCharge(); 70 G4double energy = fPrimary->GetParticleGun() << 71 G4double energy = primary->GetParticleGun()->GetParticleEnergy(); 71 << 72 72 // get material 73 // get material 73 const G4Material* material = fDetector->GetM << 74 G4Material* material = detector->GetMaterial(); 74 G4String matName = material->GetName(); << 75 G4String matName = material->GetName(); 75 G4double density = material->GetDensity(); << 76 G4double density = material->GetDensity(); 76 G4double radl = material->GetRadlen(); << 77 G4double radl = material->GetRadlen(); 77 << 78 78 G4cout << "\n " << partName << " (" << G4Bes << 79 G4cout << "\n " << partName << " (" 79 << material->GetName() << " (density: << 80 << G4BestUnit(energy,"Energy") << ") in " 80 << "; radiation length: " << G4Best << 81 << material->GetName() << " (density: " >> 82 << G4BestUnit(density,"Volumic Mass") << "; radiation length: " >> 83 << G4BestUnit(radl, "Length") << ")" << G4endl; 81 84 82 // get cuts << 85 // get cuts 83 GetCuts(); 86 GetCuts(); 84 if (charge != 0.) { 87 if (charge != 0.) { 85 G4cout << "\n Range cuts: \t gamma " << s << 88 G4cout << "\n Range cuts : \t gamma " 86 << "\t e- " << std::setw(12) << G4B << 89 << std::setw(8) << G4BestUnit(rangeCut[0],"Length") 87 G4cout << "\n Energy cuts: \t gamma " << s << 90 << "\t e- " << std::setw(8) << G4BestUnit(rangeCut[1],"Length"); 88 << "\t e- " << std::setw(12) << G4B << 91 G4cout << "\n Energy cuts : \t gamma " 89 } << 92 << std::setw(8) << G4BestUnit(energyCut[0],"Energy") 90 << 93 << "\t e- " << std::setw(8) << G4BestUnit(energyCut[1],"Energy") >> 94 << G4endl; >> 95 } >> 96 91 // max energy transfert 97 // max energy transfert 92 if (charge != 0.) { 98 if (charge != 0.) { 93 G4double Mass_c2 = particle->GetPDGMass(); << 99 G4double Mass_c2 = particle->GetPDGMass(); 94 G4double moverM = electron_mass_c2 / Mass_ << 100 G4double moverM = electron_mass_c2/Mass_c2; 95 G4double gamM1 = energy / Mass_c2, gam = g << 101 G4double gamM1 = energy/Mass_c2, gam = gamM1 + 1., gamP1 = gam + 1.; 96 G4double Tmax = energy; << 102 G4double Tmax = 97 if (particle == G4Electron::Electron()) { << 103 (2*electron_mass_c2*gamM1*gamP1)/(1.+2*gam*moverM+moverM*moverM); 98 Tmax *= 0.5; << 104 G4double range = emCal.GetCSDARange(Tmax,G4Electron::Electron(),material); 99 } << 105 100 else if (particle != G4Positron::Positron( << 106 G4cout << "\n Max_energy _transferable : " << G4BestUnit(Tmax,"Energy") 101 Tmax = (2 * electron_mass_c2 * gamM1 * g << 107 << " (" << G4BestUnit(range,"Length") << ")" << G4endl; 102 } << 103 G4double range = emCal.GetCSDARange(Tmax, << 104 << 105 G4cout << "\n Max_energy _transferable : << 106 << G4BestUnit(range, "Length") << " << 107 } 108 } 108 << 109 109 // get processList and extract EM processes 110 // get processList and extract EM processes (but not MultipleScattering) 110 G4ProcessVector* plist = particle->GetProces 111 G4ProcessVector* plist = particle->GetProcessManager()->GetProcessList(); 111 G4String procName; 112 G4String procName; 112 G4double cut; 113 G4double cut; 113 std::vector<G4String> emName; 114 std::vector<G4String> emName; 114 std::vector<G4double> enerCut; 115 std::vector<G4double> enerCut; 115 size_t length = plist->size(); 116 size_t length = plist->size(); 116 for (size_t j = 0; j < length; j++) { << 117 for (size_t j=0; j<length; j++) { 117 procName = (*plist)[j]->GetProcessName(); << 118 procName = (*plist)[j]->GetProcessName(); 118 cut = fEnergyCut[1]; << 119 cut = energyCut[1]; 119 if ((procName == "eBrem") || (procName == << 120 if ((procName == "eBrem")||(procName == "muBrems")) cut = energyCut[0]; 120 if (((*plist)[j]->GetProcessType() == fEle << 121 if (((*plist)[j]->GetProcessType() == fElectromagnetic) && 121 emName.push_back(procName); << 122 (procName != "msc")) { 122 enerCut.push_back(cut); << 123 emName.push_back(procName); 123 } << 124 enerCut.push_back(cut); 124 } << 125 } 125 << 126 // write html documentation, if requested << 127 char* htmlDocName = std::getenv("G4PhysListN << 128 char* htmlDocDir = std::getenv("G4PhysListDo << 129 if (htmlDocName && htmlDocDir) { << 130 G4LossTableManager::Instance()->DumpHtml() << 131 } 126 } 132 << 127 133 // print list of processes 128 // print list of processes 134 G4cout << "\n processes : "; 129 G4cout << "\n processes : "; 135 for (size_t j = 0; j < emName.size(); ++j) { << 130 for (size_t j=0; j<emName.size();j++) 136 G4cout << "\t" << std::setw(14) << emName[ << 131 G4cout << "\t" << std::setw(13) << emName[j] << "\t"; 137 } << 132 G4cout << "\t" << std::setw(13) <<"total"; 138 G4cout << "\t" << std::setw(14) << "total"; << 133 139 << 134 //compute cross section per atom (only for single material) 140 // compute cross section per atom (only for << 141 if (material->GetNumberOfElements() == 1) { 135 if (material->GetNumberOfElements() == 1) { 142 G4double Z = material->GetZ(); 136 G4double Z = material->GetZ(); 143 G4double A = material->GetA(); 137 G4double A = material->GetA(); 144 << 138 145 std::vector<G4double> sigma0; 139 std::vector<G4double> sigma0; 146 G4double sig, sigtot = 0.; 140 G4double sig, sigtot = 0.; 147 141 148 for (size_t j = 0; j < emName.size(); j++) << 142 for (size_t j=0; j<emName.size();j++) { 149 sig = emCal.ComputeCrossSectionPerAtom(e << 143 sig = emCal.ComputeCrossSectionPerAtom 150 sigtot += sig; << 144 (energy,particle,emName[j],Z,A,enerCut[j]); 151 sigma0.push_back(sig); << 145 sigtot += sig; >> 146 sigma0.push_back(sig); 152 } 147 } 153 sigma0.push_back(sigtot); 148 sigma0.push_back(sigtot); 154 149 155 G4cout << "\n \n cross section per atom 150 G4cout << "\n \n cross section per atom : "; 156 for (size_t j = 0; j < sigma0.size(); ++j) << 151 for (size_t j=0; j<sigma0.size();j++) { 157 G4cout << "\t" << std::setw(9) << G4Best << 152 G4cout << "\t" << std::setw(13) << G4BestUnit(sigma0[j], "Surface"); 158 } 153 } 159 G4cout << G4endl; 154 G4cout << G4endl; 160 } 155 } 161 << 156 162 // get cross section per volume << 157 //get cross section per volume 163 std::vector<G4double> sigma0; << 164 std::vector<G4double> sigma1; 158 std::vector<G4double> sigma1; 165 std::vector<G4double> sigma2; << 159 std::vector<G4double> sigma2; 166 G4double Sig, SigtotComp = 0., Sigtot = 0.; << 160 G4double Sig, Sigtot = 0.; 167 161 168 for (size_t j = 0; j < emName.size(); ++j) { << 162 for (size_t j=0; j<emName.size();j++) { 169 Sig = emCal.ComputeCrossSectionPerVolume(e << 163 Sig = emCal.GetCrossSectionPerVolume(energy,particle,emName[j],material); 170 SigtotComp += Sig; << 164 if (Sig == 0.) Sig = emCal.ComputeCrossSectionPerVolume 171 sigma0.push_back(Sig); << 165 (energy,particle,emName[j],material,enerCut[j]); 172 Sig = emCal.GetCrossSectionPerVolume(energ << 166 Sigtot += Sig; 173 Sigtot += Sig; << 174 sigma1.push_back(Sig); 167 sigma1.push_back(Sig); 175 sigma2.push_back(Sig / density); << 168 sigma2.push_back(Sig/density); 176 } 169 } 177 sigma0.push_back(SigtotComp); << 178 sigma1.push_back(Sigtot); 170 sigma1.push_back(Sigtot); 179 sigma2.push_back(Sigtot / density); << 171 sigma2.push_back(Sigtot/density); 180 << 172 181 // print cross sections << 173 //print cross sections 182 G4cout << "\n compCrossSectionPerVolume: "; << 174 G4cout << "\n \n cross section per volume : "; 183 for (size_t j = 0; j < sigma0.size(); ++j) { << 175 for (size_t j=0; j<sigma1.size();j++) { 184 G4cout << "\t" << std::setw(9) << sigma0[j << 176 G4cout << "\t" << std::setw(13) << sigma1[j]*cm << " cm^-1"; 185 } << 186 G4cout << "\n cross section per volume : "; << 187 for (size_t j = 0; j < sigma1.size(); ++j) { << 188 G4cout << "\t" << std::setw(9) << sigma1[j << 189 } 177 } 190 << 178 191 G4cout << "\n cross section per mass : "; 179 G4cout << "\n cross section per mass : "; 192 for (size_t j = 0; j < sigma2.size(); ++j) { << 180 for (size_t j=0; j<sigma2.size();j++) { 193 G4cout << "\t" << std::setw(9) << G4BestUn << 181 G4cout << "\t" << std::setw(13) << G4BestUnit(sigma2[j], "Surface/Mass"); 194 } 182 } 195 << 183 196 // print mean free path << 184 //print mean free path 197 << 185 198 G4double lambda; 186 G4double lambda; 199 << 187 200 G4cout << "\n \n mean free path : 188 G4cout << "\n \n mean free path : "; 201 for (size_t j = 0; j < sigma1.size(); ++j) { << 189 for (size_t j=0; j<sigma1.size();j++) { 202 lambda = DBL_MAX; << 190 lambda = DBL_MAX; 203 if (sigma1[j] > 0.) lambda = 1 / sigma1[j] << 191 if (sigma1[j] > 0.) lambda = 1/sigma1[j]; 204 G4cout << "\t" << std::setw(9) << G4BestUn << 192 G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Length"); 205 } << 193 } 206 << 194 207 // mean free path (g/cm2) << 195 //mean free path (g/cm2) 208 G4cout << "\n (g/cm2) : "; << 196 G4cout << "\n (g/cm2) : "; 209 for (size_t j = 0; j < sigma2.size(); ++j) { << 197 for (size_t j=0; j<sigma2.size();j++) { 210 lambda = DBL_MAX; << 198 lambda = DBL_MAX; 211 if (sigma2[j] > 0.) lambda = 1 / sigma2[j] << 199 if (sigma2[j] > 0.) lambda = 1/sigma2[j]; 212 G4cout << "\t" << std::setw(9) << G4BestUn << 200 G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Mass/Surface"); 213 } 201 } 214 G4cout << G4endl; 202 G4cout << G4endl; 215 << 203 216 if (charge == 0.) { 204 if (charge == 0.) { 217 G4cout.precision(prec); 205 G4cout.precision(prec); 218 G4cout << "\n----------------------------- << 206 G4cout << "\n-------------------------------------------------------------\n" >> 207 << G4endl; 219 return; 208 return; 220 } 209 } 221 << 210 222 // get stopping power << 211 //get stopping power 223 std::vector<G4double> dedx1; 212 std::vector<G4double> dedx1; 224 std::vector<G4double> dedx2; << 213 std::vector<G4double> dedx2; 225 G4double dedx, dedxtot = 0.; 214 G4double dedx, dedxtot = 0.; 226 size_t nproc = emName.size(); << 227 215 228 for (size_t j = 0; j < nproc; ++j) { << 216 for (size_t j=0; j<emName.size();j++) { 229 dedx = emCal.ComputeDEDX(energy, particle, << 217 dedx = emCal.ComputeDEDX(energy,particle,emName[j],material,enerCut[j]); 230 dedxtot += dedx; << 231 dedx1.push_back(dedx); 218 dedx1.push_back(dedx); 232 dedx2.push_back(dedx / density); << 219 dedx2.push_back(dedx/density); 233 } 220 } >> 221 dedxtot = emCal.GetDEDX(energy,particle,material); 234 dedx1.push_back(dedxtot); 222 dedx1.push_back(dedxtot); 235 dedx2.push_back(dedxtot / density); << 223 dedx2.push_back(dedxtot/density); 236 << 224 237 // print stopping power << 225 //print stopping power 238 G4cout << "\n \n restricted dE/dx : 226 G4cout << "\n \n restricted dE/dx : "; 239 for (size_t j = 0; j <= nproc; ++j) { << 227 for (size_t j=0; j<sigma1.size();j++) { 240 G4cout << "\t" << std::setw(9) << G4BestUn << 228 G4cout << "\t" << std::setw(13) << G4BestUnit(dedx1[j],"Energy/Length"); 241 } 229 } 242 << 230 243 G4cout << "\n (MeV/g/cm2) : "; 231 G4cout << "\n (MeV/g/cm2) : "; 244 for (size_t j = 0; j <= nproc; ++j) { << 232 for (size_t j=0; j<sigma2.size();j++) { 245 G4cout << "\t" << std::setw(9) << G4BestUn << 233 G4cout << "\t" << std::setw(13) << G4BestUnit(dedx2[j],"Energy*Surface/Mass"); 246 } << 247 dedxtot = 0.; << 248 << 249 for (size_t j = 0; j < nproc; ++j) { << 250 dedx = emCal.ComputeDEDX(energy, particle, << 251 dedxtot += dedx; << 252 dedx1[j] = dedx; << 253 dedx2[j] = dedx / density; << 254 } << 255 dedx1[nproc] = dedxtot; << 256 dedx2[nproc] = dedxtot / density; << 257 << 258 // print stopping power << 259 G4cout << "\n \n unrestricted dE/dx : << 260 for (size_t j = 0; j <= nproc; ++j) { << 261 G4cout << "\t" << std::setw(9) << G4BestUn << 262 } 234 } 263 << 235 264 G4cout << "\n (MeV/g/cm2) : "; << 236 //get range from restricted dedx 265 for (size_t j = 0; j <= nproc; ++j) { << 237 G4double range1 = emCal.GetRangeFromRestricteDEDX(energy,particle,material); 266 G4cout << "\t" << std::setw(9) << G4BestUn << 238 G4double range2 = range1*density; 267 } << 239 268 << 240 //get range from full dedx 269 // get range from restricted dedx << 241 G4double Range1 = emCal.GetCSDARange(energy,particle,material); 270 G4double range1 = emCal.GetRangeFromRestrict << 242 G4double Range2 = Range1*density; 271 G4double range2 = range1 * density; << 243 272 << 244 //print range 273 // print range << 245 G4cout << "\n \n range from restrict dE/dx: " 274 G4cout << "\n \n range from restrict dE/dx: << 246 << "\t" << std::setw(8) << G4BestUnit(range1,"Length") 275 << "\t" << std::setw(9) << G4BestUnit << 247 << " (" << std::setw(8) << G4BestUnit(range2,"Mass/Surface") << ")"; 276 << G4BestUnit(range2, "Mass/Surface") << 248 277 << 249 G4cout << "\n range from full dE/dx : " 278 // get range from full dedx << 250 << "\t" << std::setw(8) << G4BestUnit(Range1,"Length") 279 G4double EmaxTable = G4EmParameters::Instanc << 251 << " (" << std::setw(8) << G4BestUnit(Range2,"Mass/Surface") << ")"; 280 if (energy < EmaxTable) { << 252 281 G4double Range1 = emCal.GetCSDARange(energ << 253 //get transport mean free path (for multiple scattering) 282 G4double Range2 = Range1 * density; << 254 G4double MSmfp1 = emCal.GetMeanFreePath(energy,particle,"msc",material); 283 << 255 G4double MSmfp2 = MSmfp1*density; 284 G4cout << "\n range from full dE/dx : << 256 285 << "\t" << std::setw(9) << G4BestUn << 257 //print transport mean free path 286 << G4BestUnit(Range2, "Mass/Surface << 258 G4cout << "\n \n transport mean free path : " 287 } << 259 << "\t" << std::setw(8) << G4BestUnit(MSmfp1,"Length") 288 << 260 << " (" << std::setw(8) << G4BestUnit(MSmfp2,"Mass/Surface") << ")"; 289 // get transport mean free path (for multipl << 290 G4double MSmfp1 = emCal.GetMeanFreePath(ener << 291 G4double MSmfp2 = MSmfp1 * density; << 292 << 293 // print transport mean free path << 294 G4cout << "\n \n transport mean free path : << 295 << "\t" << std::setw(9) << G4BestUnit << 296 << G4BestUnit(MSmfp2, "Mass/Surface") << 297 261 298 if (particle == G4Electron::Electron()) Crit 262 if (particle == G4Electron::Electron()) CriticalEnergy(); 299 << 263 300 G4cout << "\n------------------------------- 264 G4cout << "\n-------------------------------------------------------------\n"; 301 G4cout << G4endl; 265 G4cout << G4endl; 302 << 266 303 // reset default precision << 267 // reset default precision 304 G4cout.precision(prec); << 268 G4cout.precision(prec); 305 } 269 } 306 270 307 //....oooOO0OOooo........oooOO0OOooo........oo 271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 308 272 309 void RunAction::EndOfRunAction(const G4Run*) { << 273 void RunAction::EndOfRunAction(const G4Run* ) >> 274 { } 310 275 311 //....oooOO0OOooo........oooOO0OOooo........oo 276 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 312 277 313 #include "G4ProductionCutsTable.hh" 278 #include "G4ProductionCutsTable.hh" 314 279 315 //....oooOO0OOooo........oooOO0OOooo........oo 280 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 316 281 317 void RunAction::GetCuts() 282 void RunAction::GetCuts() 318 { << 283 { 319 G4ProductionCutsTable* theCoupleTable = G4Pr << 284 G4ProductionCutsTable* theCoupleTable = 320 << 285 G4ProductionCutsTable::GetProductionCutsTable(); >> 286 321 size_t numOfCouples = theCoupleTable->GetTab 287 size_t numOfCouples = theCoupleTable->GetTableSize(); 322 const G4MaterialCutsCouple* couple = 0; 288 const G4MaterialCutsCouple* couple = 0; 323 G4int index = 0; 289 G4int index = 0; 324 for (size_t i = 0; i < numOfCouples; i++) { << 290 for (size_t i=0; i<numOfCouples; i++) { 325 couple = theCoupleTable->GetMaterialCutsCo << 291 couple = theCoupleTable->GetMaterialCutsCouple(i); 326 if (couple->GetMaterial() == fDetector->Ge << 292 if (couple->GetMaterial() == detector->GetMaterial()) {index = i; break;} 327 index = i; << 293 } 328 break; << 294 329 } << 295 rangeCut[0] = 330 } << 296 (*(theCoupleTable->GetRangeCutsVector(idxG4GammaCut)))[index]; >> 297 rangeCut[1] = >> 298 (*(theCoupleTable->GetRangeCutsVector(idxG4ElectronCut)))[index]; >> 299 rangeCut[2] = >> 300 (*(theCoupleTable->GetRangeCutsVector(idxG4PositronCut)))[index]; >> 301 >> 302 energyCut[0] = >> 303 (*(theCoupleTable->GetEnergyCutsVector(idxG4GammaCut)))[index]; >> 304 energyCut[1] = >> 305 (*(theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut)))[index]; >> 306 energyCut[2] = >> 307 (*(theCoupleTable->GetEnergyCutsVector(idxG4PositronCut)))[index]; 331 308 332 fRangeCut[0] = (*(theCoupleTable->GetRangeCu << 333 fRangeCut[1] = (*(theCoupleTable->GetRangeCu << 334 fRangeCut[2] = (*(theCoupleTable->GetRangeCu << 335 << 336 fEnergyCut[0] = (*(theCoupleTable->GetEnergy << 337 fEnergyCut[1] = (*(theCoupleTable->GetEnergy << 338 fEnergyCut[2] = (*(theCoupleTable->GetEnergy << 339 } 309 } 340 310 341 //....oooOO0OOooo........oooOO0OOooo........oo 311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 342 312 343 void RunAction::CriticalEnergy() 313 void RunAction::CriticalEnergy() 344 { 314 { 345 // compute e- critical energy (Rossi definit 315 // compute e- critical energy (Rossi definition) and Moliere radius. 346 // Review of Particle Physics - Eur. Phys. J 316 // Review of Particle Physics - Eur. Phys. J. C3 (1998) page 147 347 // 317 // 348 G4EmCalculator emCal; 318 G4EmCalculator emCal; 349 << 319 350 const G4Material* material = fDetector->GetM << 320 const G4Material* material = detector->GetMaterial(); 351 const G4double radl = material->GetRadlen(); 321 const G4double radl = material->GetRadlen(); 352 G4double ekin = 5 * MeV; << 322 G4double ekin = 5*MeV; 353 G4double deioni; 323 G4double deioni; 354 G4double err = 1., errmax = 0.001; << 324 G4double err = 1., errmax = 0.001; 355 G4int iter = 0, itermax = 10; << 325 G4int iter = 0 , itermax = 10; 356 while (err > errmax && iter < itermax) { 326 while (err > errmax && iter < itermax) { 357 iter++; << 327 iter++; 358 deioni = radl * emCal.ComputeDEDX(ekin, G4 << 328 deioni = radl* 359 err = std::abs(deioni - ekin) / ekin; << 329 emCal.ComputeDEDX(ekin,G4Electron::Electron(),"eIoni",material); >> 330 err = std::abs(deioni - ekin)/ekin; 360 ekin = deioni; 331 ekin = deioni; 361 } 332 } 362 G4cout << "\n \n critical energy (Rossi) : << 333 G4cout << "\n \n critical energy (Rossi) : " 363 << "\t" << std::setw(8) << G4BestUnit << 334 << "\t" << std::setw(8) << G4BestUnit(ekin,"Energy"); 364 << 335 365 // Pdg formula (only for single material) << 336 //Pdg formula (only for single material) 366 G4double pdga[2] = {610 * MeV, 710 * MeV}; << 337 G4double pdga[2] = { 610*MeV, 710*MeV }; 367 G4double pdgb[2] = {1.24, 0.92}; << 338 G4double pdgb[2] = { 1.24, 0.92 }; 368 G4double EcPdg = 0.; 339 G4double EcPdg = 0.; 369 << 340 370 if (material->GetNumberOfElements() == 1) { 341 if (material->GetNumberOfElements() == 1) { 371 G4int istat = 0; 342 G4int istat = 0; 372 if (material->GetState() == kStateGas) ist << 343 if (material->GetState() == kStateGas) istat = 1; 373 G4double Zeff = material->GetZ() + pdgb[is 344 G4double Zeff = material->GetZ() + pdgb[istat]; 374 EcPdg = pdga[istat] / Zeff; << 345 EcPdg = pdga[istat]/Zeff; 375 G4cout << "\t\t\t (from Pdg formula : " << << 346 G4cout << "\t\t\t (from Pdg formula : " 376 } << 347 << std::setw(8) << G4BestUnit(EcPdg,"Energy") << ")"; 377 << 348 } 378 const G4double Es = 21.2052 * MeV; << 349 379 G4double rMolier1 = Es / ekin, rMolier2 = rM << 350 const G4double Es = 21.2052*MeV; 380 G4cout << "\n Moliere radius : " << 351 G4double rMolier1 = Es/ekin, rMolier2 = rMolier1*radl; 381 << "\t" << std::setw(8) << rMolier1 < << 352 G4cout << "\n Moliere radius : " 382 << "= " << std::setw(8) << G4BestUnit << 353 << "\t" << std::setw(8) << rMolier1 << " X0 " 383 << 354 << "= " << std::setw(8) << G4BestUnit(rMolier2,"Length"); 384 if (material->GetNumberOfElements() == 1) { << 355 385 G4double rMPdg = radl * Es / EcPdg; << 356 if (material->GetNumberOfElements() == 1) { 386 G4cout << "\t (from Pdg formula : " << std << 357 G4double rMPdg = radl*Es/EcPdg; 387 } << 358 G4cout << "\t (from Pdg formula : " >> 359 << std::setw(8) << G4BestUnit(rMPdg,"Length") << ")"; >> 360 } 388 } 361 } 389 362 390 //....oooOO0OOooo........oooOO0OOooo........oo 363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 391 364