Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 /// \file electromagnetic/TestEm0/src/RunActio 27 /// \brief Implementation of the RunAction cla 28 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 33 #include "RunAction.hh" 34 35 #include "DetectorConstruction.hh" 36 #include "PrimaryGeneratorAction.hh" 37 38 #include "G4Electron.hh" 39 #include "G4EmCalculator.hh" 40 #include "G4LossTableManager.hh" 41 #include "G4PhysicalConstants.hh" 42 #include "G4Positron.hh" 43 #include "G4ProcessManager.hh" 44 #include "G4Run.hh" 45 #include "G4SystemOfUnits.hh" 46 #include "G4UnitsTable.hh" 47 48 #include <vector> 49 50 //....oooOO0OOooo........oooOO0OOooo........oo 51 52 RunAction::RunAction(DetectorConstruction* det 53 : fDetector(det), fPrimary(kin) 54 {} 55 //....oooOO0OOooo........oooOO0OOooo........oo 56 57 void RunAction::BeginOfRunAction(const G4Run*) 58 { 59 // set precision for printing 60 G4int prec = G4cout.precision(6); 61 62 // instanciate EmCalculator 63 G4EmCalculator emCal; 64 // emCal.SetVerbose(2); 65 66 // get particle 67 G4ParticleDefinition* particle = fPrimary->G 68 G4String partName = particle->GetParticleNam 69 G4double charge = particle->GetPDGCharge(); 70 G4double energy = fPrimary->GetParticleGun() 71 72 // get material 73 const G4Material* material = fDetector->GetM 74 G4String matName = material->GetName(); 75 G4double density = material->GetDensity(); 76 G4double radl = material->GetRadlen(); 77 78 G4cout << "\n " << partName << " (" << G4Bes 79 << material->GetName() << " (density: 80 << "; radiation length: " << G4Best 81 82 // get cuts 83 GetCuts(); 84 if (charge != 0.) { 85 G4cout << "\n Range cuts: \t gamma " << s 86 << "\t e- " << std::setw(12) << G4B 87 G4cout << "\n Energy cuts: \t gamma " << s 88 << "\t e- " << std::setw(12) << G4B 89 } 90 91 // max energy transfert 92 if (charge != 0.) { 93 G4double Mass_c2 = particle->GetPDGMass(); 94 G4double moverM = electron_mass_c2 / Mass_ 95 G4double gamM1 = energy / Mass_c2, gam = g 96 G4double Tmax = energy; 97 if (particle == G4Electron::Electron()) { 98 Tmax *= 0.5; 99 } 100 else if (particle != G4Positron::Positron( 101 Tmax = (2 * electron_mass_c2 * gamM1 * g 102 } 103 G4double range = emCal.GetCSDARange(Tmax, 104 105 G4cout << "\n Max_energy _transferable : 106 << G4BestUnit(range, "Length") << " 107 } 108 109 // get processList and extract EM processes 110 G4ProcessVector* plist = particle->GetProces 111 G4String procName; 112 G4double cut; 113 std::vector<G4String> emName; 114 std::vector<G4double> enerCut; 115 size_t length = plist->size(); 116 for (size_t j = 0; j < length; j++) { 117 procName = (*plist)[j]->GetProcessName(); 118 cut = fEnergyCut[1]; 119 if ((procName == "eBrem") || (procName == 120 if (((*plist)[j]->GetProcessType() == fEle 121 emName.push_back(procName); 122 enerCut.push_back(cut); 123 } 124 } 125 126 // write html documentation, if requested 127 char* htmlDocName = std::getenv("G4PhysListN 128 char* htmlDocDir = std::getenv("G4PhysListDo 129 if (htmlDocName && htmlDocDir) { 130 G4LossTableManager::Instance()->DumpHtml() 131 } 132 133 // print list of processes 134 G4cout << "\n processes : "; 135 for (size_t j = 0; j < emName.size(); ++j) { 136 G4cout << "\t" << std::setw(14) << emName[ 137 } 138 G4cout << "\t" << std::setw(14) << "total"; 139 140 // compute cross section per atom (only for 141 if (material->GetNumberOfElements() == 1) { 142 G4double Z = material->GetZ(); 143 G4double A = material->GetA(); 144 145 std::vector<G4double> sigma0; 146 G4double sig, sigtot = 0.; 147 148 for (size_t j = 0; j < emName.size(); j++) 149 sig = emCal.ComputeCrossSectionPerAtom(e 150 sigtot += sig; 151 sigma0.push_back(sig); 152 } 153 sigma0.push_back(sigtot); 154 155 G4cout << "\n \n cross section per atom 156 for (size_t j = 0; j < sigma0.size(); ++j) 157 G4cout << "\t" << std::setw(9) << G4Best 158 } 159 G4cout << G4endl; 160 } 161 162 // get cross section per volume 163 std::vector<G4double> sigma0; 164 std::vector<G4double> sigma1; 165 std::vector<G4double> sigma2; 166 G4double Sig, SigtotComp = 0., Sigtot = 0.; 167 168 for (size_t j = 0; j < emName.size(); ++j) { 169 Sig = emCal.ComputeCrossSectionPerVolume(e 170 SigtotComp += Sig; 171 sigma0.push_back(Sig); 172 Sig = emCal.GetCrossSectionPerVolume(energ 173 Sigtot += Sig; 174 sigma1.push_back(Sig); 175 sigma2.push_back(Sig / density); 176 } 177 sigma0.push_back(SigtotComp); 178 sigma1.push_back(Sigtot); 179 sigma2.push_back(Sigtot / density); 180 181 // print cross sections 182 G4cout << "\n compCrossSectionPerVolume: "; 183 for (size_t j = 0; j < sigma0.size(); ++j) { 184 G4cout << "\t" << std::setw(9) << sigma0[j 185 } 186 G4cout << "\n cross section per volume : "; 187 for (size_t j = 0; j < sigma1.size(); ++j) { 188 G4cout << "\t" << std::setw(9) << sigma1[j 189 } 190 191 G4cout << "\n cross section per mass : "; 192 for (size_t j = 0; j < sigma2.size(); ++j) { 193 G4cout << "\t" << std::setw(9) << G4BestUn 194 } 195 196 // print mean free path 197 198 G4double lambda; 199 200 G4cout << "\n \n mean free path : 201 for (size_t j = 0; j < sigma1.size(); ++j) { 202 lambda = DBL_MAX; 203 if (sigma1[j] > 0.) lambda = 1 / sigma1[j] 204 G4cout << "\t" << std::setw(9) << G4BestUn 205 } 206 207 // mean free path (g/cm2) 208 G4cout << "\n (g/cm2) : "; 209 for (size_t j = 0; j < sigma2.size(); ++j) { 210 lambda = DBL_MAX; 211 if (sigma2[j] > 0.) lambda = 1 / sigma2[j] 212 G4cout << "\t" << std::setw(9) << G4BestUn 213 } 214 G4cout << G4endl; 215 216 if (charge == 0.) { 217 G4cout.precision(prec); 218 G4cout << "\n----------------------------- 219 return; 220 } 221 222 // get stopping power 223 std::vector<G4double> dedx1; 224 std::vector<G4double> dedx2; 225 G4double dedx, dedxtot = 0.; 226 size_t nproc = emName.size(); 227 228 for (size_t j = 0; j < nproc; ++j) { 229 dedx = emCal.ComputeDEDX(energy, particle, 230 dedxtot += dedx; 231 dedx1.push_back(dedx); 232 dedx2.push_back(dedx / density); 233 } 234 dedx1.push_back(dedxtot); 235 dedx2.push_back(dedxtot / density); 236 237 // print stopping power 238 G4cout << "\n \n restricted dE/dx : 239 for (size_t j = 0; j <= nproc; ++j) { 240 G4cout << "\t" << std::setw(9) << G4BestUn 241 } 242 243 G4cout << "\n (MeV/g/cm2) : "; 244 for (size_t j = 0; j <= nproc; ++j) { 245 G4cout << "\t" << std::setw(9) << G4BestUn 246 } 247 dedxtot = 0.; 248 249 for (size_t j = 0; j < nproc; ++j) { 250 dedx = emCal.ComputeDEDX(energy, particle, 251 dedxtot += dedx; 252 dedx1[j] = dedx; 253 dedx2[j] = dedx / density; 254 } 255 dedx1[nproc] = dedxtot; 256 dedx2[nproc] = dedxtot / density; 257 258 // print stopping power 259 G4cout << "\n \n unrestricted dE/dx : 260 for (size_t j = 0; j <= nproc; ++j) { 261 G4cout << "\t" << std::setw(9) << G4BestUn 262 } 263 264 G4cout << "\n (MeV/g/cm2) : "; 265 for (size_t j = 0; j <= nproc; ++j) { 266 G4cout << "\t" << std::setw(9) << G4BestUn 267 } 268 269 // get range from restricted dedx 270 G4double range1 = emCal.GetRangeFromRestrict 271 G4double range2 = range1 * density; 272 273 // print range 274 G4cout << "\n \n range from restrict dE/dx: 275 << "\t" << std::setw(9) << G4BestUnit 276 << G4BestUnit(range2, "Mass/Surface") 277 278 // get range from full dedx 279 G4double EmaxTable = G4EmParameters::Instanc 280 if (energy < EmaxTable) { 281 G4double Range1 = emCal.GetCSDARange(energ 282 G4double Range2 = Range1 * density; 283 284 G4cout << "\n range from full dE/dx : 285 << "\t" << std::setw(9) << G4BestUn 286 << G4BestUnit(Range2, "Mass/Surface 287 } 288 289 // get transport mean free path (for multipl 290 G4double MSmfp1 = emCal.GetMeanFreePath(ener 291 G4double MSmfp2 = MSmfp1 * density; 292 293 // print transport mean free path 294 G4cout << "\n \n transport mean free path : 295 << "\t" << std::setw(9) << G4BestUnit 296 << G4BestUnit(MSmfp2, "Mass/Surface") 297 298 if (particle == G4Electron::Electron()) Crit 299 300 G4cout << "\n------------------------------- 301 G4cout << G4endl; 302 303 // reset default precision 304 G4cout.precision(prec); 305 } 306 307 //....oooOO0OOooo........oooOO0OOooo........oo 308 309 void RunAction::EndOfRunAction(const G4Run*) { 310 311 //....oooOO0OOooo........oooOO0OOooo........oo 312 313 #include "G4ProductionCutsTable.hh" 314 315 //....oooOO0OOooo........oooOO0OOooo........oo 316 317 void RunAction::GetCuts() 318 { 319 G4ProductionCutsTable* theCoupleTable = G4Pr 320 321 size_t numOfCouples = theCoupleTable->GetTab 322 const G4MaterialCutsCouple* couple = 0; 323 G4int index = 0; 324 for (size_t i = 0; i < numOfCouples; i++) { 325 couple = theCoupleTable->GetMaterialCutsCo 326 if (couple->GetMaterial() == fDetector->Ge 327 index = i; 328 break; 329 } 330 } 331 332 fRangeCut[0] = (*(theCoupleTable->GetRangeCu 333 fRangeCut[1] = (*(theCoupleTable->GetRangeCu 334 fRangeCut[2] = (*(theCoupleTable->GetRangeCu 335 336 fEnergyCut[0] = (*(theCoupleTable->GetEnergy 337 fEnergyCut[1] = (*(theCoupleTable->GetEnergy 338 fEnergyCut[2] = (*(theCoupleTable->GetEnergy 339 } 340 341 //....oooOO0OOooo........oooOO0OOooo........oo 342 343 void RunAction::CriticalEnergy() 344 { 345 // compute e- critical energy (Rossi definit 346 // Review of Particle Physics - Eur. Phys. J 347 // 348 G4EmCalculator emCal; 349 350 const G4Material* material = fDetector->GetM 351 const G4double radl = material->GetRadlen(); 352 G4double ekin = 5 * MeV; 353 G4double deioni; 354 G4double err = 1., errmax = 0.001; 355 G4int iter = 0, itermax = 10; 356 while (err > errmax && iter < itermax) { 357 iter++; 358 deioni = radl * emCal.ComputeDEDX(ekin, G4 359 err = std::abs(deioni - ekin) / ekin; 360 ekin = deioni; 361 } 362 G4cout << "\n \n critical energy (Rossi) : 363 << "\t" << std::setw(8) << G4BestUnit 364 365 // Pdg formula (only for single material) 366 G4double pdga[2] = {610 * MeV, 710 * MeV}; 367 G4double pdgb[2] = {1.24, 0.92}; 368 G4double EcPdg = 0.; 369 370 if (material->GetNumberOfElements() == 1) { 371 G4int istat = 0; 372 if (material->GetState() == kStateGas) ist 373 G4double Zeff = material->GetZ() + pdgb[is 374 EcPdg = pdga[istat] / Zeff; 375 G4cout << "\t\t\t (from Pdg formula : " << 376 } 377 378 const G4double Es = 21.2052 * MeV; 379 G4double rMolier1 = Es / ekin, rMolier2 = rM 380 G4cout << "\n Moliere radius : " 381 << "\t" << std::setw(8) << rMolier1 < 382 << "= " << std::setw(8) << G4BestUnit 383 384 if (material->GetNumberOfElements() == 1) { 385 G4double rMPdg = radl * Es / EcPdg; 386 G4cout << "\t (from Pdg formula : " << std 387 } 388 } 389 390 //....oooOO0OOooo........oooOO0OOooo........oo 391