Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm0/src/RunActio 26 /// \file electromagnetic/TestEm0/src/RunAction.cc 27 /// \brief Implementation of the RunAction cla 27 /// \brief Implementation of the RunAction class 28 // 28 // 29 // << 29 // $Id: RunAction.cc 68243 2013-03-19 18:03:11Z vnivanch $ >> 30 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 33 33 #include "RunAction.hh" 34 #include "RunAction.hh" 34 << 35 #include "DetectorConstruction.hh" 35 #include "DetectorConstruction.hh" 36 #include "PrimaryGeneratorAction.hh" 36 #include "PrimaryGeneratorAction.hh" 37 37 38 #include "G4Electron.hh" << 38 #include "G4Run.hh" >> 39 #include "G4ProcessManager.hh" >> 40 #include "G4UnitsTable.hh" 39 #include "G4EmCalculator.hh" 41 #include "G4EmCalculator.hh" 40 #include "G4LossTableManager.hh" << 42 #include "G4Electron.hh" 41 #include "G4PhysicalConstants.hh" 43 #include "G4PhysicalConstants.hh" 42 #include "G4Positron.hh" << 43 #include "G4ProcessManager.hh" << 44 #include "G4Run.hh" << 45 #include "G4SystemOfUnits.hh" 44 #include "G4SystemOfUnits.hh" 46 #include "G4UnitsTable.hh" << 47 45 48 #include <vector> 46 #include <vector> 49 47 50 //....oooOO0OOooo........oooOO0OOooo........oo 48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 49 52 RunAction::RunAction(DetectorConstruction* det 50 RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* kin) 53 : fDetector(det), fPrimary(kin) << 51 :G4UserRunAction(),fDetector(det), fPrimary(kin) 54 {} << 52 { } >> 53 >> 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 55 >> 56 RunAction::~RunAction() >> 57 { } >> 58 55 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 60 57 void RunAction::BeginOfRunAction(const G4Run*) 61 void RunAction::BeginOfRunAction(const G4Run*) 58 { 62 { 59 // set precision for printing << 63 //set precision for printing 60 G4int prec = G4cout.precision(6); 64 G4int prec = G4cout.precision(6); 61 << 65 62 // instanciate EmCalculator << 66 //instanciate EmCalculator 63 G4EmCalculator emCal; 67 G4EmCalculator emCal; 64 // emCal.SetVerbose(2); 68 // emCal.SetVerbose(2); 65 << 69 66 // get particle << 70 // get particle 67 G4ParticleDefinition* particle = fPrimary->G << 71 G4ParticleDefinition* particle = fPrimary->GetParticleGun() >> 72 ->GetParticleDefinition(); 68 G4String partName = particle->GetParticleNam 73 G4String partName = particle->GetParticleName(); 69 G4double charge = particle->GetPDGCharge(); << 74 G4double charge = particle->GetPDGCharge(); 70 G4double energy = fPrimary->GetParticleGun() << 75 G4double energy = fPrimary->GetParticleGun()->GetParticleEnergy(); 71 << 76 72 // get material 77 // get material 73 const G4Material* material = fDetector->GetM << 78 G4Material* material = fDetector->GetMaterial(); 74 G4String matName = material->GetName(); << 79 G4String matName = material->GetName(); 75 G4double density = material->GetDensity(); << 80 G4double density = material->GetDensity(); 76 G4double radl = material->GetRadlen(); << 81 G4double radl = material->GetRadlen(); 77 << 82 78 G4cout << "\n " << partName << " (" << G4Bes << 83 G4cout << "\n " << partName << " (" 79 << material->GetName() << " (density: << 84 << G4BestUnit(energy,"Energy") << ") in " 80 << "; radiation length: " << G4Best << 85 << material->GetName() << " (density: " >> 86 << G4BestUnit(density,"Volumic Mass") << "; radiation length: " >> 87 << G4BestUnit(radl, "Length") << ")" << G4endl; 81 88 82 // get cuts << 89 // get cuts 83 GetCuts(); 90 GetCuts(); 84 if (charge != 0.) { 91 if (charge != 0.) { 85 G4cout << "\n Range cuts: \t gamma " << s << 92 G4cout << "\n Range cuts : \t gamma " 86 << "\t e- " << std::setw(12) << G4B << 93 << std::setw(8) << G4BestUnit(fRangeCut[0],"Length") 87 G4cout << "\n Energy cuts: \t gamma " << s << 94 << "\t e- " << std::setw(8) << G4BestUnit(fRangeCut[1],"Length"); 88 << "\t e- " << std::setw(12) << G4B << 95 G4cout << "\n Energy cuts : \t gamma " 89 } << 96 << std::setw(8) << G4BestUnit(fEnergyCut[0],"Energy") 90 << 97 << "\t e- " << std::setw(8) << G4BestUnit(fEnergyCut[1],"Energy") >> 98 << G4endl; >> 99 } >> 100 91 // max energy transfert 101 // max energy transfert 92 if (charge != 0.) { 102 if (charge != 0.) { 93 G4double Mass_c2 = particle->GetPDGMass(); << 103 G4double Mass_c2 = particle->GetPDGMass(); 94 G4double moverM = electron_mass_c2 / Mass_ << 104 G4double moverM = electron_mass_c2/Mass_c2; 95 G4double gamM1 = energy / Mass_c2, gam = g << 105 G4double gamM1 = energy/Mass_c2, gam = gamM1 + 1., gamP1 = gam + 1.; 96 G4double Tmax = energy; << 106 G4double Tmax = 97 if (particle == G4Electron::Electron()) { << 107 (2*electron_mass_c2*gamM1*gamP1)/(1.+2*gam*moverM+moverM*moverM); 98 Tmax *= 0.5; << 108 G4double range = emCal.GetCSDARange(Tmax,G4Electron::Electron(),material); 99 } << 109 100 else if (particle != G4Positron::Positron( << 110 G4cout << "\n Max_energy _transferable : " << G4BestUnit(Tmax,"Energy") 101 Tmax = (2 * electron_mass_c2 * gamM1 * g << 111 << " (" << G4BestUnit(range,"Length") << ")" << G4endl; 102 } << 103 G4double range = emCal.GetCSDARange(Tmax, << 104 << 105 G4cout << "\n Max_energy _transferable : << 106 << G4BestUnit(range, "Length") << " << 107 } 112 } 108 << 113 109 // get processList and extract EM processes 114 // get processList and extract EM processes (but not MultipleScattering) 110 G4ProcessVector* plist = particle->GetProces 115 G4ProcessVector* plist = particle->GetProcessManager()->GetProcessList(); 111 G4String procName; 116 G4String procName; 112 G4double cut; 117 G4double cut; 113 std::vector<G4String> emName; 118 std::vector<G4String> emName; 114 std::vector<G4double> enerCut; 119 std::vector<G4double> enerCut; 115 size_t length = plist->size(); 120 size_t length = plist->size(); 116 for (size_t j = 0; j < length; j++) { << 121 for (size_t j=0; j<length; j++) { 117 procName = (*plist)[j]->GetProcessName(); << 122 procName = (*plist)[j]->GetProcessName(); 118 cut = fEnergyCut[1]; << 123 cut = fEnergyCut[1]; 119 if ((procName == "eBrem") || (procName == << 124 if ((procName == "eBrem")||(procName == "muBrems")) cut = fEnergyCut[0]; 120 if (((*plist)[j]->GetProcessType() == fEle << 125 if (((*plist)[j]->GetProcessType() == fElectromagnetic) && 121 emName.push_back(procName); << 126 (procName != "msc")) { 122 enerCut.push_back(cut); << 127 emName.push_back(procName); 123 } << 128 enerCut.push_back(cut); >> 129 } 124 } 130 } 125 << 131 126 // write html documentation, if requested << 127 char* htmlDocName = std::getenv("G4PhysListN << 128 char* htmlDocDir = std::getenv("G4PhysListDo << 129 if (htmlDocName && htmlDocDir) { << 130 G4LossTableManager::Instance()->DumpHtml() << 131 } << 132 << 133 // print list of processes 132 // print list of processes 134 G4cout << "\n processes : "; 133 G4cout << "\n processes : "; 135 for (size_t j = 0; j < emName.size(); ++j) { << 134 for (size_t j=0; j<emName.size();j++) 136 G4cout << "\t" << std::setw(14) << emName[ << 135 G4cout << "\t" << std::setw(13) << emName[j] << "\t"; 137 } << 136 G4cout << "\t" << std::setw(13) <<"total"; 138 G4cout << "\t" << std::setw(14) << "total"; << 137 139 << 138 //compute cross section per atom (only for single material) 140 // compute cross section per atom (only for << 141 if (material->GetNumberOfElements() == 1) { 139 if (material->GetNumberOfElements() == 1) { 142 G4double Z = material->GetZ(); 140 G4double Z = material->GetZ(); 143 G4double A = material->GetA(); 141 G4double A = material->GetA(); 144 << 142 145 std::vector<G4double> sigma0; 143 std::vector<G4double> sigma0; 146 G4double sig, sigtot = 0.; 144 G4double sig, sigtot = 0.; 147 145 148 for (size_t j = 0; j < emName.size(); j++) << 146 for (size_t j=0; j<emName.size();j++) { 149 sig = emCal.ComputeCrossSectionPerAtom(e << 147 sig = emCal.ComputeCrossSectionPerAtom 150 sigtot += sig; << 148 (energy,particle,emName[j],Z,A,enerCut[j]); 151 sigma0.push_back(sig); << 149 sigtot += sig; >> 150 sigma0.push_back(sig); 152 } 151 } 153 sigma0.push_back(sigtot); 152 sigma0.push_back(sigtot); 154 153 155 G4cout << "\n \n cross section per atom << 154 G4cout << "\n \n cross section per atom : "; 156 for (size_t j = 0; j < sigma0.size(); ++j) << 155 for (size_t j=0; j<sigma0.size();j++) { 157 G4cout << "\t" << std::setw(9) << G4Best << 156 G4cout << "\t" << std::setw(13) << G4BestUnit(sigma0[j], "Surface"); 158 } 157 } 159 G4cout << G4endl; 158 G4cout << G4endl; 160 } 159 } 161 << 160 162 // get cross section per volume << 161 //get cross section per volume 163 std::vector<G4double> sigma0; 162 std::vector<G4double> sigma0; 164 std::vector<G4double> sigma1; 163 std::vector<G4double> sigma1; 165 std::vector<G4double> sigma2; 164 std::vector<G4double> sigma2; 166 G4double Sig, SigtotComp = 0., Sigtot = 0.; 165 G4double Sig, SigtotComp = 0., Sigtot = 0.; 167 166 168 for (size_t j = 0; j < emName.size(); ++j) { << 167 for (size_t j=0; j<emName.size();j++) { 169 Sig = emCal.ComputeCrossSectionPerVolume(e << 168 Sig = emCal.ComputeCrossSectionPerVolume 170 SigtotComp += Sig; << 169 (energy,particle,emName[j],material,enerCut[j]); >> 170 SigtotComp += Sig; 171 sigma0.push_back(Sig); 171 sigma0.push_back(Sig); 172 Sig = emCal.GetCrossSectionPerVolume(energ << 172 Sig = emCal.GetCrossSectionPerVolume(energy,particle,emName[j],material); 173 Sigtot += Sig; << 173 Sigtot += Sig; 174 sigma1.push_back(Sig); 174 sigma1.push_back(Sig); 175 sigma2.push_back(Sig / density); << 175 sigma2.push_back(Sig/density); 176 } 176 } 177 sigma0.push_back(SigtotComp); 177 sigma0.push_back(SigtotComp); 178 sigma1.push_back(Sigtot); 178 sigma1.push_back(Sigtot); 179 sigma2.push_back(Sigtot / density); << 179 sigma2.push_back(Sigtot/density); 180 << 180 181 // print cross sections << 181 //print cross sections 182 G4cout << "\n compCrossSectionPerVolume: "; << 182 G4cout << "\n \n compCrossSectionPerVolume : "; 183 for (size_t j = 0; j < sigma0.size(); ++j) { << 183 for (size_t j=0; j<sigma0.size();j++) { 184 G4cout << "\t" << std::setw(9) << sigma0[j << 184 G4cout << "\t" << std::setw(13) << sigma0[j]*cm << " cm^-1"; 185 } 185 } 186 G4cout << "\n cross section per volume : "; 186 G4cout << "\n cross section per volume : "; 187 for (size_t j = 0; j < sigma1.size(); ++j) { << 187 for (size_t j=0; j<sigma1.size();j++) { 188 G4cout << "\t" << std::setw(9) << sigma1[j << 188 G4cout << "\t" << std::setw(13) << sigma1[j]*cm << " cm^-1"; 189 } 189 } 190 << 190 191 G4cout << "\n cross section per mass : "; 191 G4cout << "\n cross section per mass : "; 192 for (size_t j = 0; j < sigma2.size(); ++j) { << 192 for (size_t j=0; j<sigma2.size();j++) { 193 G4cout << "\t" << std::setw(9) << G4BestUn << 193 G4cout << "\t" << std::setw(13) 194 } << 194 << G4BestUnit(sigma2[j], "Surface/Mass"); 195 << 195 } 196 // print mean free path << 196 197 << 197 //print mean free path >> 198 198 G4double lambda; 199 G4double lambda; 199 << 200 200 G4cout << "\n \n mean free path : 201 G4cout << "\n \n mean free path : "; 201 for (size_t j = 0; j < sigma1.size(); ++j) { << 202 for (size_t j=0; j<sigma1.size();j++) { 202 lambda = DBL_MAX; << 203 lambda = DBL_MAX; 203 if (sigma1[j] > 0.) lambda = 1 / sigma1[j] << 204 if (sigma1[j] > 0.) lambda = 1/sigma1[j]; 204 G4cout << "\t" << std::setw(9) << G4BestUn << 205 G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Length"); 205 } << 206 } 206 << 207 207 // mean free path (g/cm2) << 208 //mean free path (g/cm2) 208 G4cout << "\n (g/cm2) : "; << 209 G4cout << "\n (g/cm2) : "; 209 for (size_t j = 0; j < sigma2.size(); ++j) { << 210 for (size_t j=0; j<sigma2.size();j++) { 210 lambda = DBL_MAX; << 211 lambda = DBL_MAX; 211 if (sigma2[j] > 0.) lambda = 1 / sigma2[j] << 212 if (sigma2[j] > 0.) lambda = 1/sigma2[j]; 212 G4cout << "\t" << std::setw(9) << G4BestUn << 213 G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Mass/Surface"); 213 } 214 } 214 G4cout << G4endl; 215 G4cout << G4endl; 215 << 216 216 if (charge == 0.) { 217 if (charge == 0.) { 217 G4cout.precision(prec); 218 G4cout.precision(prec); 218 G4cout << "\n----------------------------- << 219 G4cout << "\n-------------------------------------------------------------\n" >> 220 << G4endl; 219 return; 221 return; 220 } 222 } 221 << 223 222 // get stopping power << 224 //get stopping power 223 std::vector<G4double> dedx1; 225 std::vector<G4double> dedx1; 224 std::vector<G4double> dedx2; << 226 std::vector<G4double> dedx2; 225 G4double dedx, dedxtot = 0.; 227 G4double dedx, dedxtot = 0.; 226 size_t nproc = emName.size(); 228 size_t nproc = emName.size(); 227 229 228 for (size_t j = 0; j < nproc; ++j) { << 230 for (size_t j=0; j<nproc; j++) { 229 dedx = emCal.ComputeDEDX(energy, particle, << 231 dedx = emCal.ComputeDEDX(energy,particle,emName[j],material,enerCut[j]); 230 dedxtot += dedx; 232 dedxtot += dedx; 231 dedx1.push_back(dedx); 233 dedx1.push_back(dedx); 232 dedx2.push_back(dedx / density); << 234 dedx2.push_back(dedx/density); 233 } 235 } 234 dedx1.push_back(dedxtot); 236 dedx1.push_back(dedxtot); 235 dedx2.push_back(dedxtot / density); << 237 dedx2.push_back(dedxtot/density); 236 << 238 237 // print stopping power << 239 //print stopping power 238 G4cout << "\n \n restricted dE/dx : 240 G4cout << "\n \n restricted dE/dx : "; 239 for (size_t j = 0; j <= nproc; ++j) { << 241 for (size_t j=0; j<=nproc; j++) { 240 G4cout << "\t" << std::setw(9) << G4BestUn << 242 G4cout << "\t" << std::setw(13) >> 243 << G4BestUnit(dedx1[j],"Energy/Length"); 241 } 244 } 242 << 245 243 G4cout << "\n (MeV/g/cm2) : "; 246 G4cout << "\n (MeV/g/cm2) : "; 244 for (size_t j = 0; j <= nproc; ++j) { << 247 for (size_t j=0; j<=nproc; j++) { 245 G4cout << "\t" << std::setw(9) << G4BestUn << 248 G4cout << "\t" << std::setw(13) >> 249 << G4BestUnit(dedx2[j],"Energy*Surface/Mass"); 246 } 250 } 247 dedxtot = 0.; 251 dedxtot = 0.; 248 252 249 for (size_t j = 0; j < nproc; ++j) { << 253 for (size_t j=0; j<nproc; j++) { 250 dedx = emCal.ComputeDEDX(energy, particle, << 254 dedx = emCal.ComputeDEDX(energy,particle,emName[j],material,energy); 251 dedxtot += dedx; 255 dedxtot += dedx; 252 dedx1[j] = dedx; 256 dedx1[j] = dedx; 253 dedx2[j] = dedx / density; << 257 dedx2[j] = dedx/density; 254 } 258 } 255 dedx1[nproc] = dedxtot; 259 dedx1[nproc] = dedxtot; 256 dedx2[nproc] = dedxtot / density; << 260 dedx2[nproc] = dedxtot/density; 257 << 261 258 // print stopping power << 262 //print stopping power 259 G4cout << "\n \n unrestricted dE/dx : 263 G4cout << "\n \n unrestricted dE/dx : "; 260 for (size_t j = 0; j <= nproc; ++j) { << 264 for (size_t j=0; j<=nproc; j++) { 261 G4cout << "\t" << std::setw(9) << G4BestUn << 265 G4cout << "\t" << std::setw(13) << G4BestUnit(dedx1[j],"Energy/Length"); 262 } 266 } 263 << 267 264 G4cout << "\n (MeV/g/cm2) : "; 268 G4cout << "\n (MeV/g/cm2) : "; 265 for (size_t j = 0; j <= nproc; ++j) { << 269 for (size_t j=0; j<=nproc; j++) { 266 G4cout << "\t" << std::setw(9) << G4BestUn << 270 G4cout << "\t" << std::setw(13) 267 } << 271 << G4BestUnit(dedx2[j],"Energy*Surface/Mass"); 268 << 272 } 269 // get range from restricted dedx << 273 270 G4double range1 = emCal.GetRangeFromRestrict << 274 //get range from restricted dedx 271 G4double range2 = range1 * density; << 275 G4double range1 = emCal.GetRangeFromRestricteDEDX(energy,particle,material); 272 << 276 G4double range2 = range1*density; 273 // print range << 277 274 G4cout << "\n \n range from restrict dE/dx: << 278 //print range 275 << "\t" << std::setw(9) << G4BestUnit << 279 G4cout << "\n \n range from restrict dE/dx: " 276 << G4BestUnit(range2, "Mass/Surface") << 280 << "\t" << std::setw(8) << G4BestUnit(range1,"Length") 277 << 281 << " (" << std::setw(8) << G4BestUnit(range2,"Mass/Surface") << ")"; 278 // get range from full dedx << 282 279 G4double EmaxTable = G4EmParameters::Instanc << 283 //get range from full dedx 280 if (energy < EmaxTable) { << 284 if(energy < GeV) { 281 G4double Range1 = emCal.GetCSDARange(energ << 285 G4double Range1 = emCal.GetCSDARange(energy,particle,material); 282 G4double Range2 = Range1 * density; << 286 G4double Range2 = Range1*density; 283 << 287 284 G4cout << "\n range from full dE/dx : << 288 G4cout << "\n range from full dE/dx : " 285 << "\t" << std::setw(9) << G4BestUn << 289 << "\t" << std::setw(8) << G4BestUnit(Range1,"Length") 286 << G4BestUnit(Range2, "Mass/Surface << 290 << " (" << std::setw(8) << G4BestUnit(Range2,"Mass/Surface") << ")"; 287 } << 291 } 288 << 292 289 // get transport mean free path (for multipl << 293 //get transport mean free path (for multiple scattering) 290 G4double MSmfp1 = emCal.GetMeanFreePath(ener << 294 G4double MSmfp1 = emCal.GetMeanFreePath(energy,particle,"msc",material); 291 G4double MSmfp2 = MSmfp1 * density; << 295 G4double MSmfp2 = MSmfp1*density; 292 << 296 293 // print transport mean free path << 297 //print transport mean free path 294 G4cout << "\n \n transport mean free path : << 298 G4cout << "\n \n transport mean free path : " 295 << "\t" << std::setw(9) << G4BestUnit << 299 << "\t" << std::setw(8) << G4BestUnit(MSmfp1,"Length") 296 << G4BestUnit(MSmfp2, "Mass/Surface") << 300 << " (" << std::setw(8) << G4BestUnit(MSmfp2,"Mass/Surface") << ")"; 297 301 298 if (particle == G4Electron::Electron()) Crit 302 if (particle == G4Electron::Electron()) CriticalEnergy(); 299 << 303 300 G4cout << "\n------------------------------- 304 G4cout << "\n-------------------------------------------------------------\n"; 301 G4cout << G4endl; 305 G4cout << G4endl; 302 << 306 303 // reset default precision << 307 // reset default precision 304 G4cout.precision(prec); << 308 G4cout.precision(prec); 305 } 309 } 306 310 307 //....oooOO0OOooo........oooOO0OOooo........oo 311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 308 312 309 void RunAction::EndOfRunAction(const G4Run*) { << 313 void RunAction::EndOfRunAction(const G4Run* ) >> 314 { } 310 315 311 //....oooOO0OOooo........oooOO0OOooo........oo 316 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 312 317 313 #include "G4ProductionCutsTable.hh" 318 #include "G4ProductionCutsTable.hh" 314 319 315 //....oooOO0OOooo........oooOO0OOooo........oo 320 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 316 321 317 void RunAction::GetCuts() 322 void RunAction::GetCuts() 318 { << 323 { 319 G4ProductionCutsTable* theCoupleTable = G4Pr << 324 G4ProductionCutsTable* theCoupleTable = 320 << 325 G4ProductionCutsTable::GetProductionCutsTable(); >> 326 321 size_t numOfCouples = theCoupleTable->GetTab 327 size_t numOfCouples = theCoupleTable->GetTableSize(); 322 const G4MaterialCutsCouple* couple = 0; 328 const G4MaterialCutsCouple* couple = 0; 323 G4int index = 0; 329 G4int index = 0; 324 for (size_t i = 0; i < numOfCouples; i++) { << 330 for (size_t i=0; i<numOfCouples; i++) { 325 couple = theCoupleTable->GetMaterialCutsCo << 331 couple = theCoupleTable->GetMaterialCutsCouple(i); 326 if (couple->GetMaterial() == fDetector->Ge << 332 if (couple->GetMaterial() == fDetector->GetMaterial()) {index = i; break;} 327 index = i; << 333 } 328 break; << 334 329 } << 335 fRangeCut[0] = 330 } << 336 (*(theCoupleTable->GetRangeCutsVector(idxG4GammaCut)))[index]; >> 337 fRangeCut[1] = >> 338 (*(theCoupleTable->GetRangeCutsVector(idxG4ElectronCut)))[index]; >> 339 fRangeCut[2] = >> 340 (*(theCoupleTable->GetRangeCutsVector(idxG4PositronCut)))[index]; >> 341 >> 342 fEnergyCut[0] = >> 343 (*(theCoupleTable->GetEnergyCutsVector(idxG4GammaCut)))[index]; >> 344 fEnergyCut[1] = >> 345 (*(theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut)))[index]; >> 346 fEnergyCut[2] = >> 347 (*(theCoupleTable->GetEnergyCutsVector(idxG4PositronCut)))[index]; 331 348 332 fRangeCut[0] = (*(theCoupleTable->GetRangeCu << 333 fRangeCut[1] = (*(theCoupleTable->GetRangeCu << 334 fRangeCut[2] = (*(theCoupleTable->GetRangeCu << 335 << 336 fEnergyCut[0] = (*(theCoupleTable->GetEnergy << 337 fEnergyCut[1] = (*(theCoupleTable->GetEnergy << 338 fEnergyCut[2] = (*(theCoupleTable->GetEnergy << 339 } 349 } 340 350 341 //....oooOO0OOooo........oooOO0OOooo........oo 351 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 342 352 343 void RunAction::CriticalEnergy() 353 void RunAction::CriticalEnergy() 344 { 354 { 345 // compute e- critical energy (Rossi definit 355 // compute e- critical energy (Rossi definition) and Moliere radius. 346 // Review of Particle Physics - Eur. Phys. J 356 // Review of Particle Physics - Eur. Phys. J. C3 (1998) page 147 347 // 357 // 348 G4EmCalculator emCal; 358 G4EmCalculator emCal; 349 << 359 350 const G4Material* material = fDetector->GetM 360 const G4Material* material = fDetector->GetMaterial(); 351 const G4double radl = material->GetRadlen(); 361 const G4double radl = material->GetRadlen(); 352 G4double ekin = 5 * MeV; << 362 G4double ekin = 5*MeV; 353 G4double deioni; 363 G4double deioni; 354 G4double err = 1., errmax = 0.001; << 364 G4double err = 1., errmax = 0.001; 355 G4int iter = 0, itermax = 10; << 365 G4int iter = 0 , itermax = 10; 356 while (err > errmax && iter < itermax) { 366 while (err > errmax && iter < itermax) { 357 iter++; << 367 iter++; 358 deioni = radl * emCal.ComputeDEDX(ekin, G4 << 368 deioni = radl* 359 err = std::abs(deioni - ekin) / ekin; << 369 emCal.ComputeDEDX(ekin,G4Electron::Electron(),"eIoni",material); >> 370 err = std::abs(deioni - ekin)/ekin; 360 ekin = deioni; 371 ekin = deioni; 361 } 372 } 362 G4cout << "\n \n critical energy (Rossi) : << 373 G4cout << "\n \n critical energy (Rossi) : " 363 << "\t" << std::setw(8) << G4BestUnit << 374 << "\t" << std::setw(8) << G4BestUnit(ekin,"Energy"); 364 << 375 365 // Pdg formula (only for single material) << 376 //Pdg formula (only for single material) 366 G4double pdga[2] = {610 * MeV, 710 * MeV}; << 377 G4double pdga[2] = { 610*MeV, 710*MeV }; 367 G4double pdgb[2] = {1.24, 0.92}; << 378 G4double pdgb[2] = { 1.24, 0.92 }; 368 G4double EcPdg = 0.; 379 G4double EcPdg = 0.; 369 << 380 370 if (material->GetNumberOfElements() == 1) { 381 if (material->GetNumberOfElements() == 1) { 371 G4int istat = 0; 382 G4int istat = 0; 372 if (material->GetState() == kStateGas) ist << 383 if (material->GetState() == kStateGas) istat = 1; 373 G4double Zeff = material->GetZ() + pdgb[is 384 G4double Zeff = material->GetZ() + pdgb[istat]; 374 EcPdg = pdga[istat] / Zeff; << 385 EcPdg = pdga[istat]/Zeff; 375 G4cout << "\t\t\t (from Pdg formula : " << << 386 G4cout << "\t\t\t (from Pdg formula : " 376 } << 387 << std::setw(8) << G4BestUnit(EcPdg,"Energy") << ")"; 377 << 388 } 378 const G4double Es = 21.2052 * MeV; << 389 379 G4double rMolier1 = Es / ekin, rMolier2 = rM << 390 const G4double Es = 21.2052*MeV; 380 G4cout << "\n Moliere radius : " << 391 G4double rMolier1 = Es/ekin, rMolier2 = rMolier1*radl; 381 << "\t" << std::setw(8) << rMolier1 < << 392 G4cout << "\n Moliere radius : " 382 << "= " << std::setw(8) << G4BestUnit << 393 << "\t" << std::setw(8) << rMolier1 << " X0 " 383 << 394 << "= " << std::setw(8) << G4BestUnit(rMolier2,"Length"); 384 if (material->GetNumberOfElements() == 1) { << 395 385 G4double rMPdg = radl * Es / EcPdg; << 396 if (material->GetNumberOfElements() == 1) { 386 G4cout << "\t (from Pdg formula : " << std << 397 G4double rMPdg = radl*Es/EcPdg; 387 } << 398 G4cout << "\t (from Pdg formula : " >> 399 << std::setw(8) << G4BestUnit(rMPdg,"Length") << ")"; >> 400 } 388 } 401 } 389 402 390 //....oooOO0OOooo........oooOO0OOooo........oo 403 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 391 404