Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Hadrontherapy advanced example for Geant4 << 26 // This is the *BASIC* version of Hadrontherapy, a Geant4-based application 27 // See more at: https://twiki.cern.ch/twiki/bi << 27 // See more at: http://g4advancedexamples.lngs.infn.it/Examples/hadrontherapy 28 // 28 // 29 // Using the builder concepts of Geant4 we ass << 29 // Visit the Hadrontherapy web site (http://www.lns.infn.it/link/Hadrontherapy) to request 30 // Physics Lists that are particuilarly suited << 30 // the *COMPLETE* version of this program, together with its documentation; >> 31 // Hadrontherapy (both basic and full version) are supported by the Italian INFN >> 32 // Institute in the framework of the MC-INFN Group 31 // 33 // 32 // 'HADRONTHERAPY_1' is more suited for proton << 33 // 'HADRONTHERAPY_2' is suggested for better p << 34 // 34 // 35 // The Reference physics lists (already presen << 35 // Hadrontherapy Users are recommended to use the prepared macro files in order to activate the 36 // be used as well. In this case the more suit << 36 // most appropriate physics for hadrontherapy applications. 37 // "QBBC", "QGSP_BIC", "Shielding", "QGSP_BERT << 37 // As one can easily see the physics we suggest is contained in the 38 // "QGSP_BIC_AllHP" and "QGSP_BIC_HP" << 38 // 'QGSP_BIC_EMY' list adding to the decay processes (activated as default). 39 // 39 // 40 // NOTE: to activate the "_HP" physics you hav << 41 // variable pointing to the external dataset n << 42 // 40 // 43 // All the lists can be activated inside any << 41 // ****** SUGGESTED PHYSICS ********* 44 // /Physics/addPhysics << 45 // 42 // 46 // Examples of usage are: << 43 // AT MOMENT, IF ACCURATE RESULTS ARE NEEDED, WE STRONGLY RECOMMEND: 47 // /Physics/addPhysics HADRONTHERAPY_1 or /Phy << 44 // 1. The use of the macro 'hadron_therapy.mac', that is connected with the HadrontherapyPhysicsList.cc file. 48 << 45 // 2. the QGSP_BIC_EMY Reference Physics Lists (define the PHYSLIST eviroment variable): 49 #include "G4SystemOfUnits.hh" << 46 // export PHYSLIST=QGSP_BIC_EMY >> 47 // User must considered that, in this second case, radioactive processes are not activated >> 48 50 #include "G4RunManager.hh" 49 #include "G4RunManager.hh" 51 #include "G4Region.hh" 50 #include "G4Region.hh" 52 #include "G4RegionStore.hh" 51 #include "G4RegionStore.hh" 53 #include "HadrontherapyPhysicsList.hh" 52 #include "HadrontherapyPhysicsList.hh" 54 #include "HadrontherapyPhysicsListMessenger.hh 53 #include "HadrontherapyPhysicsListMessenger.hh" 55 #include "HadrontherapyStepMax.hh" 54 #include "HadrontherapyStepMax.hh" 56 #include "G4PhysListFactory.hh" 55 #include "G4PhysListFactory.hh" 57 #include "G4VPhysicsConstructor.hh" 56 #include "G4VPhysicsConstructor.hh" 58 #include "G4HadronPhysicsQGSP_BIC_HP.hh" << 57 59 #include "G4HadronPhysicsQGSP_BIC.hh" << 58 // Local physic directly implemented in the Hadronthrapy directory 60 #include "G4EmStandardPhysics_option4.hh" << 59 #include "LocalIonIonInelasticPhysic.hh" // Physic dedicated to the ion-ion inelastic processes 61 #include "G4EmStandardPhysics.hh" << 60 >> 61 // Physic lists (contained inside the Geant4 source code, in the 'physicslists folder') >> 62 #include "HadronPhysicsQGSP_BIC.hh" >> 63 #include "G4EmStandardPhysics_option3.hh" >> 64 #include "G4EmLivermorePhysics.hh" >> 65 #include "G4EmPenelopePhysics.hh" 62 #include "G4EmExtraPhysics.hh" 66 #include "G4EmExtraPhysics.hh" 63 #include "G4StoppingPhysics.hh" << 67 #include "G4QStoppingPhysics.hh" 64 #include "G4DecayPhysics.hh" 68 #include "G4DecayPhysics.hh" 65 #include "G4HadronElasticPhysics.hh" 69 #include "G4HadronElasticPhysics.hh" 66 #include "G4HadronElasticPhysicsHP.hh" 70 #include "G4HadronElasticPhysicsHP.hh" 67 #include "G4RadioactiveDecayPhysics.hh" 71 #include "G4RadioactiveDecayPhysics.hh" 68 #include "G4IonBinaryCascadePhysics.hh" 72 #include "G4IonBinaryCascadePhysics.hh" 69 #include "G4DecayPhysics.hh" 73 #include "G4DecayPhysics.hh" 70 #include "G4NeutronTrackingCut.hh" 74 #include "G4NeutronTrackingCut.hh" 71 #include "G4LossTableManager.hh" 75 #include "G4LossTableManager.hh" 72 #include "G4UnitsTable.hh" 76 #include "G4UnitsTable.hh" 73 #include "G4ProcessManager.hh" 77 #include "G4ProcessManager.hh" 74 #include "G4IonFluctuations.hh" 78 #include "G4IonFluctuations.hh" 75 #include "G4IonParametrisedLossModel.hh" 79 #include "G4IonParametrisedLossModel.hh" 76 #include "G4EmParameters.hh" << 80 #include "G4EmProcessOptions.hh" 77 #include "G4ParallelWorldPhysics.hh" << 78 #include "G4EmLivermorePhysics.hh" << 79 #include "G4AutoDelete.hh" << 80 #include "G4HadronPhysicsQGSP_BIC_AllHP.hh" << 81 #include "QGSP_BIC_HP.hh" << 82 #include "QGSP_BIC.hh" << 83 #include "G4HadronPhysicsQGSP_BERT.hh" << 84 #include "G4HadronPhysicsQGSP_BERT_HP.hh" << 85 #include "G4ParallelWorldPhysics.hh" << 86 // Physics List << 87 #include "QBBC.hh" << 88 #include "QGSP_BIC.hh" << 89 #include "Shielding.hh" << 90 #include "QGSP_BERT.hh" << 91 #include "QGSP_BIC_AllHP.hh" << 92 #include "QGSP_BIC_HP.hh" << 93 << 94 << 95 81 96 ////////////////////////////////////////////// 82 ///////////////////////////////////////////////////////////////////////////// 97 HadrontherapyPhysicsList::HadrontherapyPhysics 83 HadrontherapyPhysicsList::HadrontherapyPhysicsList() : G4VModularPhysicsList() 98 { 84 { 99 G4LossTableManager::Instance(); << 85 G4LossTableManager::Instance(); 100 defaultCutValue = 1.*mm; << 86 defaultCutValue = 1.*mm; 101 cutForGamma = defaultCutValue; << 87 cutForGamma = defaultCutValue; 102 cutForElectron = defaultCutValue; << 88 cutForElectron = defaultCutValue; 103 cutForPositron = defaultCutValue; << 89 cutForPositron = defaultCutValue; 104 << 90 105 pMessenger = new HadrontherapyPhysicsListM << 91 helIsRegistered = false; 106 SetVerboseLevel(1); << 92 bicIsRegistered = false; 107 decay_List = new G4DecayPhysics(); << 93 biciIsRegistered = false; 108 // Elecromagnetic physics << 94 locIonIonInelasticIsRegistered = false; 109 // << 95 radioactiveDecayIsRegistered = false; 110 emPhysicsList = new G4EmStandardPhysics_op << 96 >> 97 stepMaxProcess = 0; >> 98 >> 99 pMessenger = new HadrontherapyPhysicsListMessenger(this); >> 100 >> 101 SetVerboseLevel(1); >> 102 >> 103 // ****** Definition of some defaults for the physics ***** >> 104 // ****** in case no physics is called by the macro file ***** >> 105 // EM physics >> 106 emPhysicsList = new G4EmStandardPhysics_option3(1); >> 107 emName = G4String("emstandard_opt3"); >> 108 >> 109 // Decay physics and all particles >> 110 decPhysicsList = new G4DecayPhysics(); >> 111 raddecayList = new G4RadioactiveDecayPhysics(); 111 } 112 } 112 113 113 ////////////////////////////////////////////// 114 ///////////////////////////////////////////////////////////////////////////// 114 HadrontherapyPhysicsList::~HadrontherapyPhysic 115 HadrontherapyPhysicsList::~HadrontherapyPhysicsList() 115 { 116 { 116 delete pMessenger; << 117 delete pMessenger; 117 delete emPhysicsList; << 118 delete emPhysicsList; 118 delete decay_List; << 119 delete decPhysicsList; 119 //delete radioactiveDecay_List; << 120 delete raddecayList; 120 hadronPhys.clear(); << 121 121 for(size_t i=0; i<hadronPhys.size(); i++) << 122 for(size_t i=0; i<hadronPhys.size(); i++) {delete hadronPhys[i];} 122 { << 123 delete hadronPhys[i]; << 124 } << 125 } 123 } 126 124 127 ////////////////////////////////////////////// 125 ///////////////////////////////////////////////////////////////////////////// 128 void HadrontherapyPhysicsList::ConstructPartic 126 void HadrontherapyPhysicsList::ConstructParticle() 129 { 127 { 130 decay_List -> ConstructParticle(); << 128 decPhysicsList->ConstructParticle(); 131 << 132 } 129 } 133 130 134 ////////////////////////////////////////////// 131 ///////////////////////////////////////////////////////////////////////////// 135 void HadrontherapyPhysicsList::ConstructProces 132 void HadrontherapyPhysicsList::ConstructProcess() 136 { 133 { 137 // Transportation << 134 // transportation 138 // << 135 AddTransportation(); 139 AddTransportation(); << 136 140 << 137 // electromagnetic physics list 141 decay_List -> ConstructProcess(); << 138 emPhysicsList->ConstructProcess(); 142 emPhysicsList -> ConstructProcess(); << 139 em_config.AddModels(); 143 << 140 144 << 141 // decay physics list 145 //em_config.AddModels(); << 142 decPhysicsList->ConstructProcess(); 146 << 143 raddecayList->ConstructProcess(); 147 // Hadronic physics << 144 148 // << 145 // hadronic physics lists 149 for(size_t i=0; i < hadronPhys.size(); i++ << 146 for(size_t i=0; i<hadronPhys.size(); i++) { 150 { << 147 hadronPhys[i] -> ConstructProcess(); 151 hadronPhys[i] -> ConstructProcess(); << 148 } 152 } << 149 153 << 150 // step limitation (as a full process) 154 // step limitation (as a full process) << 151 // 155 // << 152 AddStepMax(); 156 AddStepMax(); << 157 << 158 //Parallel world sensitivity << 159 // << 160 G4ParallelWorldPhysics* pWorld = new G4Par << 161 pWorld->ConstructProcess(); << 162 << 163 return; << 164 } 153 } 165 154 166 ////////////////////////////////////////////// 155 ///////////////////////////////////////////////////////////////////////////// 167 void HadrontherapyPhysicsList::AddPhysicsList( 156 void HadrontherapyPhysicsList::AddPhysicsList(const G4String& name) 168 { 157 { 169 if (verboseLevel>1) { << 158 170 G4cout << "PhysicsList::AddPhysicsList << 159 if (verboseLevel>1) { 171 } << 160 G4cout << "PhysicsList::AddPhysicsList: <" << name << ">" << G4endl; 172 if (name == emName) return; << 161 } 173 << 162 if (name == emName) return; 174 /////////////////////////////////// << 163 175 // ELECTROMAGNETIC MODELS << 164 ///////////////////////////////////////////////////////////////////////////// 176 /////////////////////////////////// << 165 // ELECTROMAGNETIC MODELS 177 if (name == "standard_opt4") { << 166 ///////////////////////////////////////////////////////////////////////////// 178 emName = name; << 167 if (name == "standard_opt3") { 179 delete emPhysicsList; << 168 emName = name; 180 hadronPhys.clear(); << 169 delete emPhysicsList; 181 emPhysicsList = new G4EmStandardPhysic << 170 emPhysicsList = new G4EmStandardPhysics_option3(); 182 G4RunManager::GetRunManager() -> Physi << 171 G4RunManager::GetRunManager() -> PhysicsHasBeenModified(); 183 G4cout << "THE FOLLOWING ELECTROMAGNET << 172 G4cout << "THE FOLLOWING ELECTROMAGNETIC PHYSICS LIST HAS BEEN ACTIVATED: G4EmStandardPhysics_option3" << G4endl; 184 << 173 185 ////////////////////////////////////// << 174 } else if (name == "LowE_Livermore") { 186 // ELECTROMAGNETIC + HADRONIC MODELS << 175 emName = name; 187 ////////////////////////////////////// << 176 delete emPhysicsList; 188 << 177 emPhysicsList = new G4EmLivermorePhysics(); 189 } else if (name == "HADRONTHERAPY_1") { << 178 G4RunManager::GetRunManager()-> PhysicsHasBeenModified(); 190 << 179 G4cout << "THE FOLLOWING ELECTROMAGNETIC PHYSICS LIST HAS BEEN ACTIVATED: G4EmLivermorePhysics" << G4endl; 191 AddPhysicsList("standard_opt4"); << 180 192 hadronPhys.push_back( new G4DecayPhysi << 181 } else if (name == "LowE_Penelope") { 193 hadronPhys.push_back( new G4Radioactiv << 182 emName = name; 194 hadronPhys.push_back( new G4IonBinaryC << 183 delete emPhysicsList; 195 hadronPhys.push_back( new G4EmExtraPhy << 184 emPhysicsList = new G4EmPenelopePhysics(); 196 hadronPhys.push_back( new G4HadronElas << 185 G4RunManager::GetRunManager()-> PhysicsHasBeenModified(); 197 hadronPhys.push_back( new G4StoppingPh << 186 G4cout << "THE FOLLOWING ELECTROMAGNETIC PHYSICS LIST HAS BEEN ACTIVATED: G4EmPenelopePhysics" << G4endl; 198 hadronPhys.push_back( new G4HadronPhys << 187 199 hadronPhys.push_back( new G4NeutronTra << 188 } else if (name == "local_ion_ion_inelastic") { 200 << 189 hadronPhys.push_back(new LocalIonIonInelasticPhysic()); 201 G4cout << "HADRONTHERAPY_1 PHYSICS LIS << 190 locIonIonInelasticIsRegistered = true; 202 } << 191 203 << 192 } else if (name == "QGSP_BIC_EMY") { 204 else if (name == "HADRONTHERAPY_2") { << 193 AddPhysicsList("emstandard_opt3"); 205 << 194 hadronPhys.push_back( new HadronPhysicsQGSP_BIC()); 206 AddPhysicsList("standard_opt4"); << 195 hadronPhys.push_back( new G4EmExtraPhysics()); 207 hadronPhys.push_back( new G4DecayPhysi << 196 hadronPhys.push_back( new G4HadronElasticPhysics()); 208 hadronPhys.push_back( new G4Radioactiv << 197 hadronPhys.push_back( new G4QStoppingPhysics()); 209 hadronPhys.push_back( new G4IonBinaryC << 198 hadronPhys.push_back( new G4IonBinaryCascadePhysics()); 210 hadronPhys.push_back( new G4EmExtraPhy << 199 hadronPhys.push_back( new G4NeutronTrackingCut()); 211 hadronPhys.push_back( new G4HadronElas << 200 212 hadronPhys.push_back( new G4StoppingPh << 201 } else { 213 hadronPhys.push_back( new G4HadronPhys << 202 G4cout << "PhysicsList::AddPhysicsList: <" << name << ">" 214 hadronPhys.push_back( new G4NeutronTra << 203 << " is not defined" 215 << 204 << G4endl; 216 G4cout << "HADRONTHERAPY_2 PHYSICS LIS << 205 } 217 << 218 } << 219 << 220 else if (name == "QGSP_BIC"){ << 221 auto physicsList = new QGSP_BIC; << 222 G4RunManager::GetRunManager() -> SetUs << 223 G4RunManager::GetRunManager() -> Physi << 224 physicsList -> RegisterPhysics(new G4P << 225 } << 226 << 227 else if (name == "QGSP_BERT"){ << 228 auto physicsList = new QGSP_BERT; << 229 G4RunManager::GetRunManager() -> SetUs << 230 G4RunManager::GetRunManager() -> Physi << 231 physicsList -> RegisterPhysics(new G4P << 232 } << 233 << 234 else if (name == "QGSP_BIC_AllHP"){ << 235 auto physicsList = new QGSP_BIC_AllHP; << 236 G4RunManager::GetRunManager() -> SetUs << 237 G4RunManager::GetRunManager() -> Physi << 238 physicsList -> RegisterPhysics(new G4P << 239 } << 240 << 241 else if (name == "QGSP_BIC_HP"){ << 242 auto physicsList = new QGSP_BIC_HP; << 243 G4RunManager::GetRunManager() -> SetUs << 244 G4RunManager::GetRunManager() -> Physi << 245 physicsList -> RegisterPhysics(new G4P << 246 } << 247 << 248 else if (name == "Shielding"){ << 249 auto physicsList = new Shielding; << 250 G4RunManager::GetRunManager() -> SetUs << 251 G4RunManager::GetRunManager() -> Physi << 252 physicsList -> RegisterPhysics(new G4P << 253 } << 254 << 255 else if (name == "QBBC"){ << 256 auto physicsList = new QBBC; << 257 G4RunManager::GetRunManager() -> SetUs << 258 G4RunManager::GetRunManager() -> Physi << 259 physicsList -> RegisterPhysics(new G4P << 260 } << 261 << 262 else { << 263 G4cout << "PhysicsList::AddPhysicsList << 264 << " is not defined" << 265 << G4endl; << 266 } << 267 << 268 } 206 } 269 207 270 ////////////////////////////////////////////// 208 ///////////////////////////////////////////////////////////////////////////// 271 void HadrontherapyPhysicsList::AddStepMax() 209 void HadrontherapyPhysicsList::AddStepMax() 272 { 210 { 273 // Step limitation seen as a process << 211 // Step limitation seen as a process 274 // This process must exist in all threads. << 212 stepMaxProcess = new HadrontherapyStepMax(); 275 // << 213 276 HadrontherapyStepMax* stepMaxProcess = ne << 214 theParticleIterator->reset(); 277 << 215 while ((*theParticleIterator)()){ 278 << 216 G4ParticleDefinition* particle = theParticleIterator->value(); 279 auto particleIterator = GetParticleIterato << 217 G4ProcessManager* pmanager = particle->GetProcessManager(); 280 particleIterator->reset(); << 218 281 while ((*particleIterator)()){ << 219 if (stepMaxProcess->IsApplicable(*particle) && pmanager) 282 G4ParticleDefinition* particle = parti << 220 { 283 G4ProcessManager* pmanager = particle- << 221 pmanager ->AddDiscreteProcess(stepMaxProcess); 284 << 222 } 285 if (stepMaxProcess->IsApplicable(*part << 223 } 286 { << 224 } 287 pmanager ->AddDiscreteProcess(step << 225 288 } << 226 ///////////////////////////////////////////////////////////////////////////// 289 } << 227 void HadrontherapyPhysicsList::SetCuts() >> 228 { >> 229 >> 230 if (verboseLevel >0){ >> 231 G4cout << "PhysicsList::SetCuts:"; >> 232 G4cout << "CutLength : " << G4BestUnit(defaultCutValue,"Length") << G4endl; >> 233 } >> 234 >> 235 // set cut values for gamma at first and for e- second and next for e+, >> 236 // because some processes for e+/e- need cut values for gamma >> 237 SetCutValue(cutForGamma, "gamma"); >> 238 SetCutValue(cutForElectron, "e-"); >> 239 SetCutValue(cutForPositron, "e+"); >> 240 >> 241 // Set cuts for detector >> 242 SetDetectorCut(defaultCutValue); >> 243 if (verboseLevel>0) DumpCutValuesTable(); >> 244 } >> 245 >> 246 ///////////////////////////////////////////////////////////////////////////// >> 247 void HadrontherapyPhysicsList::SetCutForGamma(G4double cut) >> 248 { >> 249 cutForGamma = cut; >> 250 SetParticleCuts(cutForGamma, G4Gamma::Gamma()); >> 251 } >> 252 >> 253 ///////////////////////////////////////////////////////////////////////////// >> 254 void HadrontherapyPhysicsList::SetCutForElectron(G4double cut) >> 255 { >> 256 cutForElectron = cut; >> 257 SetParticleCuts(cutForElectron, G4Electron::Electron()); 290 } 258 } >> 259 >> 260 ///////////////////////////////////////////////////////////////////////////// >> 261 void HadrontherapyPhysicsList::SetCutForPositron(G4double cut) >> 262 { >> 263 cutForPositron = cut; >> 264 SetParticleCuts(cutForPositron, G4Positron::Positron()); >> 265 } >> 266 >> 267 void HadrontherapyPhysicsList::SetDetectorCut(G4double cut) >> 268 { >> 269 G4String regionName = "DetectorLog"; >> 270 G4Region* region = G4RegionStore::GetInstance()->GetRegion(regionName); >> 271 >> 272 G4ProductionCuts* cuts = new G4ProductionCuts ; >> 273 cuts -> SetProductionCut(cut,G4ProductionCuts::GetIndex("gamma")); >> 274 cuts -> SetProductionCut(cut,G4ProductionCuts::GetIndex("e-")); >> 275 cuts -> SetProductionCut(cut,G4ProductionCuts::GetIndex("e+")); >> 276 region -> SetProductionCuts(cuts); >> 277 } >> 278 291 279