Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm0/src/RunAction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/electromagnetic/TestEm0/src/RunAction.cc (Version 11.3.0) and /examples/extended/electromagnetic/TestEm0/src/RunAction.cc (Version 9.1.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 /// \file electromagnetic/TestEm0/src/RunActio <<  26 // $Id: RunAction.cc,v 1.9 2006/12/08 16:38:38 maire Exp $
 27 /// \brief Implementation of the RunAction cla <<  27 // GEANT4 tag $Name: geant4-09-01-patch-02 $
 28 //                                             <<  28 // 
 29 //                                             << 
 30 //....oooOO0OOooo........oooOO0OOooo........oo     29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oo     30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32                                                    31 
 33 #include "RunAction.hh"                            32 #include "RunAction.hh"
 34                                                << 
 35 #include "DetectorConstruction.hh"                 33 #include "DetectorConstruction.hh"
 36 #include "PrimaryGeneratorAction.hh"               34 #include "PrimaryGeneratorAction.hh"
 37                                                    35 
 38 #include "G4Electron.hh"                       << 
 39 #include "G4EmCalculator.hh"                   << 
 40 #include "G4LossTableManager.hh"               << 
 41 #include "G4PhysicalConstants.hh"              << 
 42 #include "G4Positron.hh"                       << 
 43 #include "G4ProcessManager.hh"                 << 
 44 #include "G4Run.hh"                                36 #include "G4Run.hh"
 45 #include "G4SystemOfUnits.hh"                  <<  37 #include "G4ProcessManager.hh"
 46 #include "G4UnitsTable.hh"                         38 #include "G4UnitsTable.hh"
                                                   >>  39 #include "G4EmCalculator.hh"
                                                   >>  40 #include "G4Electron.hh"
 47                                                    41 
 48 #include <vector>                                  42 #include <vector>
 49                                                    43 
 50 //....oooOO0OOooo........oooOO0OOooo........oo     44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 51                                                    45 
 52 RunAction::RunAction(DetectorConstruction* det     46 RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* kin)
 53   : fDetector(det), fPrimary(kin)              <<  47 :detector(det), primary(kin)
 54 {}                                             <<  48 { }
                                                   >>  49 
                                                   >>  50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  51 
                                                   >>  52 RunAction::~RunAction()
                                                   >>  53 { }
                                                   >>  54 
 55 //....oooOO0OOooo........oooOO0OOooo........oo     55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 56                                                    56 
 57 void RunAction::BeginOfRunAction(const G4Run*)     57 void RunAction::BeginOfRunAction(const G4Run*)
 58 {                                                  58 {
 59   // set precision for printing                <<  59   //set precision for printing
 60   G4int prec = G4cout.precision(6);                60   G4int prec = G4cout.precision(6);
 61                                                <<  61    
 62   // instanciate EmCalculator                  <<  62   // get particle 
 63   G4EmCalculator emCal;                        <<  63   G4ParticleDefinition* particle = primary->GetParticleGun()
 64   //  emCal.SetVerbose(2);                     <<  64                                           ->GetParticleDefinition();
 65                                                << 
 66   // get particle                              << 
 67   G4ParticleDefinition* particle = fPrimary->G << 
 68   G4String partName = particle->GetParticleNam     65   G4String partName = particle->GetParticleName();
 69   G4double charge = particle->GetPDGCharge();  <<  66   G4double charge   = particle->GetPDGCharge();    
 70   G4double energy = fPrimary->GetParticleGun() <<  67   G4double energy   = primary->GetParticleGun()->GetParticleEnergy();
 71                                                <<  68  
 72   // get material                                  69   // get material
 73   const G4Material* material = fDetector->GetM <<  70   G4Material* material = detector->GetMaterial();
 74   G4String matName = material->GetName();      <<  71   G4String matName     = material->GetName();
 75   G4double density = material->GetDensity();   <<  72   G4double density     = material->GetDensity();
 76   G4double radl = material->GetRadlen();       <<  73   G4double radl        = material->GetRadlen();  
 77                                                <<  74 
 78   G4cout << "\n " << partName << " (" << G4Bes <<  75   G4cout << "\n " << partName << " ("
 79          << material->GetName() << " (density: <<  76          << G4BestUnit(energy,"Energy") << ") in " 
 80          << ";   radiation length: " << G4Best <<  77    << material->GetName() << " (density: " 
                                                   >>  78    << G4BestUnit(density,"Volumic Mass") << ";   radiation length: "
                                                   >>  79    << G4BestUnit(radl,   "Length")       << ")" << G4endl;   
 81                                                    80 
 82   // get cuts                                  <<  81   // get cuts  
 83   GetCuts();                                       82   GetCuts();
 84   if (charge != 0.) {                              83   if (charge != 0.) {
 85     G4cout << "\n  Range cuts: \t gamma " << s <<  84    G4cout << "\n  Range cuts : \t gamma "  
 86            << "\t e- " << std::setw(12) << G4B <<  85                       << std::setw(8) << G4BestUnit(rangeCut[0],"Length")
 87     G4cout << "\n Energy cuts: \t gamma " << s <<  86           << "\t e- " << std::setw(8) << G4BestUnit(rangeCut[1],"Length");
 88            << "\t e- " << std::setw(12) << G4B <<  87    G4cout << "\n Energy cuts : \t gamma " 
 89   }                                            <<  88                       << std::setw(8) << G4BestUnit(energyCut[0],"Energy")
 90                                                <<  89     << "\t e- " << std::setw(8) << G4BestUnit(energyCut[1],"Energy")
 91   // max energy transfert                      <<  90     << G4endl;
 92   if (charge != 0.) {                          <<  91    }
 93     G4double Mass_c2 = particle->GetPDGMass(); <<  92       
 94     G4double moverM = electron_mass_c2 / Mass_ << 
 95     G4double gamM1 = energy / Mass_c2, gam = g << 
 96     G4double Tmax = energy;                    << 
 97     if (particle == G4Electron::Electron()) {  << 
 98       Tmax *= 0.5;                             << 
 99     }                                          << 
100     else if (particle != G4Positron::Positron( << 
101       Tmax = (2 * electron_mass_c2 * gamM1 * g << 
102     }                                          << 
103     G4double range = emCal.GetCSDARange(Tmax,  << 
104                                                << 
105     G4cout << "\n  Max_energy _transferable  : << 
106            << G4BestUnit(range, "Length") << " << 
107   }                                            << 
108                                                << 
109   // get processList and extract EM processes      93   // get processList and extract EM processes (but not MultipleScattering)
110   G4ProcessVector* plist = particle->GetProces     94   G4ProcessVector* plist = particle->GetProcessManager()->GetProcessList();
111   G4String procName;                               95   G4String procName;
112   G4double cut;                                    96   G4double cut;
113   std::vector<G4String> emName;                    97   std::vector<G4String> emName;
114   std::vector<G4double> enerCut;                   98   std::vector<G4double> enerCut;
115   size_t length = plist->size();                   99   size_t length = plist->size();
116   for (size_t j = 0; j < length; j++) {        << 100   for (size_t j=0; j<length; j++) {
117     procName = (*plist)[j]->GetProcessName();  << 101      procName = (*plist)[j]->GetProcessName();
118     cut = fEnergyCut[1];                       << 102      cut = energyCut[1];
119     if ((procName == "eBrem") || (procName ==  << 103      if ((procName == "eBrem")||(procName == "muBrems")) cut = energyCut[0];
120     if (((*plist)[j]->GetProcessType() == fEle << 104      if (((*plist)[j]->GetProcessType() == fElectromagnetic) &&
121       emName.push_back(procName);              << 105          (procName != "msc")) {
122       enerCut.push_back(cut);                  << 106        emName.push_back(procName);
123     }                                          << 107        enerCut.push_back(cut);
                                                   >> 108      }  
124   }                                               109   }
125                                                << 110   
126   // write html documentation, if requested    << 
127   char* htmlDocName = std::getenv("G4PhysListN << 
128   char* htmlDocDir = std::getenv("G4PhysListDo << 
129   if (htmlDocName && htmlDocDir) {             << 
130     G4LossTableManager::Instance()->DumpHtml() << 
131   }                                            << 
132                                                << 
133   // print list of processes                      111   // print list of processes
134   G4cout << "\n  processes :                ";    112   G4cout << "\n  processes :                ";
135   for (size_t j = 0; j < emName.size(); ++j) { << 113   for (size_t j=0; j<emName.size();j++)
136     G4cout << "\t" << std::setw(14) << emName[ << 114     G4cout << "\t" << std::setw(13) << emName[j] << "\t";
137   }                                            << 115   G4cout << "\t" << std::setw(13) <<"total";
138   G4cout << "\t" << std::setw(14) << "total";  << 116       
139                                                << 117   //instanciate EmCalculator
140   // compute cross section per atom (only for  << 118   G4EmCalculator emCal;
                                                   >> 119   //  emCal.SetVerbose(2);
                                                   >> 120   
                                                   >> 121   //compute cross section per atom (only for single material)
141   if (material->GetNumberOfElements() == 1) {     122   if (material->GetNumberOfElements() == 1) {
142     G4double Z = material->GetZ();                123     G4double Z = material->GetZ();
143     G4double A = material->GetA();                124     G4double A = material->GetA();
144                                                << 125      
145     std::vector<G4double> sigma0;                 126     std::vector<G4double> sigma0;
146     G4double sig, sigtot = 0.;                    127     G4double sig, sigtot = 0.;
147                                                   128 
148     for (size_t j = 0; j < emName.size(); j++) << 129     for (size_t j=0; j<emName.size();j++) {
149       sig = emCal.ComputeCrossSectionPerAtom(e << 130       sig = emCal.ComputeCrossSectionPerAtom
150       sigtot += sig;                           << 131                       (energy,particle,emName[j],Z,A,enerCut[j]);
151       sigma0.push_back(sig);                   << 132       sigtot += sig;           
                                                   >> 133       sigma0.push_back(sig);          
152     }                                             134     }
153     sigma0.push_back(sigtot);                     135     sigma0.push_back(sigtot);
154                                                   136 
155     G4cout << "\n \n  cross section per atom      137     G4cout << "\n \n  cross section per atom   : ";
156     for (size_t j = 0; j < sigma0.size(); ++j) << 138     for (size_t j=0; j<sigma0.size();j++) {      
157       G4cout << "\t" << std::setw(9) << G4Best << 139       G4cout << "\t" << std::setw(13) << G4BestUnit(sigma0[j], "Surface");
158     }                                             140     }
159     G4cout << G4endl;                             141     G4cout << G4endl;
160   }                                               142   }
161                                                << 143     
162   // get cross section per volume              << 144   //get cross section per volume 
163   std::vector<G4double> sigma0;                << 
164   std::vector<G4double> sigma1;                   145   std::vector<G4double> sigma1;
165   std::vector<G4double> sigma2;                << 146   std::vector<G4double> sigma2;  
166   G4double Sig, SigtotComp = 0., Sigtot = 0.;  << 147   G4double Sig, Sigtot = 0.;
167                                                   148 
168   for (size_t j = 0; j < emName.size(); ++j) { << 149   for (size_t j=0; j<emName.size();j++) {
169     Sig = emCal.ComputeCrossSectionPerVolume(e << 150     Sig = emCal.GetCrossSectionPerVolume(energy,particle,emName[j],material);
170     SigtotComp += Sig;                         << 151     if (Sig == 0.) Sig = emCal.ComputeCrossSectionPerVolume
171     sigma0.push_back(Sig);                     << 152          (energy,particle,emName[j],material,enerCut[j]);
172     Sig = emCal.GetCrossSectionPerVolume(energ << 153     Sigtot += Sig;           
173     Sigtot += Sig;                             << 
174     sigma1.push_back(Sig);                        154     sigma1.push_back(Sig);
175     sigma2.push_back(Sig / density);           << 155     sigma2.push_back(Sig/density);            
176   }                                               156   }
177   sigma0.push_back(SigtotComp);                << 
178   sigma1.push_back(Sigtot);                       157   sigma1.push_back(Sigtot);
179   sigma2.push_back(Sigtot / density);          << 158   sigma2.push_back(Sigtot/density);   
180                                                << 159     
181   // print cross sections                      << 160   //print cross sections
182   G4cout << "\n  compCrossSectionPerVolume: "; << 161   G4cout << "\n \n  cross section per volume : ";
183   for (size_t j = 0; j < sigma0.size(); ++j) { << 162   for (size_t j=0; j<sigma1.size();j++) {      
184     G4cout << "\t" << std::setw(9) << sigma0[j << 163     G4cout << "\t" << std::setw(13) << sigma1[j]*cm << " cm^-1";
185   }                                            << 
186   G4cout << "\n  cross section per volume : "; << 
187   for (size_t j = 0; j < sigma1.size(); ++j) { << 
188     G4cout << "\t" << std::setw(9) << sigma1[j << 
189   }                                               164   }
190                                                << 165   
191   G4cout << "\n  cross section per mass   : ";    166   G4cout << "\n  cross section per mass   : ";
192   for (size_t j = 0; j < sigma2.size(); ++j) { << 167   for (size_t j=0; j<sigma2.size();j++) {
193     G4cout << "\t" << std::setw(9) << G4BestUn << 168     G4cout << "\t" << std::setw(13) << G4BestUnit(sigma2[j], "Surface/Mass");
194   }                                               169   }
195                                                << 170    
196   // print mean free path                      << 171   //print mean free path
197                                                << 172   
198   G4double lambda;                                173   G4double lambda;
199                                                << 174   
200   G4cout << "\n \n  mean free path           :    175   G4cout << "\n \n  mean free path           : ";
201   for (size_t j = 0; j < sigma1.size(); ++j) { << 176   for (size_t j=0; j<sigma1.size();j++) {
202     lambda = DBL_MAX;                          << 177     lambda = DBL_MAX; 
203     if (sigma1[j] > 0.) lambda = 1 / sigma1[j] << 178     if (sigma1[j] > 0.) lambda = 1/sigma1[j];
204     G4cout << "\t" << std::setw(9) << G4BestUn << 179     G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Length");
205   }                                            << 180   }
206                                                << 181   
207   // mean free path (g/cm2)                    << 182   //mean free path (g/cm2)
208   G4cout << "\n        (g/cm2)            : "; << 183   G4cout << "\n        (g/cm2)            : ";  
209   for (size_t j = 0; j < sigma2.size(); ++j) { << 184   for (size_t j=0; j<sigma2.size();j++) {
210     lambda = DBL_MAX;                          << 185     lambda =  DBL_MAX;
211     if (sigma2[j] > 0.) lambda = 1 / sigma2[j] << 186     if (sigma2[j] > 0.) lambda = 1/sigma2[j];                 
212     G4cout << "\t" << std::setw(9) << G4BestUn << 187     G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Mass/Surface");    
213   }                                               188   }
214   G4cout << G4endl;                               189   G4cout << G4endl;
215                                                << 190   
216   if (charge == 0.) {                             191   if (charge == 0.) {
217     G4cout.precision(prec);                       192     G4cout.precision(prec);
218     G4cout << "\n----------------------------- << 193     G4cout << "\n-------------------------------------------------------------\n"
                                                   >> 194            << G4endl;
219     return;                                       195     return;
220   }                                               196   }
221                                                << 197   
222   // get stopping power                        << 198   //get stopping power 
223   std::vector<G4double> dedx1;                    199   std::vector<G4double> dedx1;
224   std::vector<G4double> dedx2;                 << 200   std::vector<G4double> dedx2;  
225   G4double dedx, dedxtot = 0.;                    201   G4double dedx, dedxtot = 0.;
226   size_t nproc = emName.size();                << 
227                                                   202 
228   for (size_t j = 0; j < nproc; ++j) {         << 203   for (size_t j=0; j<emName.size();j++) {
229     dedx = emCal.ComputeDEDX(energy, particle, << 204     dedx = emCal.ComputeDEDX(energy,particle,emName[j],material,enerCut[j]);
230     dedxtot += dedx;                           << 
231     dedx1.push_back(dedx);                        205     dedx1.push_back(dedx);
232     dedx2.push_back(dedx / density);           << 206     dedx2.push_back(dedx/density);            
233   }                                               207   }
                                                   >> 208   dedxtot = emCal.GetDEDX(energy,particle,material);
234   dedx1.push_back(dedxtot);                       209   dedx1.push_back(dedxtot);
235   dedx2.push_back(dedxtot / density);          << 210   dedx2.push_back(dedxtot/density);   
236                                                << 211     
237   // print stopping power                      << 212   //print stopping power
238   G4cout << "\n \n  restricted dE/dx         :    213   G4cout << "\n \n  restricted dE/dx         : ";
239   for (size_t j = 0; j <= nproc; ++j) {        << 214   for (size_t j=0; j<sigma1.size();j++) {      
240     G4cout << "\t" << std::setw(9) << G4BestUn << 215     G4cout << "\t" << std::setw(13) << G4BestUnit(dedx1[j],"Energy/Length");
241   }                                            << 
242                                                << 
243   G4cout << "\n      (MeV/g/cm2)          : "; << 
244   for (size_t j = 0; j <= nproc; ++j) {        << 
245     G4cout << "\t" << std::setw(9) << G4BestUn << 
246   }                                            << 
247   dedxtot = 0.;                                << 
248                                                << 
249   for (size_t j = 0; j < nproc; ++j) {         << 
250     dedx = emCal.ComputeDEDX(energy, particle, << 
251     dedxtot += dedx;                           << 
252     dedx1[j] = dedx;                           << 
253     dedx2[j] = dedx / density;                 << 
254   }                                            << 
255   dedx1[nproc] = dedxtot;                      << 
256   dedx2[nproc] = dedxtot / density;            << 
257                                                << 
258   // print stopping power                      << 
259   G4cout << "\n \n  unrestricted dE/dx       : << 
260   for (size_t j = 0; j <= nproc; ++j) {        << 
261     G4cout << "\t" << std::setw(9) << G4BestUn << 
262   }                                               216   }
263                                                << 217   
264   G4cout << "\n      (MeV/g/cm2)          : ";    218   G4cout << "\n      (MeV/g/cm2)          : ";
265   for (size_t j = 0; j <= nproc; ++j) {        << 219   for (size_t j=0; j<sigma2.size();j++) {
266     G4cout << "\t" << std::setw(9) << G4BestUn << 220   G4cout << "\t" << std::setw(13) << G4BestUnit(dedx2[j],"Energy*Surface/Mass");
267   }                                               221   }
268                                                << 222   
269   // get range from restricted dedx            << 223   //get range from restricted dedx
270   G4double range1 = emCal.GetRangeFromRestrict << 224   G4double range1 = emCal.GetRangeFromRestricteDEDX(energy,particle,material);
271   G4double range2 = range1 * density;          << 225   G4double range2 = range1*density;
272                                                << 226   
273   // print range                               << 227    //get range from full dedx
274   G4cout << "\n \n  range from restrict dE/dx: << 228   G4double Range1 = emCal.GetCSDARange(energy,particle,material);
275          << "\t" << std::setw(9) << G4BestUnit << 229   G4double Range2 = Range1*density;
276          << G4BestUnit(range2, "Mass/Surface") << 230   
277                                                << 231   //print range
278   // get range from full dedx                  << 232   G4cout << "\n \n  range from restrict dE/dx: " 
279   G4double EmaxTable = G4EmParameters::Instanc << 233          << "\t" << std::setw(8) << G4BestUnit(range1,"Length")
280   if (energy < EmaxTable) {                    << 234          << " (" << std::setw(8) << G4BestUnit(range2,"Mass/Surface") << ")";
281     G4double Range1 = emCal.GetCSDARange(energ << 235    
282     G4double Range2 = Range1 * density;        << 236   G4cout << "\n  range from full dE/dx    : " 
283                                                << 237          << "\t" << std::setw(8) << G4BestUnit(Range1,"Length")
284     G4cout << "\n  range from full dE/dx    :  << 238          << " (" << std::setw(8) << G4BestUnit(Range2,"Mass/Surface") << ")";
285            << "\t" << std::setw(9) << G4BestUn << 239    
286            << G4BestUnit(Range2, "Mass/Surface << 240   //get transport mean free path (for multiple scattering)
287   }                                            << 241   G4double MSmfp1 = emCal.GetMeanFreePath(energy,particle,"msc",material);
288                                                << 242   G4double MSmfp2 = MSmfp1*density;
289   // get transport mean free path (for multipl << 243   
290   G4double MSmfp1 = emCal.GetMeanFreePath(ener << 244   //print transport mean free path
291   G4double MSmfp2 = MSmfp1 * density;          << 245   G4cout << "\n \n  transport mean free path : " 
292                                                << 246          << "\t" << std::setw(8) << G4BestUnit(MSmfp1,"Length")
293   // print transport mean free path            << 247          << " (" << std::setw(8) << G4BestUnit(MSmfp2,"Mass/Surface") << ")";
294   G4cout << "\n \n  transport mean free path : << 
295          << "\t" << std::setw(9) << G4BestUnit << 
296          << G4BestUnit(MSmfp2, "Mass/Surface") << 
297                                                   248 
298   if (particle == G4Electron::Electron()) Crit    249   if (particle == G4Electron::Electron()) CriticalEnergy();
299                                                << 250      
300   G4cout << "\n-------------------------------    251   G4cout << "\n-------------------------------------------------------------\n";
301   G4cout << G4endl;                               252   G4cout << G4endl;
302                                                << 253        
303   // reset default precision                   << 254  // reset default precision
304   G4cout.precision(prec);                      << 255  G4cout.precision(prec);    
305 }                                                 256 }
306                                                   257 
307 //....oooOO0OOooo........oooOO0OOooo........oo    258 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
308                                                   259 
309 void RunAction::EndOfRunAction(const G4Run*) { << 260 void RunAction::EndOfRunAction(const G4Run* )
                                                   >> 261 { }
310                                                   262 
311 //....oooOO0OOooo........oooOO0OOooo........oo    263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
312                                                   264 
313 #include "G4ProductionCutsTable.hh"               265 #include "G4ProductionCutsTable.hh"
314                                                   266 
315 //....oooOO0OOooo........oooOO0OOooo........oo    267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
316                                                   268 
317 void RunAction::GetCuts()                         269 void RunAction::GetCuts()
318 {                                              << 270 {  
319   G4ProductionCutsTable* theCoupleTable = G4Pr << 271   G4ProductionCutsTable* theCoupleTable =
320                                                << 272         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 273   
321   size_t numOfCouples = theCoupleTable->GetTab    274   size_t numOfCouples = theCoupleTable->GetTableSize();
322   const G4MaterialCutsCouple* couple = 0;         275   const G4MaterialCutsCouple* couple = 0;
323   G4int index = 0;                                276   G4int index = 0;
324   for (size_t i = 0; i < numOfCouples; i++) {  << 277   for (size_t i=0; i<numOfCouples; i++) {
325     couple = theCoupleTable->GetMaterialCutsCo << 278      couple = theCoupleTable->GetMaterialCutsCouple(i);
326     if (couple->GetMaterial() == fDetector->Ge << 279      if (couple->GetMaterial() == detector->GetMaterial()) {index = i; break;}
327       index = i;                               << 280   }
328       break;                                   << 281   
329     }                                          << 282   rangeCut[0] =
330   }                                            << 283          (*(theCoupleTable->GetRangeCutsVector(idxG4GammaCut)))[index];
                                                   >> 284   rangeCut[1] =      
                                                   >> 285          (*(theCoupleTable->GetRangeCutsVector(idxG4ElectronCut)))[index];
                                                   >> 286   rangeCut[2] =      
                                                   >> 287          (*(theCoupleTable->GetRangeCutsVector(idxG4PositronCut)))[index]; 
                                                   >> 288 
                                                   >> 289   energyCut[0] =
                                                   >> 290          (*(theCoupleTable->GetEnergyCutsVector(idxG4GammaCut)))[index];
                                                   >> 291   energyCut[1] =      
                                                   >> 292          (*(theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut)))[index];
                                                   >> 293   energyCut[2] =      
                                                   >> 294          (*(theCoupleTable->GetEnergyCutsVector(idxG4PositronCut)))[index];
331                                                   295 
332   fRangeCut[0] = (*(theCoupleTable->GetRangeCu << 
333   fRangeCut[1] = (*(theCoupleTable->GetRangeCu << 
334   fRangeCut[2] = (*(theCoupleTable->GetRangeCu << 
335                                                << 
336   fEnergyCut[0] = (*(theCoupleTable->GetEnergy << 
337   fEnergyCut[1] = (*(theCoupleTable->GetEnergy << 
338   fEnergyCut[2] = (*(theCoupleTable->GetEnergy << 
339 }                                                 296 }
340                                                   297 
341 //....oooOO0OOooo........oooOO0OOooo........oo    298 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
342                                                   299 
343 void RunAction::CriticalEnergy()                  300 void RunAction::CriticalEnergy()
344 {                                                 301 {
345   // compute e- critical energy (Rossi definit    302   // compute e- critical energy (Rossi definition) and Moliere radius.
346   // Review of Particle Physics - Eur. Phys. J    303   // Review of Particle Physics - Eur. Phys. J. C3 (1998) page 147
347   //                                              304   //
348   G4EmCalculator emCal;                           305   G4EmCalculator emCal;
349                                                << 306     
350   const G4Material* material = fDetector->GetM << 307   const G4Material* material = detector->GetMaterial();
351   const G4double radl = material->GetRadlen();    308   const G4double radl = material->GetRadlen();
352   G4double ekin = 5 * MeV;                     << 309   G4double ekin = 5*MeV;
353   G4double deioni;                                310   G4double deioni;
354   G4double err = 1., errmax = 0.001;           << 311   G4double err  = 1., errmax = 0.001;
355   G4int iter = 0, itermax = 10;                << 312   G4int    iter = 0 , itermax = 10;  
356   while (err > errmax && iter < itermax) {        313   while (err > errmax && iter < itermax) {
357     iter++;                                    << 314     iter++;          
358     deioni = radl * emCal.ComputeDEDX(ekin, G4 << 315     deioni  = radl*
359     err = std::abs(deioni - ekin) / ekin;      << 316               emCal.ComputeDEDX(ekin,G4Electron::Electron(),"eIoni",material);
                                                   >> 317     err = std::abs(deioni - ekin)/ekin;
360     ekin = deioni;                                318     ekin = deioni;
361   }                                               319   }
362   G4cout << "\n \n  critical energy (Rossi)  : << 320   G4cout << "\n \n  critical energy (Rossi)  : " 
363          << "\t" << std::setw(8) << G4BestUnit << 321          << "\t" << std::setw(8) << G4BestUnit(ekin,"Energy");
364                                                << 322    
365   // Pdg formula (only for single material)    << 323   //Pdg formula (only for single material)
366   G4double pdga[2] = {610 * MeV, 710 * MeV};   << 324   G4double pdga[2] = { 610*MeV, 710*MeV };
367   G4double pdgb[2] = {1.24, 0.92};             << 325   G4double pdgb[2] = { 1.24, 0.92 };
368   G4double EcPdg = 0.;                            326   G4double EcPdg = 0.;
369                                                << 327   
370   if (material->GetNumberOfElements() == 1) {     328   if (material->GetNumberOfElements() == 1) {
371     G4int istat = 0;                              329     G4int istat = 0;
372     if (material->GetState() == kStateGas) ist << 330     if (material->GetState() == kStateGas) istat = 1;  
373     G4double Zeff = material->GetZ() + pdgb[is    331     G4double Zeff = material->GetZ() + pdgb[istat];
374     EcPdg = pdga[istat] / Zeff;                << 332     EcPdg = pdga[istat]/Zeff;
375     G4cout << "\t\t\t (from Pdg formula : " << << 333     G4cout << "\t\t\t (from Pdg formula : " 
376   }                                            << 334            << std::setw(8) << G4BestUnit(EcPdg,"Energy") << ")";    
377                                                << 335   }
378   const G4double Es = 21.2052 * MeV;           << 336      
379   G4double rMolier1 = Es / ekin, rMolier2 = rM << 337  const G4double Es = 21.2052*MeV;
380   G4cout << "\n  Moliere radius           : "  << 338  G4double rMolier1 = Es/ekin, rMolier2 = rMolier1*radl;
381          << "\t" << std::setw(8) << rMolier1 < << 339  G4cout << "\n  Moliere radius           : "
382          << "= " << std::setw(8) << G4BestUnit << 340         << "\t" << std::setw(8) << rMolier1 << " X0 "   
383                                                << 341         << "= " << std::setw(8) << G4BestUnit(rMolier2,"Length");
384   if (material->GetNumberOfElements() == 1) {  << 342   
385     G4double rMPdg = radl * Es / EcPdg;        << 343  if (material->GetNumberOfElements() == 1) {
386     G4cout << "\t (from Pdg formula : " << std << 344     G4double rMPdg = radl*Es/EcPdg;
387   }                                            << 345     G4cout << "\t (from Pdg formula : " 
                                                   >> 346            << std::setw(8) << G4BestUnit(rMPdg,"Length") << ")";    
                                                   >> 347   }  
388 }                                                 348 }
389                                                   349 
390 //....oooOO0OOooo........oooOO0OOooo........oo    350 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
391                                                   351