Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/event/src/G4SPSEneDistribution.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /event/src/G4SPSEneDistribution.cc (Version 11.3.0) and /event/src/G4SPSEneDistribution.cc (Version 9.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4SPSEneDistribution class implementation   <<  26 ///////////////////////////////////////////////////////////////////////////////
 27 //                                                 27 //
 28 // Author: Fan Lei, QinetiQ ltd - 05/02/2004   <<  28 // MODULE:        G4SPSEneDistribution.cc
 29 // Customer: ESA/ESTEC                         <<  29 //
 30 // Revisions: Andrew Green, Andrea Dotti       <<  30 // Version:      1.0
 31 // ------------------------------------------- <<  31 // Date:         5/02/04
                                                   >>  32 // Author:       Fan Lei 
                                                   >>  33 // Organisation: QinetiQ ltd.
                                                   >>  34 // Customer:     ESA/ESTEC
                                                   >>  35 //
                                                   >>  36 ///////////////////////////////////////////////////////////////////////////////
                                                   >>  37 //
                                                   >>  38 // CHANGE HISTORY
                                                   >>  39 // --------------
                                                   >>  40 //
                                                   >>  41 //
                                                   >>  42 // Version 1.0, 05/02/2004, Fan Lei, Created.
                                                   >>  43 //    Based on the G4GeneralParticleSource class in Geant4 v6.0
                                                   >>  44 //
                                                   >>  45 ///////////////////////////////////////////////////////////////////////////////
                                                   >>  46 //
                                                   >>  47 
 32 #include "G4SPSEneDistribution.hh"                 48 #include "G4SPSEneDistribution.hh"
 33                                                    49 
 34 #include "G4Exp.hh"                            << 
 35 #include "G4SystemOfUnits.hh"                      50 #include "G4SystemOfUnits.hh"
 36 #include "G4UnitsTable.hh"                     << 
 37 #include "Randomize.hh"                            51 #include "Randomize.hh"
 38 #include "G4AutoLock.hh"                       << 
 39 #include "G4Threading.hh"                      << 
 40                                                    52 
 41 G4SPSEneDistribution::G4SPSEneDistribution()       53 G4SPSEneDistribution::G4SPSEneDistribution()
                                                   >>  54   : particle_definition(0), eneRndm(0), Splinetemp(0)
 42 {                                                  55 {
 43   G4MUTEXINIT(mutex);                          <<  56   //
 44                                                <<  57   // Initialise all variables
 45   // Initialise all variables                  <<  58   particle_energy = 1.0 * MeV;
 46                                                <<  59 
 47   particle_energy = 1.0 * MeV;                 <<  60   EnergyDisType = "Mono";
 48   EnergyDisType = "Mono";                      <<  61   weight = 1.;
 49   weight=1.;                                   <<  62   MonoEnergy = 1 * MeV;
 50   MonoEnergy = 1 * MeV;                        <<  63   Emin = 0.;
 51   Emin = 0.;                                   <<  64   Emax = 1.e30;
 52   Emax = 1.e30;                                <<  65   alpha = 0.;
 53   alpha = 0.;                                  <<  66   biasalpha = 0.;
 54   biasalpha = 0.;                              <<  67         prob_norm = 1.0;
 55   prob_norm = 1.0;                             <<  68   Ezero = 0.;
 56   Ezero = 0.;                                  <<  69   SE = 0.;
 57   SE = 0.;                                     <<  70   Temp = 0.;
 58   Temp = 0.;                                   <<  71   grad = 0.;
 59   grad = 0.;                                   <<  72   cept = 0.;
 60   cept = 0.;                                   <<  73   Biased = false; // not biased
 61   IntType = "NULL"; // Interpolation type      <<  74   EnergySpec = true; // true - energy spectra, false - momentum spectra
 62                                                <<  75   DiffSpec = true; // true - differential spec, false integral spec
 63   ArbEmin = 0.;                                <<  76   IntType = "NULL"; // Interpolation type
 64   ArbEmax = 1.e30;                             <<  77   IPDFEnergyExist = false;
 65                                                <<  78   IPDFArbExist = false;
 66   verbosityLevel = 0;                          <<  79 
 67                                                <<  80   ArbEmin = 0.;
 68   threadLocal_t& data = threadLocalData.Get(); <<  81   ArbEmax = 1.e30;
 69   data.Emax = Emax;                            <<  82 
 70   data.Emin = Emin;                            <<  83   verbosityLevel = 0;
 71   data.alpha =alpha;                           <<  84 
 72   data.cept = cept;                            <<  85 }
 73   data.Ezero = Ezero;                          <<  86 
 74   data.grad = grad;                            <<  87 G4SPSEneDistribution::~G4SPSEneDistribution() {
 75   data.particle_energy = 0.;                   <<  88 }
 76   data.particle_definition = nullptr;          <<  89 
 77   data.weight = weight;                        <<  90 void G4SPSEneDistribution::SetEnergyDisType(G4String DisType) {
 78 }                                              <<  91   EnergyDisType = DisType;
 79                                                <<  92   if (EnergyDisType == "User") {
 80 G4SPSEneDistribution::~G4SPSEneDistribution()  <<  93     UDefEnergyH = IPDFEnergyH = ZeroPhysVector;
 81 {                                              <<  94     IPDFEnergyExist = false;
 82   G4MUTEXDESTROY(mutex);                       <<  95   } else if (EnergyDisType == "Arb") {
 83   if(Arb_grad_cept_flag)                       <<  96     ArbEnergyH = IPDFArbEnergyH = ZeroPhysVector;
 84   {                                            <<  97     IPDFArbExist = false;
 85     delete [] Arb_grad;                        <<  98   } else if (EnergyDisType == "Epn") {
 86     delete [] Arb_cept;                        <<  99     UDefEnergyH = IPDFEnergyH = ZeroPhysVector;
 87   }                                            << 100     IPDFEnergyExist = false;
 88                                                << 101     EpnEnergyH = ZeroPhysVector;
 89   if(Arb_alpha_Const_flag)                     << 102   }
 90   {                                            << 103 }
 91     delete [] Arb_alpha;                       << 104 
 92     delete [] Arb_Const;                       << 105 void G4SPSEneDistribution::SetEmin(G4double emi) {
 93   }                                            << 106   Emin = emi;
 94                                                << 107 }
 95   if(Arb_ezero_flag)                           << 108 
 96   {                                            << 109 void G4SPSEneDistribution::SetEmax(G4double ema) {
 97     delete [] Arb_ezero;                       << 110   Emax = ema;
 98   }                                            << 111 }
 99   delete Bbody_x;                              << 112 
100   delete BBHist;                               << 113 void G4SPSEneDistribution::SetMonoEnergy(G4double menergy) {
101   delete CP_x;                                 << 114   MonoEnergy = menergy;
102   delete CPHist;                               << 115 }
103   for (auto & it : SplineInt)                  << 116 
104   {                                            << 117 void G4SPSEneDistribution::SetBeamSigmaInE(G4double e) {
105     delete it;                                 << 118   SE = e;
106     it = nullptr;                              << 119 }
107   }                                            << 120 void G4SPSEneDistribution::SetAlpha(G4double alp) {
108   SplineInt.clear();                           << 121   alpha = alp;
109 }                                              << 122 }
110                                                << 123 
111 void G4SPSEneDistribution::SetEnergyDisType(co << 124 void G4SPSEneDistribution::SetBiasAlpha(G4double alp) {
112 {                                              << 125   biasalpha = alp;
113   G4AutoLock l(&mutex);                        << 126   Biased = true;
114   EnergyDisType = DisType;                     << 127 }
115   if (EnergyDisType == "User")                 << 128 
116   {                                            << 129 void G4SPSEneDistribution::SetTemp(G4double tem) {
117     UDefEnergyH = IPDFEnergyH = ZeroPhysVector << 130   Temp = tem;
118     IPDFEnergyExist = false;                   << 131 }
119   }                                            << 132 
120   else if (EnergyDisType == "Arb")             << 133 void G4SPSEneDistribution::SetEzero(G4double eze) {
121   {                                            << 134   Ezero = eze;
122     ArbEnergyH = IPDFArbEnergyH = ZeroPhysVect << 135 }
123     IPDFArbExist = false;                      << 136 
124   }                                            << 137 void G4SPSEneDistribution::SetGradient(G4double gr) {
125   else if (EnergyDisType == "Epn")             << 138   grad = gr;
126   {                                            << 139 }
127     UDefEnergyH = IPDFEnergyH = ZeroPhysVector << 140 
128     IPDFEnergyExist = false;                   << 141 void G4SPSEneDistribution::SetInterCept(G4double c) {
129     EpnEnergyH = ZeroPhysVector;               << 142   cept = c;
130   }                                            << 143 }
131 }                                              << 144 
132                                                << 145 void G4SPSEneDistribution::UserEnergyHisto(G4ThreeVector input) {
133 const G4String& G4SPSEneDistribution::GetEnerg << 146   G4double ehi, val;
134 {                                              << 147   ehi = input.x();
135   G4AutoLock l(&mutex);                        << 148   val = input.y();
136   return EnergyDisType;                        << 149   if (verbosityLevel > 1) {
137 }                                              << 150     G4cout << "In UserEnergyHisto" << G4endl;
138                                                << 151     G4cout << " " << ehi << " " << val << G4endl;
139 void G4SPSEneDistribution::SetEmin(G4double em << 152   }
140 {                                              << 153   UDefEnergyH.InsertValues(ehi, val);
141   G4AutoLock l(&mutex);                        << 154   Emax = ehi;
142   Emin = emi;                                  << 155 }
143   threadLocalData.Get().Emin = Emin;           << 156 
144 }                                              << 157 void G4SPSEneDistribution::ArbEnergyHisto(G4ThreeVector input) {
145                                                << 158   G4double ehi, val;
146 G4double G4SPSEneDistribution::GetEmin() const << 159   ehi = input.x();
147 {                                              << 160   val = input.y();
148   return threadLocalData.Get().Emin;           << 161   if (verbosityLevel > 1) {
149 }                                              << 162     G4cout << "In ArbEnergyHisto" << G4endl;
150                                                << 163     G4cout << " " << ehi << " " << val << G4endl;
151 G4double G4SPSEneDistribution::GetArbEmin()    << 164   }
152 {                                              << 165   ArbEnergyH.InsertValues(ehi, val);
153   G4AutoLock l(&mutex);                        << 166 }
154   return ArbEmin;                              << 167 
155 }                                              << 168 void G4SPSEneDistribution::ArbEnergyHistoFile(G4String filename) {
156                                                << 169   std::ifstream infile(filename, std::ios::in);
157 G4double G4SPSEneDistribution::GetArbEmax()    << 170   if (!infile)
158 {                                              << 171     G4Exception("G4SPSEneDistribution::ArbEnergyHistoFile",
159   G4AutoLock l(&mutex);                        << 172                 "Event0301",FatalException,
160   return ArbEmax;                              << 173                 "Unable to open the histo ASCII file");
161 }                                              << 174   G4double ehi, val;
162                                                << 175   while (infile >> ehi >> val) {
163 void G4SPSEneDistribution::SetEmax(G4double em << 176     ArbEnergyH.InsertValues(ehi, val);
164 {                                              << 177   }
165   G4AutoLock l(&mutex);                        << 178 }
166   Emax = ema;                                  << 179 
167   threadLocalData.Get().Emax = Emax;           << 180 void G4SPSEneDistribution::EpnEnergyHisto(G4ThreeVector input) {
168 }                                              << 181   G4double ehi, val;
169                                                << 182   ehi = input.x();
170 G4double G4SPSEneDistribution::GetEmax() const << 183   val = input.y();
171 {                                              << 184   if (verbosityLevel > 1) {
172   return threadLocalData.Get().Emax;           << 185     G4cout << "In EpnEnergyHisto" << G4endl;
173 }                                              << 186     G4cout << " " << ehi << " " << val << G4endl;
174                                                << 187   }
175 void G4SPSEneDistribution::SetMonoEnergy(G4dou << 188   EpnEnergyH.InsertValues(ehi, val);
176 {                                              << 189   Emax = ehi;
177   G4AutoLock l(&mutex);                        << 190   Epnflag = true;
178   MonoEnergy = menergy;                        << 191 }
179 }                                              << 192 
180                                                << 193 void G4SPSEneDistribution::Calculate() {
181 void G4SPSEneDistribution::SetBeamSigmaInE(G4d << 194   if (EnergyDisType == "Cdg")
182 {                                              << 195     CalculateCdgSpectrum();
183   G4AutoLock l(&mutex);                        << 196   else if (EnergyDisType == "Bbody")
184   SE = e;                                      << 197     CalculateBbodySpectrum();
185 }                                              << 198 }
186 void G4SPSEneDistribution::SetAlpha(G4double a << 199 
187 {                                              << 200 void G4SPSEneDistribution::CalculateCdgSpectrum() {
188   G4AutoLock l(&mutex);                        << 201   // This uses the spectrum from The INTEGRAL Mass Model (TIMM)
189   alpha = alp;                                 << 202   // to generate a Cosmic Diffuse X/gamma ray spectrum.
190   threadLocalData.Get().alpha = alpha;         << 203   G4double pfact[2] = { 8.5, 112 };
191 }                                              << 204   G4double spind[2] = { 1.4, 2.3 };
192                                                << 205   G4double ene_line[3] = { 1. * keV, 18. * keV, 1E6 * keV };
193 void G4SPSEneDistribution::SetBiasAlpha(G4doub << 206   G4int n_par;
194 {                                              << 207 
195   G4AutoLock l(&mutex);                        << 208   ene_line[0] = Emin;
196   biasalpha = alp;                             << 209   if (Emin < 18 * keV) {
197   Biased = true;                               << 210     n_par = 2;
198 }                                              << 211     ene_line[2] = Emax;
199                                                << 212     if (Emax < 18 * keV) {
200 void G4SPSEneDistribution::SetTemp(G4double te << 213       n_par = 1;
201 {                                              << 214       ene_line[1] = Emax;
202   G4AutoLock l(&mutex);                        << 215     }
203   Temp = tem;                                  << 216   } else {
204 }                                              << 217     n_par = 1;
205                                                << 218     pfact[0] = 112.;
206 void G4SPSEneDistribution::SetEzero(G4double e << 219     spind[0] = 2.3;
207 {                                              << 220     ene_line[1] = Emax;
208   G4AutoLock l(&mutex);                        << 221   }
209   Ezero = eze;                                 << 222 
210   threadLocalData.Get().Ezero = Ezero;         << 223   // Create a cumulative histogram.
211 }                                              << 224   CDGhist[0] = 0.;
212                                                << 225   G4double omalpha;
213 void G4SPSEneDistribution::SetGradient(G4doubl << 226   G4int i = 0;
214 {                                              << 227 
215   G4AutoLock l(&mutex);                        << 228   while (i < n_par) {
216   grad = gr;                                   << 229     omalpha = 1. - spind[i];
217   threadLocalData.Get().grad = grad;           << 230     CDGhist[i + 1] = CDGhist[i] + (pfact[i] / omalpha) * (std::pow(
218 }                                              << 231         ene_line[i + 1] / keV, omalpha) - std::pow(ene_line[i] / keV,
219                                                << 232         omalpha));
220 void G4SPSEneDistribution::SetInterCept(G4doub << 233     i++;
221 {                                              << 234   }
222   G4AutoLock l(&mutex);                        << 235 
223   cept = c;                                    << 236   // Normalise histo and divide by 1000 to make MeV.
224   threadLocalData.Get().cept = cept;           << 237   i = 0;
225 }                                              << 238   while (i < n_par) {
226                                                << 239     CDGhist[i + 1] = CDGhist[i + 1] / CDGhist[n_par];
227 const G4String& G4SPSEneDistribution::GetIntTy << 240     //      G4cout << CDGhist[i] << CDGhist[n_par] << G4endl;
228 {                                              << 241     i++;
229   G4AutoLock l(&mutex);                        << 242   }
230   return IntType;                              << 243 }
231 }                                              << 244 
232                                                << 245 void G4SPSEneDistribution::CalculateBbodySpectrum() {
233 void G4SPSEneDistribution::SetBiasRndm(G4SPSRa << 246   // create bbody spectrum
234 {                                              << 247   // Proved very hard to integrate indefinitely, so different
235   G4AutoLock l(&mutex);                        << 248   // method. User inputs emin, emax and T. These are used to
236   eneRndm = a;                                 << 249   // create a 10,000 bin histogram.
237 }                                              << 250   // Use photon density spectrum = 2 nu**2/c**2 * (std::exp(h nu/kT)-1)
238                                                << 251   // = 2 E**2/h**2c**2 times the exponential
239 void G4SPSEneDistribution::SetVerbosity(G4int  << 252   G4double erange = Emax - Emin;
240 {                                              << 253   G4double steps = erange / 10000.;
241   G4AutoLock l(&mutex);                        << 254   G4double Bbody_y[10000];
242   verbosityLevel = a;                          << 255   G4double k = 8.6181e-11; //Boltzmann const in MeV/K
243 }                                              << 256   G4double h = 4.1362e-21; // Plancks const in MeV s
244                                                << 257   G4double c = 3e8; // Speed of light
245 G4double G4SPSEneDistribution::GetWeight() con << 258   G4double h2 = h * h;
246 {                                              << 259   G4double c2 = c * c;
247   return threadLocalData.Get().weight;         << 260   G4int count = 0;
248 }                                              << 261   G4double sum = 0.;
249                                                << 262   BBHist[0] = 0.;
250 G4double G4SPSEneDistribution::GetMonoEnergy() << 263   while (count < 10000) {
251 {                                              << 264     Bbody_x[count] = Emin + G4double(count * steps);
252   G4AutoLock l(&mutex);                        << 265     Bbody_y[count] = (2. * std::pow(Bbody_x[count], 2.)) / (h2 * c2
253   return MonoEnergy;                           << 266         * (std::exp(Bbody_x[count] / (k * Temp)) - 1.));
254 }                                              << 267     sum = sum + Bbody_y[count];
255                                                << 268     BBHist[count + 1] = BBHist[count] + Bbody_y[count];
256 G4double G4SPSEneDistribution::GetSE()         << 269     count++;
257 {                                              << 270   }
258   G4AutoLock l(&mutex);                        << 271 
259   return SE;                                   << 272   Bbody_x[10000] = Emax;
260 }                                              << 273   // Normalise cumulative histo.
261                                                << 274   count = 0;
262 G4double G4SPSEneDistribution::Getalpha() cons << 275   while (count < 10001) {
263 {                                              << 276     BBHist[count] = BBHist[count] / sum;
264   return threadLocalData.Get().alpha;          << 277     count++;
265 }                                              << 278   }
266                                                << 279 }
267 G4double G4SPSEneDistribution::GetEzero() cons << 280 
268 {                                              << 281 void G4SPSEneDistribution::InputEnergySpectra(G4bool value) {
269   return threadLocalData.Get().Ezero;          << 282   // Allows user to specifiy spectrum is momentum
270 }                                              << 283   EnergySpec = value; // false if momentum
271                                                << 284   if (verbosityLevel > 1)
272 G4double G4SPSEneDistribution::GetTemp()       << 285     G4cout << "EnergySpec has value " << EnergySpec << G4endl;
273 {                                              << 286 }
274   G4AutoLock l(&mutex);                        << 287 
275   return Temp;                                 << 288 void G4SPSEneDistribution::InputDifferentialSpectra(G4bool value) {
276 }                                              << 289   // Allows user to specify integral or differential spectra
277                                                << 290   DiffSpec = value; // true = differential, false = integral
278 G4double G4SPSEneDistribution::Getgrad() const << 291   if (verbosityLevel > 1)
279 {                                              << 292     G4cout << "Diffspec has value " << DiffSpec << G4endl;
280   return threadLocalData.Get().grad;           << 293 }
281 }                                              << 294 
282                                                << 295 void G4SPSEneDistribution::ArbInterpolate(G4String IType) {
283 G4double G4SPSEneDistribution::Getcept() const << 296   if (EnergyDisType != "Arb")
284 {                                              << 297     G4cout << "Error: this is for arbitrary distributions" << G4endl;
285   return threadLocalData.Get().cept;           << 298   IntType = IType;
286 }                                              << 299   ArbEmax = ArbEnergyH.GetMaxLowEdgeEnergy();
287                                                << 300   ArbEmin = ArbEnergyH.GetMinLowEdgeEnergy();
288 G4PhysicsFreeVector G4SPSEneDistribution::GetU << 301 
289 {                                              << 302   // Now interpolate points
290   G4AutoLock l(&mutex);                        << 303   if (IntType == "Lin")
291   return UDefEnergyH;                          << 304     LinearInterpolation();
292 }                                              << 305   if (IntType == "Log")
293                                                << 306     LogInterpolation();
294 G4PhysicsFreeVector G4SPSEneDistribution::GetA << 307   if (IntType == "Exp")
295 {                                              << 308     ExpInterpolation();
296   G4AutoLock l(&mutex);                        << 309   if (IntType == "Spline")
297   return ArbEnergyH;                           << 310     SplineInterpolation();
298 }                                              << 311 }
299                                                << 312 
300 void G4SPSEneDistribution::UserEnergyHisto(con << 313 void G4SPSEneDistribution::LinearInterpolation() {
301 {                                              << 314   // Method to do linear interpolation on the Arb points
302   G4AutoLock l(&mutex);                        << 315   // Calculate equation of each line segment, max 1024.
303   G4double ehi = input.x(),                    << 316   // Calculate Area under each segment
304            val = input.y();                    << 317   // Create a cumulative array which is then normalised Arb_Cum_Area
305   if (verbosityLevel > 1)                      << 318 
306   {                                            << 319   G4double Area_seg[1024]; // Stores area under each segment
307     G4cout << "In UserEnergyHisto" << G4endl;  << 320   G4double sum = 0., Arb_x[1024], Arb_y[1024], Arb_Cum_Area[1024];
308     G4cout << " " << ehi << " " << val << G4en << 321   G4int i, count;
309   }                                            << 322   G4int maxi = ArbEnergyH.GetVectorLength();
310   UDefEnergyH.InsertValues(ehi, val);          << 323   for (i = 0; i < maxi; i++) {
311   Emax = ehi;                                  << 324     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(size_t(i));
312   threadLocalData.Get().Emax = Emax;           << 325     Arb_y[i] = ArbEnergyH(size_t(i));
313 }                                              << 326   }
314                                                << 327   // Points are now in x,y arrays. If the spectrum is integral it has to be
315 void G4SPSEneDistribution::ArbEnergyHisto(cons << 328   // made differential and if momentum it has to be made energy.
316 {                                              << 329   if (DiffSpec == false) {
317   G4AutoLock l(&mutex);                        << 330     // Converts integral point-wise spectra to Differential
318   G4double ehi = input.x(),                    << 331     for (count = 0; count < maxi - 1; count++) {
319            val = input.y();                    << 332       Arb_y[count] = (Arb_y[count] - Arb_y[count + 1])
320   if (verbosityLevel > 1)                      << 333           / (Arb_x[count + 1] - Arb_x[count]);
321   {                                            << 334     }
322     G4cout << "In ArbEnergyHisto" << G4endl;   << 335     maxi--;
323     G4cout << " " << ehi << " " << val << G4en << 336   }
324   }                                            << 337   //
325   ArbEnergyH.InsertValues(ehi, val);           << 338   if (EnergySpec == false) {
326 }                                              << 339     // change currently stored values (emin etc) which are actually momenta
327                                                << 340     // to energies.
328 void G4SPSEneDistribution::ArbEnergyHistoFile( << 341     if (particle_definition == NULL)
329 {                                              << 342       G4cout << "Error: particle not defined" << G4endl;
330   G4AutoLock l(&mutex);                        << 343     else {
331   std::ifstream infile(filename, std::ios::in) << 344       // Apply Energy**2 = p**2c**2 + m0**2c**4
332   if (!infile)                                 << 345       // p should be entered as E/c i.e. without the division by c
333   {                                            << 346       // being done - energy equivalent.
334     G4Exception("G4SPSEneDistribution::ArbEner << 347       G4double mass = particle_definition->GetPDGMass();
335                 FatalException, "Unable to ope << 348       // convert point to energy unit and its value to per energy unit
336   }                                            << 349       G4double total_energy;
337   G4double ehi, val;                           << 350       for (count = 0; count < maxi; count++) {
338   while (infile >> ehi >> val)                 << 351         total_energy = std::sqrt((Arb_x[count] * Arb_x[count]) + (mass
339   {                                            << 352             * mass)); // total energy
340     ArbEnergyH.InsertValues(ehi, val);         << 353 
341   }                                            << 354         Arb_y[count] = Arb_y[count] * Arb_x[count] / total_energy;
342 }                                              << 355         Arb_x[count] = total_energy - mass; // kinetic energy
343                                                << 356       }
344 void G4SPSEneDistribution::EpnEnergyHisto(cons << 357     }
345 {                                              << 358   }
346   G4AutoLock l(&mutex);                        << 359   //
347   G4double ehi = input.x(),                    << 360   i = 1;
348            val = input.y();                    << 361   Arb_grad[0] = 0.;
349   if (verbosityLevel > 1)                      << 362   Arb_cept[0] = 0.;
350   {                                            << 363   Area_seg[0] = 0.;
351     G4cout << "In EpnEnergyHisto" << G4endl;   << 364   Arb_Cum_Area[0] = 0.;
352     G4cout << " " << ehi << " " << val << G4en << 365   while (i < maxi) {
353   }                                            << 366     // calc gradient and intercept for each segment
354   EpnEnergyH.InsertValues(ehi, val);           << 367     Arb_grad[i] = (Arb_y[i] - Arb_y[i - 1]) / (Arb_x[i] - Arb_x[i - 1]);
355   Emax = ehi;                                  << 368     if (verbosityLevel == 2)
356   threadLocalData.Get().Emax = Emax;           << 369       G4cout << Arb_grad[i] << G4endl;
357   Epnflag = true;                              << 370     if (Arb_grad[i] > 0.) {
358 }                                              << 371       if (verbosityLevel == 2)
359                                                << 372         G4cout << "Arb_grad is positive" << G4endl;
360 void G4SPSEneDistribution::Calculate()         << 373       Arb_cept[i] = Arb_y[i] - (Arb_grad[i] * Arb_x[i]);
361 {                                              << 374     } else if (Arb_grad[i] < 0.) {
362   G4AutoLock l(&mutex);                        << 375       if (verbosityLevel == 2)
363   if (EnergyDisType == "Cdg")                  << 376         G4cout << "Arb_grad is negative" << G4endl;
364   {                                            << 377       Arb_cept[i] = Arb_y[i] + (-Arb_grad[i] * Arb_x[i]);
365     CalculateCdgSpectrum();                    << 378     } else {
366   }                                            << 379       if (verbosityLevel == 2)
367   else if (EnergyDisType == "Bbody")           << 380         G4cout << "Arb_grad is 0." << G4endl;
368   {                                            << 381       Arb_cept[i] = Arb_y[i];
369     if(!BBhistInit)                            << 382     }
370     {                                          << 383 
371       BBInitHists();                           << 384     Area_seg[i] = ((Arb_grad[i] / 2) * (Arb_x[i] * Arb_x[i] - Arb_x[i - 1]
372     }                                          << 385         * Arb_x[i - 1]) + Arb_cept[i] * (Arb_x[i] - Arb_x[i - 1]));
373     CalculateBbodySpectrum();                  << 386     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + Area_seg[i];
374   }                                            << 387     sum = sum + Area_seg[i];
375   else if (EnergyDisType == "CPow")            << 388     if (verbosityLevel == 2)
376   {                                            << 389       G4cout << Arb_x[i] << Arb_y[i] << Area_seg[i] << sum << Arb_grad[i]
377     if(!CPhistInit)                            << 390           << G4endl;
378     {                                          << 391     i++;
379       CPInitHists();                           << 392   }
380     }                                          << 393 
381     CalculateCPowSpectrum();                   << 394   i = 0;
382   }                                            << 395   while (i < maxi) {
383 }                                              << 396     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum; // normalisation
384                                                << 397     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_Cum_Area[i]);
385 void G4SPSEneDistribution::BBInitHists()  // M << 398     i++;
386 {                                              << 399   }
387   BBHist = new std::vector<G4double>(10001, 0. << 400 
388   Bbody_x = new std::vector<G4double>(10001, 0 << 401   // now scale the ArbEnergyH, needed by Probability()
389   BBhistInit = true;                           << 402   ArbEnergyH.ScaleVector(1., 1./sum);
390 }                                              << 403 
391                                                << 404   if (verbosityLevel >= 1) {
392 void G4SPSEneDistribution::CPInitHists()  // M << 405     G4cout << "Leaving LinearInterpolation" << G4endl;
393 {                                              << 406     ArbEnergyH.DumpValues();
394   CPHist = new std::vector<G4double>(10001, 0. << 407     IPDFArbEnergyH.DumpValues();
395   CP_x = new std::vector<G4double>(10001, 0.0) << 408   }
396   CPhistInit = true;                           << 409 }
397 }                                              << 410 
398                                                << 411 void G4SPSEneDistribution::LogInterpolation() {
399 void G4SPSEneDistribution::CalculateCdgSpectru << 412   // Interpolation based on Logarithmic equations
400 {                                              << 413   // Generate equations of line segments
401   // This uses the spectrum from the INTEGRAL  << 414   // y = Ax**alpha => log y = alpha*logx + logA
402   // to generate a Cosmic Diffuse X/gamma ray  << 415   // Find area under line segments
403                                                << 416   // create normalised, cumulative array Arb_Cum_Area
404   G4double pfact[2] = { 8.5, 112 };            << 417   G4double Area_seg[1024]; // Stores area under each segment
405   G4double spind[2] = { 1.4, 2.3 };            << 418   G4double sum = 0., Arb_x[1024], Arb_y[1024], Arb_Cum_Area[1024];
406   G4double ene_line[3] = { 1. * keV, 18. * keV << 419   G4int i, count;
407   G4int n_par;                                 << 420   G4int maxi = ArbEnergyH.GetVectorLength();
408                                                << 421   for (i = 0; i < maxi; i++) {
409   ene_line[0] = threadLocalData.Get().Emin;    << 422     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(size_t(i));
410   if (threadLocalData.Get().Emin < 18 * keV)   << 423     Arb_y[i] = ArbEnergyH(size_t(i));
411   {                                            << 424   }
412     n_par = 2;                                 << 425   // Points are now in x,y arrays. If the spectrum is integral it has to be
413     ene_line[2] = threadLocalData.Get().Emax;  << 426   // made differential and if momentum it has to be made energy.
414     if (threadLocalData.Get().Emax < 18 * keV) << 427   if (DiffSpec == false) {
415     {                                          << 428     // Converts integral point-wise spectra to Differential
416       n_par = 1;                               << 429     for (count = 0; count < maxi - 1; count++) {
417       ene_line[1] = threadLocalData.Get().Emax << 430       Arb_y[count] = (Arb_y[count] - Arb_y[count + 1])
418     }                                          << 431           / (Arb_x[count + 1] - Arb_x[count]);
419   }                                            << 432     }
420   else                                         << 433     maxi--;
421   {                                            << 434   }
422     n_par = 1;                                 << 435   //
423     pfact[0] = 112.;                           << 436   if (EnergySpec == false) {
424     spind[0] = 2.3;                            << 437     // change currently stored values (emin etc) which are actually momenta
425     ene_line[1] = threadLocalData.Get().Emax;  << 438     // to energies.
426   }                                            << 439     if (particle_definition == NULL)
427                                                << 440       G4cout << "Error: particle not defined" << G4endl;
428   // Create a cumulative histogram             << 441     else {
429   //                                           << 442       // Apply Energy**2 = p**2c**2 + m0**2c**4
430   CDGhist[0] = 0.;                             << 443       // p should be entered as E/c i.e. without the division by c
431   G4double omalpha;                            << 444       // being done - energy equivalent.
432   G4int i = 0;                                 << 445       G4double mass = particle_definition->GetPDGMass();
433   while (i < n_par)                            << 446       // convert point to energy unit and its value to per energy unit
434   {                                            << 447       G4double total_energy;
435     omalpha = 1. - spind[i];                   << 448       for (count = 0; count < maxi; count++) {
436     CDGhist[i + 1] = CDGhist[i] + (pfact[i] /  << 449         total_energy = std::sqrt((Arb_x[count] * Arb_x[count]) + (mass
437                                 * (std::pow(en << 450             * mass)); // total energy
438                                 - std::pow(ene << 451 
439     ++i;                                       << 452         Arb_y[count] = Arb_y[count] * Arb_x[count] / total_energy;
440   }                                            << 453         Arb_x[count] = total_energy - mass; // kinetic energy
441                                                << 454       }
442   // Normalise histo and divide by 1000 to mak << 455     }
443   //                                           << 456   }
444   i = 0;                                       << 457   //
445   while (i < n_par)                            << 458   i = 1;
446   {                                            << 459   Arb_alpha[0] = 0.;
447     CDGhist[i + 1] = CDGhist[i + 1] / CDGhist[ << 460   Arb_Const[0] = 0.;
448     ++i;                                       << 461   Area_seg[0] = 0.;
449   }                                            << 462   Arb_Cum_Area[0] = 0.;
450 }                                              << 463   if (Arb_x[0] <= 0. || Arb_y[0] <= 0.) {
451                                                << 464     G4cout << "You should not use log interpolation with points <= 0."
452 void G4SPSEneDistribution::CalculateBbodySpect << 465         << G4endl;
453 {                                              << 466     G4cout << "These will be changed to 1e-20, which may cause problems"
454   // Create bbody spectrum                     << 467         << G4endl;
455   // Proved very hard to integrate indefinitel << 468     if (Arb_x[0] <= 0.)
456   // User inputs emin, emax and T. These are u << 469       Arb_x[0] = 1e-20;
457   // bin histogram.                            << 470     if (Arb_y[0] <= 0.)
458   // Use photon density spectrum = 2 nu**2/c** << 471       Arb_y[0] = 1e-20;
459   // = 2 E**2/h**2c**2 times the exponential   << 472   }
460                                                << 473 
461   G4double erange = threadLocalData.Get().Emax << 474   G4double alp;
462   G4double steps = erange / 10000.;            << 475   while (i < maxi) {
463                                                << 476     // Incase points are negative or zero
464   const G4double k = 8.6181e-11; //Boltzmann c << 477     if (Arb_x[i] <= 0. || Arb_y[i] <= 0.) {
465   const G4double h = 4.1362e-21; // Plancks co << 478       G4cout << "You should not use log interpolation with points <= 0."
466   const G4double c = 3e8; // Speed of light    << 479           << G4endl;
467   const G4double h2 = h * h;                   << 480       G4cout
468   const G4double c2 = c * c;                   << 481           << "These will be changed to 1e-20, which may cause problems"
469   G4int count = 0;                             << 482           << G4endl;
470   G4double sum = 0.;                           << 483       if (Arb_x[i] <= 0.)
471   BBHist->at(0) = 0.;                          << 484         Arb_x[i] = 1e-20;
472                                                << 485       if (Arb_y[i] <= 0.)
473   while (count < 10000)                        << 486         Arb_y[i] = 1e-20;
474   {                                            << 487     }
475     Bbody_x->at(count) = threadLocalData.Get() << 488 
476     G4double Bbody_y = (2. * std::pow(Bbody_x- << 489     Arb_alpha[i] = (std::log10(Arb_y[i]) - std::log10(Arb_y[i - 1]))
477                      / (h2*c2*(std::exp(Bbody_ << 490         / (std::log10(Arb_x[i]) - std::log10(Arb_x[i - 1]));
478     sum = sum + Bbody_y;                       << 491     Arb_Const[i] = Arb_y[i] / (std::pow(Arb_x[i], Arb_alpha[i]));
479     BBHist->at(count + 1) = BBHist->at(count)  << 492     alp = Arb_alpha[i] + 1;
480     ++count;                                   << 493     if (alp == 0.) {
481   }                                            << 494       Area_seg[i] = Arb_Const[i] * (std::log(Arb_x[i]) - std::log(Arb_x[i - 1])); 
482                                                << 495     } else {
483   Bbody_x->at(10000) = threadLocalData.Get().E << 496       Area_seg[i] = (Arb_Const[i] / alp) * (std::pow(Arb_x[i], alp)
484                                                << 497         - std::pow(Arb_x[i - 1], alp));
485   // Normalise cumulative histo                << 498     }
486   //                                           << 499     sum = sum + Area_seg[i];
487   count = 0;                                   << 500     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + Area_seg[i];
488   while (count < 10001)                        << 501     if (verbosityLevel == 2)
489   {                                            << 502       G4cout << Arb_alpha[i] << Arb_Const[i] << Area_seg[i] << G4endl;
490     BBHist->at(count) = BBHist->at(count) / su << 503     i++;
491     ++count;                                   << 504   }
492   }                                            << 505 
493 }                                              << 506   i = 0;
494                                                << 507   while (i < maxi) {
495 void G4SPSEneDistribution::CalculateCPowSpectr << 508     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum;
496 {                                              << 509     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_Cum_Area[i]);
497   // Create cutoff power-law spectrum, x^a exp << 510     i++;
498   // The integral of this function is an incom << 511   }
499   // is only available in the Boost library.   << 512 
500   //                                           << 513   // now scale the ArbEnergyH, needed by Probability()
501   // User inputs are emin, emax and alpha and  << 514   ArbEnergyH.ScaleVector(1., 1./sum);
502   // create a 10,000 bin histogram.            << 515 
503                                                << 516   if (verbosityLevel >= 1)
504   G4double erange = threadLocalData.Get().Emax << 517     G4cout << "Leaving LogInterpolation " << G4endl;
505   G4double steps = erange / 10000.;            << 518 }
506   alpha = threadLocalData.Get().alpha ;        << 519 
507   Ezero = threadLocalData.Get().Ezero ;        << 520 void G4SPSEneDistribution::ExpInterpolation() {
508                                                << 521   // Interpolation based on Exponential equations
509   G4int count = 0;                             << 522   // Generate equations of line segments
510   G4double sum = 0.;                           << 523   // y = Ae**-(x/e0) => ln y = -x/e0 + lnA
511   CPHist->at(0) = 0.;                          << 524   // Find area under line segments
512                                                << 525   // create normalised, cumulative array Arb_Cum_Area
513   while (count < 10000)                        << 526   G4double Area_seg[1024]; // Stores area under each segment
514   {                                            << 527   G4double sum = 0., Arb_x[1024], Arb_y[1024], Arb_Cum_Area[1024];
515     CP_x->at(count) = threadLocalData.Get().Em << 528   G4int i, count;
516     G4double CP_y = std::pow(CP_x->at(count),  << 529   G4int maxi = ArbEnergyH.GetVectorLength();
517                   * std::exp(-CP_x->at(count)  << 530   for (i = 0; i < maxi; i++) {
518     sum = sum + CP_y;                          << 531     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(size_t(i));
519     CPHist->at(count + 1) = CPHist->at(count)  << 532     Arb_y[i] = ArbEnergyH(size_t(i));
520     ++count;                                   << 533   }
521   }                                            << 534   // Points are now in x,y arrays. If the spectrum is integral it has to be
522                                                << 535   // made differential and if momentum it has to be made energy.
523   CP_x->at(10000) = threadLocalData.Get().Emax << 536   if (DiffSpec == false) {
524                                                << 537     // Converts integral point-wise spectra to Differential
525   // Normalise cumulative histo                << 538     for (count = 0; count < maxi - 1; count++) {
526   //                                           << 539       Arb_y[count] = (Arb_y[count] - Arb_y[count + 1])
527   count = 0;                                   << 540           / (Arb_x[count + 1] - Arb_x[count]);
528   while (count < 10001)                        << 541     }
529   {                                            << 542     maxi--;
530     CPHist->at(count) = CPHist->at(count) / su << 543   }
531     ++count;                                   << 544   //
532   }                                            << 545   if (EnergySpec == false) {
533 }                                              << 546     // change currently stored values (emin etc) which are actually momenta
534                                                << 547     // to energies.
535 void G4SPSEneDistribution::InputEnergySpectra( << 548     if (particle_definition == NULL)
536 {                                              << 549       G4cout << "Error: particle not defined" << G4endl;
537   G4AutoLock l(&mutex);                        << 550     else {
538                                                << 551       // Apply Energy**2 = p**2c**2 + m0**2c**4
539   // Allows user to specify spectrum is moment << 552       // p should be entered as E/c i.e. without the division by c
540   //                                           << 553       // being done - energy equivalent.
541   EnergySpec = value; // false if momentum     << 554       G4double mass = particle_definition->GetPDGMass();
542   if (verbosityLevel > 1)                      << 555       // convert point to energy unit and its value to per energy unit
543   {                                            << 556       G4double total_energy;
544     G4cout << "EnergySpec has value " << Energ << 557       for (count = 0; count < maxi; count++) {
545   }                                            << 558         total_energy = std::sqrt((Arb_x[count] * Arb_x[count]) + (mass
546 }                                              << 559             * mass)); // total energy
547                                                << 560 
548 void G4SPSEneDistribution::InputDifferentialSp << 561         Arb_y[count] = Arb_y[count] * Arb_x[count] / total_energy;
549 {                                              << 562         Arb_x[count] = total_energy - mass; // kinetic energy
550   G4AutoLock l(&mutex);                        << 563       }
551                                                << 564     }
552   // Allows user to specify integral or differ << 565   }
553   //                                           << 566   //
554   DiffSpec = value; // true = differential, fa << 567   i = 1;
555   if (verbosityLevel > 1)                      << 568   Arb_ezero[0] = 0.;
556   {                                            << 569   Arb_Const[0] = 0.;
557     G4cout << "Diffspec has value " << DiffSpe << 570   Area_seg[0] = 0.;
558   }                                            << 571   Arb_Cum_Area[0] = 0.;
559 }                                              << 572   while (i < maxi) {
560                                                << 573     G4double test = std::log(Arb_y[i]) - std::log(Arb_y[i - 1]);
561 void G4SPSEneDistribution::ArbInterpolate(cons << 574     if (test > 0. || test < 0.) {
562 {                                              << 575       Arb_ezero[i] = -(Arb_x[i] - Arb_x[i - 1]) / (std::log(Arb_y[i])
563   G4AutoLock l(&mutex);                        << 576           - std::log(Arb_y[i - 1]));
564                                                << 577       Arb_Const[i] = Arb_y[i] / (std::exp(-Arb_x[i] / Arb_ezero[i]));
565   IntType = IType;                             << 578       Area_seg[i] = -(Arb_Const[i] * Arb_ezero[i]) * (std::exp(-Arb_x[i]
566   ArbEmax = ArbEnergyH.GetMaxEnergy();         << 579           / Arb_ezero[i]) - std::exp(-Arb_x[i - 1] / Arb_ezero[i]));
567   ArbEmin = ArbEnergyH.Energy(0);              << 580     } else {
568                                                << 581       G4cout << "Flat line segment: problem" << G4endl;
569   // Now interpolate points                    << 582       Arb_ezero[i] = 0.;
570                                                << 583       Arb_Const[i] = 0.;
571   if (IntType == "Lin") LinearInterpolation(); << 584       Area_seg[i] = 0.;
572   if (IntType == "Log") LogInterpolation();    << 585     }
573   if (IntType == "Exp") ExpInterpolation();    << 586     sum = sum + Area_seg[i];
574   if (IntType == "Spline") SplineInterpolation << 587     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + Area_seg[i];
575 }                                              << 588     if (verbosityLevel == 2)
576                                                << 589       G4cout << Arb_ezero[i] << Arb_Const[i] << Area_seg[i] << G4endl;
577 void G4SPSEneDistribution::LinearInterpolation << 590     i++;
578 {                                              << 591   }
579   // Method to do linear interpolation on the  << 592 
580   // Calculate equation of each line segment,  << 593   i = 0;
581   // Calculate Area under each segment         << 594   while (i < maxi) {
582   // Create a cumulative array which is then n << 595     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum;
583                                                << 596     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_Cum_Area[i]);
584   G4double Area_seg[1024]; // Stores area unde << 597     i++;
585   G4double sum = 0., Arb_x[1024]={0.}, Arb_y[1 << 598   }
586   std::size_t i, count;                        << 599 
587   std::size_t maxi = ArbEnergyH.GetVectorLengt << 600   // now scale the ArbEnergyH, needed by Probability()
588   for (i = 0; i < maxi; ++i)                   << 601   ArbEnergyH.ScaleVector(1., 1./sum);
589   {                                            << 602 
590     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(i); << 603   if (verbosityLevel >= 1)
591     Arb_y[i] = ArbEnergyH(i);                  << 604     G4cout << "Leaving ExpInterpolation " << G4endl;
592   }                                            << 605 }
593                                                << 606 
594   // Points are now in x,y arrays. If the spec << 607 void G4SPSEneDistribution::SplineInterpolation() {
595   // made differential and if momentum it has  << 608   // Interpolation using Splines.
596                                                << 609   // Create Normalised arrays, make x 0->1 and y hold
597   if (!DiffSpec)                               << 610   // the function (Energy)
598   {                                            << 611         // 
599     // Converts integral point-wise spectra to << 612         // Current method based on the above will not work in all cases. 
600     //                                         << 613         // new method is implemented below.
601     for (count = 0; count < maxi-1; ++count)   << 
602     {                                          << 
603       Arb_y[count] = (Arb_y[count] - Arb_y[cou << 
604                    / (Arb_x[count + 1] - Arb_x << 
605     }                                          << 
606     --maxi;                                    << 
607   }                                            << 
608                                                << 
609   if (!EnergySpec)                             << 
610   {                                            << 
611     // change currently stored values (emin et << 
612     // to energies                             << 
613     //                                         << 
614     G4ParticleDefinition* pdef = threadLocalDa << 
615     if (pdef == nullptr)                       << 
616     {                                          << 
617       G4Exception("G4SPSEneDistribution::Linea << 
618                   "Event0302", FatalException, << 
619                   "Error: particle not defined << 
620     }                                          << 
621     else                                       << 
622     {                                          << 
623       // Apply Energy**2 = p**2c**2 + m0**2c** << 
624       // p should be entered as E/c i.e. witho << 
625       // being done - energy equivalent        << 
626                                                << 
627       G4double mass = pdef->GetPDGMass();      << 
628                                                << 
629       // Convert point to energy unit and its  << 
630       //                                       << 
631       G4double total_energy;                   << 
632       for (count = 0; count < maxi; ++count)   << 
633       {                                        << 
634         total_energy = std::sqrt((Arb_x[count] << 
635                      + (mass * mass)); // tota << 
636         Arb_y[count] = Arb_y[count] * Arb_x[co << 
637         Arb_x[count] = total_energy - mass; // << 
638       }                                        << 
639     }                                          << 
640   }                                            << 
641                                                << 
642   i = 1;                                       << 
643                                                << 
644   Arb_grad = new G4double [1024];              << 
645   Arb_cept = new G4double [1024];              << 
646   Arb_grad_cept_flag = true;                   << 
647                                                << 
648   Arb_grad[0] = 0.;                            << 
649   Arb_cept[0] = 0.;                            << 
650   Area_seg[0] = 0.;                            << 
651   Arb_Cum_Area[0] = 0.;                        << 
652   while (i < maxi)                             << 
653   {                                            << 
654     // calculate gradient and intercept for ea << 
655     //                                         << 
656     Arb_grad[i] = (Arb_y[i] - Arb_y[i - 1]) /  << 
657     if (verbosityLevel == 2)                   << 
658     {                                          << 
659       G4cout << Arb_grad[i] << G4endl;         << 
660     }                                          << 
661     if (Arb_grad[i] > 0.)                      << 
662     {                                          << 
663       if (verbosityLevel == 2)                 << 
664       {                                        << 
665          G4cout << "Arb_grad is positive" << G << 
666       }                                        << 
667       Arb_cept[i] = Arb_y[i] - (Arb_grad[i] *  << 
668     }                                          << 
669     else if (Arb_grad[i] < 0.)                 << 
670     {                                          << 
671       if (verbosityLevel == 2)                 << 
672       {                                        << 
673         G4cout << "Arb_grad is negative" << G4 << 
674       }                                        << 
675       Arb_cept[i] = Arb_y[i] + (-Arb_grad[i] * << 
676     }                                          << 
677     else                                       << 
678     {                                          << 
679       if (verbosityLevel == 2)                 << 
680       {                                        << 
681         G4cout << "Arb_grad is 0." << G4endl;  << 
682       }                                        << 
683       Arb_cept[i] = Arb_y[i];                  << 
684     }                                          << 
685                                                << 
686     Area_seg[i] = ((Arb_grad[i] / 2)           << 
687                 * (Arb_x[i] * Arb_x[i] - Arb_x << 
688                 + Arb_cept[i] * (Arb_x[i] - Ar << 
689     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + Ar << 
690     sum = sum + Area_seg[i];                   << 
691     if (verbosityLevel == 2)                   << 
692     {                                          << 
693       G4cout << Arb_x[i] << Arb_y[i] << Area_s << 
694              << Arb_grad[i] << G4endl;         << 
695     }                                          << 
696     ++i;                                       << 
697   }                                            << 
698                                                << 
699   i = 0;                                       << 
700   while (i < maxi)                             << 
701   {                                            << 
702     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum; / << 
703     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_ << 
704     ++i;                                       << 
705   }                                            << 
706                                                << 
707   // now scale the ArbEnergyH, needed by Proba << 
708   //                                           << 
709   ArbEnergyH.ScaleVector(1., 1./sum);          << 
710                                                << 
711   if (verbosityLevel >= 1)                     << 
712   {                                            << 
713     G4cout << "Leaving LinearInterpolation" << << 
714     ArbEnergyH.DumpValues();                   << 
715     IPDFArbEnergyH.DumpValues();               << 
716   }                                            << 
717 }                                              << 
718                                                << 
719 void G4SPSEneDistribution::LogInterpolation()  << 
720 {                                              << 
721   // Interpolation based on Logarithmic equati << 
722   // Generate equations of line segments       << 
723   // y = Ax**alpha => log y = alpha*logx + log << 
724   // Find area under line segments             << 
725   // Create normalised, cumulative array Arb_C << 
726                                                << 
727   G4double Area_seg[1024]; // Stores area unde << 
728   G4double sum = 0., Arb_x[1024]={0.}, Arb_y[1 << 
729   std::size_t i, count;                        << 
730   std::size_t maxi = ArbEnergyH.GetVectorLengt << 
731   for (i = 0; i < maxi; ++i)                   << 
732   {                                            << 
733     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(i); << 
734     Arb_y[i] = ArbEnergyH(i);                  << 
735   }                                            << 
736                                                << 
737   // Points are now in x,y arrays. If the spec << 
738   // made differential and if momentum it has  << 
739                                                << 
740   if (!DiffSpec)                               << 
741   {                                            << 
742     // Converts integral point-wise spectra to << 
743     //                                         << 
744     for (count = 0; count < maxi-1; ++count)   << 
745     {                                          << 
746       Arb_y[count] = (Arb_y[count] - Arb_y[cou << 
747                    / (Arb_x[count + 1] - Arb_x << 
748     }                                          << 
749     --maxi;                                    << 
750   }                                            << 
751                                                << 
752   if (!EnergySpec)                             << 
753   {                                            << 
754     // Change currently stored values (emin et << 
755     // to energies                             << 
756                                                << 
757     G4ParticleDefinition* pdef = threadLocalDa << 
758     if (pdef == nullptr)                       << 
759     {                                          << 
760       G4Exception("G4SPSEneDistribution::LogIn << 
761                   "Event0302", FatalException, << 
762                   "Error: particle not defined << 
763     }                                          << 
764     else                                       << 
765     {                                          << 
766       // Apply Energy**2 = p**2c**2 + m0**2c** << 
767       // p should be entered as E/c i.e. witho << 
768       // being done - energy equivalent        << 
769                                                << 
770       G4double mass = pdef->GetPDGMass();      << 
771                                                << 
772       // Convert point to energy unit and its  << 
773       //                                       << 
774       G4double total_energy;                   << 
775       for (count = 0; count < maxi; ++count)   << 
776       {                                        << 
777         total_energy = std::sqrt((Arb_x[count] << 
778         Arb_y[count] = Arb_y[count] * Arb_x[co << 
779         Arb_x[count] = total_energy - mass; // << 
780       }                                        << 
781     }                                          << 
782   }                                            << 
783                                                << 
784   i = 1;                                       << 
785                                                << 
786   if ( Arb_ezero != nullptr ) { delete [] Arb_ << 
787   if ( Arb_Const != nullptr ) { delete [] Arb_ << 
788   Arb_alpha = new G4double [1024];             << 
789   Arb_Const = new G4double [1024];             << 
790   Arb_alpha_Const_flag = true;                 << 
791                                                << 
792   Arb_alpha[0] = 0.;                           << 
793   Arb_Const[0] = 0.;                           << 
794   Area_seg[0] = 0.;                            << 
795   Arb_Cum_Area[0] = 0.;                        << 
796   if (Arb_x[0] <= 0. || Arb_y[0] <= 0.)        << 
797   {                                            << 
798     G4cout << "You should not use log interpol << 
799            << G4endl;                          << 
800     G4cout << "These will be changed to 1e-20, << 
801            << G4endl;                          << 
802     if (Arb_x[0] <= 0.)                        << 
803     {                                          << 
804       Arb_x[0] = 1e-20;                        << 
805     }                                          << 
806     if (Arb_y[0] <= 0.)                        << 
807     {                                          << 
808       Arb_y[0] = 1e-20;                        << 
809     }                                          << 
810   }                                            << 
811                                                << 
812   G4double alp;                                << 
813   while (i < maxi)                             << 
814   {                                            << 
815     // In case points are negative or zero     << 
816     //                                         << 
817     if (Arb_x[i] <= 0. || Arb_y[i] <= 0.)      << 
818     {                                          << 
819       G4cout << "You should not use log interp << 
820              << G4endl;                        << 
821       G4cout << "These will be changed to 1e-2 << 
822              << G4endl;                        << 
823       if (Arb_x[i] <= 0.)                      << 
824       {                                        << 
825         Arb_x[i] = 1e-20;                      << 
826       }                                        << 
827       if (Arb_y[i] <= 0.)                      << 
828       {                                        << 
829         Arb_y[i] = 1e-20;                      << 
830       }                                        << 
831     }                                          << 
832                                                << 
833     Arb_alpha[i] = (std::log10(Arb_y[i]) - std << 
834                  / (std::log10(Arb_x[i]) - std << 
835     Arb_Const[i] = Arb_y[i] / (std::pow(Arb_x[ << 
836     alp = Arb_alpha[i] + 1;                    << 
837     if (alp == 0.)                             << 
838     {                                          << 
839       Area_seg[i] = Arb_Const[i]               << 
840                   * (std::log(Arb_x[i]) - std: << 
841     }                                          << 
842     else                                       << 
843     {                                          << 
844       Area_seg[i] = (Arb_Const[i] / alp)       << 
845                   * (std::pow(Arb_x[i], alp) - << 
846     }                                          << 
847     sum = sum + Area_seg[i];                   << 
848     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + Ar << 
849     if (verbosityLevel == 2)                   << 
850     {                                          << 
851       G4cout << Arb_alpha[i] << Arb_Const[i] < << 
852     }                                          << 
853     ++i;                                       << 
854   }                                            << 
855                                                << 
856   i = 0;                                       << 
857   while (i < maxi)                             << 
858   {                                            << 
859     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum;   << 
860     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_ << 
861     ++i;                                       << 
862   }                                            << 
863                                                << 
864   // Now scale the ArbEnergyH, needed by Proba << 
865   //                                           << 
866   ArbEnergyH.ScaleVector(1., 1./sum);          << 
867                                                << 
868   if (verbosityLevel >= 1)                     << 
869   {                                            << 
870     G4cout << "Leaving LogInterpolation " << G << 
871   }                                            << 
872 }                                              << 
873                                                << 
874 void G4SPSEneDistribution::ExpInterpolation()  << 
875 {                                              << 
876   // Interpolation based on Exponential equati << 
877   // Generate equations of line segments       << 
878   // y = Ae**-(x/e0) => ln y = -x/e0 + lnA     << 
879   // Find area under line segments             << 
880   // Create normalised, cumulative array Arb_C << 
881                                                << 
882   G4double Area_seg[1024]; // Stores area unde << 
883   G4double sum = 0., Arb_x[1024]={0.}, Arb_y[1 << 
884   std::size_t i, count;                        << 
885   std::size_t maxi = ArbEnergyH.GetVectorLengt << 
886   for (i = 0; i < maxi; ++i)                   << 
887   {                                            << 
888     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(i); << 
889     Arb_y[i] = ArbEnergyH(i);                  << 
890   }                                            << 
891                                                << 
892   // Points are now in x,y arrays. If the spec << 
893   // made differential and if momentum it has  << 
894                                                << 
895   if (!DiffSpec)                               << 
896   {                                            << 
897     // Converts integral point-wise spectra to << 
898     //                                         << 
899     for (count = 0; count < maxi - 1; ++count) << 
900     {                                          << 
901       Arb_y[count] = (Arb_y[count] - Arb_y[cou << 
902                    / (Arb_x[count + 1] - Arb_x << 
903     }                                          << 
904     --maxi;                                    << 
905   }                                            << 
906                                                << 
907   if (!EnergySpec)                             << 
908   {                                            << 
909     // Change currently stored values (emin et << 
910     // to energies                             << 
911     //                                         << 
912     G4ParticleDefinition* pdef = threadLocalDa << 
913     if (pdef == nullptr)                       << 
914     {                                          << 
915       G4Exception("G4SPSEneDistribution::ExpIn << 
916                   "Event0302", FatalException, << 
917                   "Error: particle not defined << 
918     }                                          << 
919     else                                       << 
920     {                                          << 
921       // Apply Energy**2 = p**2c**2 + m0**2c** << 
922       // p should be entered as E/c i.e. witho << 
923       // being done - energy equivalent        << 
924                                                << 
925       G4double mass = pdef->GetPDGMass();      << 
926                                                << 
927       // Convert point to energy unit and its  << 
928       //                                       << 
929       G4double total_energy;                   << 
930       for (count = 0; count < maxi; ++count)   << 
931       {                                        << 
932         total_energy = std::sqrt((Arb_x[count] << 
933         Arb_y[count] = Arb_y[count] * Arb_x[co << 
934         Arb_x[count] = total_energy - mass; // << 
935       }                                        << 
936     }                                          << 
937   }                                            << 
938                                                << 
939   i = 1;                                       << 
940                                                << 
941   if ( Arb_ezero != nullptr ) { delete[] Arb_e << 
942   if ( Arb_Const != nullptr ) { delete[] Arb_C << 
943   Arb_ezero = new G4double [1024];             << 
944   Arb_Const = new G4double [1024];             << 
945   Arb_ezero_flag = true;                       << 
946                                                << 
947   Arb_ezero[0] = 0.;                           << 
948   Arb_Const[0] = 0.;                           << 
949   Area_seg[0] = 0.;                            << 
950   Arb_Cum_Area[0] = 0.;                        << 
951   while (i < maxi)                             << 
952   {                                            << 
953     G4double test = std::log(Arb_y[i]) - std:: << 
954     if (test > 0. || test < 0.)                << 
955     {                                          << 
956       Arb_ezero[i] = -(Arb_x[i] - Arb_x[i - 1] << 
957                    / (std::log(Arb_y[i]) - std << 
958       Arb_Const[i] = Arb_y[i] / (std::exp(-Arb << 
959       Area_seg[i] = -(Arb_Const[i] * Arb_ezero << 
960                   * (std::exp(-Arb_x[i] / Arb_ << 
961                    - std::exp(-Arb_x[i - 1] /  << 
962     }                                          << 
963     else                                       << 
964     {                                          << 
965       G4Exception("G4SPSEneDistribution::ExpIn << 
966                   "Event0302", JustWarning,    << 
967                   "Flat line segment: problem, << 
968       G4cout << "Flat line segment: problem" < << 
969       Arb_ezero[i] = 0.;                       << 
970       Arb_Const[i] = 0.;                       << 
971       Area_seg[i] = 0.;                        << 
972     }                                          << 
973     sum = sum + Area_seg[i];                   << 
974     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + Ar << 
975     if (verbosityLevel == 2)                   << 
976     {                                          << 
977       G4cout << Arb_ezero[i] << Arb_Const[i] < << 
978     }                                          << 
979     ++i;                                       << 
980   }                                            << 
981                                                << 
982   i = 0;                                       << 
983   while (i < maxi)                             << 
984   {                                            << 
985     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum;   << 
986     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_ << 
987     ++i;                                       << 
988   }                                            << 
989                                                << 
990   // Now scale the ArbEnergyH, needed by Proba << 
991   //                                           << 
992   ArbEnergyH.ScaleVector(1., 1./sum);          << 
993                                                << 
994   if (verbosityLevel >= 1)                     << 
995   {                                            << 
996     G4cout << "Leaving ExpInterpolation " << G << 
997   }                                            << 
998 }                                              << 
999                                                << 
1000 void G4SPSEneDistribution::SplineInterpolatio << 
1001 {                                             << 
1002   // Interpolation using Splines.             << 
1003   // Create Normalised arrays, make x 0->1 an << 
1004   //                                          << 
1005   // Current method based on the above will n << 
1006   // New method is implemented below.         << 
1007                                                  614   
1008   G4double sum, Arb_x[1024]={0.}, Arb_y[1024] << 615   G4double sum, Arb_x[1024], Arb_y[1024], Arb_Cum_Area[1024];
1009   std::size_t i, count;                       << 616   G4int i, count;
1010   std::size_t maxi = ArbEnergyH.GetVectorLeng << 
1011                                               << 
1012   for (i = 0; i < maxi; ++i)                  << 
1013   {                                           << 
1014     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(i) << 
1015     Arb_y[i] = ArbEnergyH(i);                 << 
1016   }                                           << 
1017                                               << 
1018   // Points are now in x,y arrays. If the spe << 
1019   // made differential and if momentum it has << 
1020                                               << 
1021   if (!DiffSpec)                              << 
1022   {                                           << 
1023     // Converts integral point-wise spectra t << 
1024     //                                        << 
1025     for (count = 0; count < maxi - 1; ++count << 
1026     {                                         << 
1027       Arb_y[count] = (Arb_y[count] - Arb_y[co << 
1028                    / (Arb_x[count + 1] - Arb_ << 
1029     }                                         << 
1030     --maxi;                                   << 
1031   }                                           << 
1032                                               << 
1033   if (!EnergySpec)                            << 
1034   {                                           << 
1035     // Change currently stored values (emin e << 
1036     // to energies                            << 
1037     //                                        << 
1038     G4ParticleDefinition* pdef = threadLocalD << 
1039     if (pdef == nullptr)                      << 
1040     {                                         << 
1041       G4Exception("G4SPSEneDistribution::Spli << 
1042                   "Event0302", FatalException << 
1043                   "Error: particle not define << 
1044     }                                         << 
1045     else                                      << 
1046     {                                         << 
1047       // Apply Energy**2 = p**2c**2 + m0**2c* << 
1048       // p should be entered as E/c i.e. with << 
1049       // being done - energy equivalent       << 
1050                                               << 
1051       G4double mass = pdef->GetPDGMass();     << 
1052                                               << 
1053       // Convert point to energy unit and its << 
1054       //                                      << 
1055       G4double total_energy;                  << 
1056       for (count = 0; count < maxi; ++count)  << 
1057       {                                       << 
1058         total_energy = std::sqrt((Arb_x[count << 
1059         Arb_y[count] = Arb_y[count] * Arb_x[c << 
1060         Arb_x[count] = total_energy - mass; / << 
1061       }                                       << 
1062     }                                         << 
1063   }                                           << 
1064                                               << 
1065   i = 1;                                      << 
1066   Arb_Cum_Area[0] = 0.;                       << 
1067   sum = 0.;                                   << 
1068   Splinetemp = new G4DataInterpolation(Arb_x, << 
1069   G4double ei[101], prob[101];                << 
1070   for (auto & it : SplineInt)                 << 
1071   {                                           << 
1072     delete it;                                << 
1073     it = nullptr;                             << 
1074   }                                           << 
1075   SplineInt.clear();                          << 
1076   SplineInt.resize(1024,nullptr);             << 
1077   while (i < maxi)                            << 
1078   {                                           << 
1079     // 100 step per segment for the integrati << 
1080                                               << 
1081     G4double de = (Arb_x[i] - Arb_x[i - 1])/1 << 
1082     G4double area = 0.;                       << 
1083                                               << 
1084     for (count = 0; count < 101; ++count)     << 
1085     {                                         << 
1086       ei[count] = Arb_x[i - 1] + de*count ;   << 
1087       prob[count] =  Splinetemp->CubicSplineI << 
1088       if (prob[count] < 0.)                   << 
1089       {                                       << 
1090         G4ExceptionDescription ED;            << 
1091         ED << "Warning: G4DataInterpolation r << 
1092            << " " << ei[count] << G4endl;     << 
1093         G4Exception("G4SPSEneDistribution::Sp << 
1094                     FatalException, ED);      << 
1095       }                                       << 
1096       area += prob[count]*de;                 << 
1097     }                                         << 
1098     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + a << 
1099     sum += area;                              << 
1100                                               << 
1101     prob[0] = prob[0]/(area/de);              << 
1102     for (count = 1; count < 100; ++count)     << 
1103     {                                         << 
1104       prob[count] = prob[count-1] + prob[coun << 
1105     }                                         << 
1106                                               << 
1107     SplineInt[i] = new G4DataInterpolation(pr << 
1108                                               << 
1109     // NOTE: i starts from 1!                 << 
1110     //                                        << 
1111     ++i;                                      << 
1112   }                                           << 
1113                                               << 
1114   i = 0;                                      << 
1115   while (i < maxi)                            << 
1116   {                                           << 
1117     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum;  << 
1118     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb << 
1119     ++i;                                      << 
1120   }                                           << 
1121                                               << 
1122   // Now scale the ArbEnergyH, needed by Prob << 
1123   //                                          << 
1124   ArbEnergyH.ScaleVector(1., 1./sum);         << 
1125                                               << 
1126   if (verbosityLevel > 0)                     << 
1127   {                                           << 
1128     G4cout << "Leaving SplineInterpolation "  << 
1129   }                                           << 
1130 }                                             << 
1131                                               << 
1132 void G4SPSEneDistribution::GenerateMonoEnerge << 
1133 {                                             << 
1134   // Method to generate MonoEnergetic particl << 
1135                                               << 
1136   threadLocalData.Get().particle_energy = Mon << 
1137 }                                             << 
1138                                                  617 
1139 void G4SPSEneDistribution::GenerateGaussEnerg << 618   G4int maxi = ArbEnergyH.GetVectorLength();
1140 {                                             << 619   for (i = 0; i < maxi; i++) {
1141   // Method to generate Gaussian particles    << 620     Arb_x[i] = ArbEnergyH.GetLowEdgeEnergy(size_t(i));
1142                                               << 621     Arb_y[i] = ArbEnergyH(size_t(i));
1143   G4double ene = G4RandGauss::shoot(MonoEnerg << 622   }
1144   if (ene < 0) ene = 0.;                      << 623   // Points are now in x,y arrays. If the spectrum is integral it has to be
1145   threadLocalData.Get().particle_energy = ene << 624   // made differential and if momentum it has to be made energy.
                                                   >> 625   if (DiffSpec == false) {
                                                   >> 626     // Converts integral point-wise spectra to Differential
                                                   >> 627     for (count = 0; count < maxi - 1; count++) {
                                                   >> 628       Arb_y[count] = (Arb_y[count] - Arb_y[count + 1])
                                                   >> 629           / (Arb_x[count + 1] - Arb_x[count]);
                                                   >> 630     }
                                                   >> 631     maxi--;
                                                   >> 632   }
                                                   >> 633   //
                                                   >> 634   if (EnergySpec == false) {
                                                   >> 635     // change currently stored values (emin etc) which are actually momenta
                                                   >> 636     // to energies.
                                                   >> 637     if (particle_definition == NULL)
                                                   >> 638                     G4Exception("G4SPSEneDistribution::SplineInterpolation",
                                                   >> 639                                 "Event0302",FatalException,
                                                   >> 640               "Error: particle not defined");
                                                   >> 641     else {
                                                   >> 642       // Apply Energy**2 = p**2c**2 + m0**2c**4
                                                   >> 643       // p should be entered as E/c i.e. without the division by c
                                                   >> 644       // being done - energy equivalent.
                                                   >> 645       G4double mass = particle_definition->GetPDGMass();
                                                   >> 646       // convert point to energy unit and its value to per energy unit
                                                   >> 647       G4double total_energy;
                                                   >> 648       for (count = 0; count < maxi; count++) {
                                                   >> 649         total_energy = std::sqrt((Arb_x[count] * Arb_x[count]) + (mass
                                                   >> 650             * mass)); // total energy
                                                   >> 651 
                                                   >> 652         Arb_y[count] = Arb_y[count] * Arb_x[count] / total_energy;
                                                   >> 653         Arb_x[count] = total_energy - mass; // kinetic energy
                                                   >> 654       }
                                                   >> 655     }
                                                   >> 656   }
                                                   >> 657 
                                                   >> 658   //
                                                   >> 659   i = 1;
                                                   >> 660   Arb_Cum_Area[0] = 0.;
                                                   >> 661   sum = 0.;
                                                   >> 662   Splinetemp = new G4DataInterpolation(Arb_x, Arb_y, maxi, 0., 0.);
                                                   >> 663   G4double ei[101],prob[101];
                                                   >> 664   while (i < maxi) {
                                                   >> 665     // 100 step per segment for the integration of area
                                                   >> 666     G4double de = (Arb_x[i] - Arb_x[i - 1])/100.;
                                                   >> 667     G4double area = 0.;
                                                   >> 668 
                                                   >> 669     for (count = 0; count < 101; count++) {
                                                   >> 670       ei[count] = Arb_x[i - 1] + de*count ;
                                                   >> 671       prob[count] =  Splinetemp->CubicSplineInterpolation(ei[count]);
                                                   >> 672       if (prob[count] < 0.) { 
                                                   >> 673               G4ExceptionDescription ED;
                                                   >> 674         ED << "Warning: G4DataInterpolation returns value < 0  " << prob[count] <<" "<<ei[count]<< G4endl;
                                                   >> 675               G4Exception("G4SPSEneDistribution::SplineInterpolation","Event0303",
                                                   >> 676               FatalException,ED);
                                                   >> 677       }
                                                   >> 678       area += prob[count]*de;
                                                   >> 679     }
                                                   >> 680     Arb_Cum_Area[i] = Arb_Cum_Area[i - 1] + area;
                                                   >> 681     sum += area; 
                                                   >> 682 
                                                   >> 683     prob[0] = prob[0]/(area/de);
                                                   >> 684     for (count = 1; count < 100; count++)
                                                   >> 685       prob[count] = prob[count-1] + prob[count]/(area/de);
                                                   >> 686 
                                                   >> 687     SplineInt[i] = new G4DataInterpolation(prob, ei, 101, 0., 0.);
                                                   >> 688     // note i start from 1!
                                                   >> 689     i++;
                                                   >> 690   }
                                                   >> 691   i = 0;
                                                   >> 692   while (i < maxi) {
                                                   >> 693     Arb_Cum_Area[i] = Arb_Cum_Area[i] / sum; // normalisation
                                                   >> 694     IPDFArbEnergyH.InsertValues(Arb_x[i], Arb_Cum_Area[i]);
                                                   >> 695     i++;
                                                   >> 696   }
                                                   >> 697   // now scale the ArbEnergyH, needed by Probability()
                                                   >> 698   ArbEnergyH.ScaleVector(1., 1./sum);
                                                   >> 699 
                                                   >> 700   if (verbosityLevel > 0)
                                                   >> 701     G4cout << "Leaving SplineInterpolation " << G4endl;
                                                   >> 702 }
                                                   >> 703 
                                                   >> 704 void G4SPSEneDistribution::GenerateMonoEnergetic() {
                                                   >> 705   // Method to generate MonoEnergetic particles.
                                                   >> 706   particle_energy = MonoEnergy;
                                                   >> 707 }
                                                   >> 708 
                                                   >> 709 void G4SPSEneDistribution::GenerateGaussEnergies() {
                                                   >> 710   // Method to generate Gaussian particles.
                                                   >> 711   particle_energy = G4RandGauss::shoot(MonoEnergy,SE);
                                                   >> 712   if (particle_energy < 0) particle_energy = 0.;
                                                   >> 713 }
                                                   >> 714 
                                                   >> 715 void G4SPSEneDistribution::GenerateLinearEnergies(G4bool bArb = false) {
                                                   >> 716   G4double rndm;
                                                   >> 717   G4double emaxsq = std::pow(Emax, 2.); //Emax squared
                                                   >> 718   G4double eminsq = std::pow(Emin, 2.); //Emin squared
                                                   >> 719   G4double intersq = std::pow(cept, 2.); //cept squared
                                                   >> 720 
                                                   >> 721   if (bArb)
                                                   >> 722     rndm = G4UniformRand();
                                                   >> 723   else
                                                   >> 724     rndm = eneRndm->GenRandEnergy();
                                                   >> 725 
                                                   >> 726   G4double bracket = ((grad / 2.) * (emaxsq - eminsq) + cept * (Emax - Emin));
                                                   >> 727   bracket = bracket * rndm;
                                                   >> 728   bracket = bracket + (grad / 2.) * eminsq + cept * Emin;
                                                   >> 729   // Now have a quad of form m/2 E**2 + cE - bracket = 0
                                                   >> 730   bracket = -bracket;
                                                   >> 731   //  G4cout << "BRACKET" << bracket << G4endl;
                                                   >> 732   if (grad != 0.) {
                                                   >> 733     G4double sqbrack = (intersq - 4 * (grad / 2.) * (bracket));
                                                   >> 734     //      G4cout << "SQBRACK" << sqbrack << G4endl;
                                                   >> 735     sqbrack = std::sqrt(sqbrack);
                                                   >> 736     G4double root1 = -cept + sqbrack;
                                                   >> 737     root1 = root1 / (2. * (grad / 2.));
                                                   >> 738 
                                                   >> 739     G4double root2 = -cept - sqbrack;
                                                   >> 740     root2 = root2 / (2. * (grad / 2.));
                                                   >> 741 
                                                   >> 742     //      G4cout << root1 << " roots " << root2 << G4endl;
                                                   >> 743 
                                                   >> 744     if (root1 > Emin && root1 < Emax)
                                                   >> 745       particle_energy = root1;
                                                   >> 746     if (root2 > Emin && root2 < Emax)
                                                   >> 747       particle_energy = root2;
                                                   >> 748   } else if (grad == 0.)
                                                   >> 749     // have equation of form cE - bracket =0
                                                   >> 750     particle_energy = bracket / cept;
                                                   >> 751 
                                                   >> 752   if (particle_energy < 0.)
                                                   >> 753     particle_energy = -particle_energy;
                                                   >> 754 
                                                   >> 755   if (verbosityLevel >= 1)
                                                   >> 756     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 757 }
                                                   >> 758 
                                                   >> 759 void G4SPSEneDistribution::GeneratePowEnergies(G4bool bArb = false) {
                                                   >> 760   // Method to generate particle energies distributed as
                                                   >> 761   // a power-law
                                                   >> 762 
                                                   >> 763   G4double rndm;
                                                   >> 764   G4double emina, emaxa;
                                                   >> 765 
                                                   >> 766   emina = std::pow(Emin, alpha + 1);
                                                   >> 767   emaxa = std::pow(Emax, alpha + 1);
                                                   >> 768 
                                                   >> 769   if (bArb)
                                                   >> 770     rndm = G4UniformRand();
                                                   >> 771   else
                                                   >> 772     rndm = eneRndm->GenRandEnergy();
                                                   >> 773 
                                                   >> 774   if (alpha != -1.) {
                                                   >> 775     particle_energy = ((rndm * (emaxa - emina)) + emina);
                                                   >> 776     particle_energy = std::pow(particle_energy, (1. / (alpha + 1.)));
                                                   >> 777   } else {
                                                   >> 778     particle_energy = (std::log(Emin) + rndm * (std::log(Emax) - std::log(
                                                   >> 779         Emin)));
                                                   >> 780     particle_energy = std::exp(particle_energy);
                                                   >> 781   }
                                                   >> 782   if (verbosityLevel >= 1)
                                                   >> 783     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 784 }
                                                   >> 785 
                                                   >> 786 void G4SPSEneDistribution::GenerateBiasPowEnergies() {
                                                   >> 787   // Method to generate particle energies distributed as
                                                   >> 788   // in biased power-law and calculate its weight
                                                   >> 789 
                                                   >> 790         G4double rndm;
                                                   >> 791   G4double emina, emaxa, emin, emax;
                                                   >> 792 
                                                   >> 793   G4double normal = 1. ;
                                                   >> 794 
                                                   >> 795   emin = Emin;
                                                   >> 796   emax = Emax;
                                                   >> 797   //  if (EnergyDisType == "Arb") { 
                                                   >> 798   //  emin = ArbEmin;
                                                   >> 799   //  emax = ArbEmax;
                                                   >> 800   //}
                                                   >> 801 
                                                   >> 802   rndm = eneRndm->GenRandEnergy();
                                                   >> 803 
                                                   >> 804   if (biasalpha != -1.) {
                                                   >> 805           emina = std::pow(emin, biasalpha + 1);
                                                   >> 806           emaxa = std::pow(emax, biasalpha + 1);
                                                   >> 807     particle_energy = ((rndm * (emaxa - emina)) + emina);
                                                   >> 808     particle_energy = std::pow(particle_energy, (1. / (biasalpha + 1.)));
                                                   >> 809     normal = 1./(1+biasalpha) * (emaxa - emina);
                                                   >> 810   } else {
                                                   >> 811     particle_energy = (std::log(emin) + rndm * (std::log(emax) - std::log(
                                                   >> 812         emin)));
                                                   >> 813     particle_energy = std::exp(particle_energy);
                                                   >> 814     normal = std::log(emax) - std::log(emin) ;
                                                   >> 815   }
                                                   >> 816   weight = GetProbability(particle_energy) / (std::pow(particle_energy,biasalpha)/normal);
                                                   >> 817 
                                                   >> 818   if (verbosityLevel >= 1)
                                                   >> 819     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 820 }
                                                   >> 821 
                                                   >> 822 void G4SPSEneDistribution::GenerateExpEnergies(G4bool bArb = false) {
                                                   >> 823   // Method to generate particle energies distributed according
                                                   >> 824   // to an exponential curve.
                                                   >> 825   G4double rndm;
                                                   >> 826 
                                                   >> 827   if (bArb)
                                                   >> 828     rndm = G4UniformRand();
                                                   >> 829   else
                                                   >> 830     rndm = eneRndm->GenRandEnergy();
                                                   >> 831 
                                                   >> 832   particle_energy = -Ezero * (std::log(rndm * (std::exp(-Emax / Ezero)
                                                   >> 833       - std::exp(-Emin / Ezero)) + std::exp(-Emin / Ezero)));
                                                   >> 834   if (verbosityLevel >= 1)
                                                   >> 835     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 836 }
                                                   >> 837 
                                                   >> 838 void G4SPSEneDistribution::GenerateBremEnergies() {
                                                   >> 839   // Method to generate particle energies distributed according
                                                   >> 840   // to a Bremstrahlung equation of
                                                   >> 841   // form I = const*((kT)**1/2)*E*(e**(-E/kT))
                                                   >> 842 
                                                   >> 843   G4double rndm;
                                                   >> 844   rndm = eneRndm->GenRandEnergy();
                                                   >> 845   G4double expmax, expmin, k;
                                                   >> 846 
                                                   >> 847   k = 8.6181e-11; // Boltzmann's const in MeV/K
                                                   >> 848   G4double ksq = std::pow(k, 2.); // k squared
                                                   >> 849   G4double Tsq = std::pow(Temp, 2.); // Temp squared
                                                   >> 850 
                                                   >> 851   expmax = std::exp(-Emax / (k * Temp));
                                                   >> 852   expmin = std::exp(-Emin / (k * Temp));
                                                   >> 853 
                                                   >> 854   // If either expmax or expmin are zero then this will cause problems
                                                   >> 855   // Most probably this will be because T is too low or E is too high
                                                   >> 856 
                                                   >> 857   if (expmax == 0.)
                                                   >> 858     G4cout << "*****EXPMAX=0. Choose different E's or Temp" << G4endl;
                                                   >> 859   if (expmin == 0.)
                                                   >> 860     G4cout << "*****EXPMIN=0. Choose different E's or Temp" << G4endl;
                                                   >> 861 
                                                   >> 862   G4double tempvar = rndm * ((-k) * Temp * (Emax * expmax - Emin * expmin)
                                                   >> 863       - (ksq * Tsq * (expmax - expmin)));
                                                   >> 864 
                                                   >> 865   G4double bigc = (tempvar - k * Temp * Emin * expmin - ksq * Tsq * expmin)
                                                   >> 866       / (-k * Temp);
                                                   >> 867 
                                                   >> 868   // This gives an equation of form: Ee(-E/kT) + kTe(-E/kT) - C =0
                                                   >> 869   // Solve this iteratively, step from Emin to Emax in 1000 steps
                                                   >> 870   // and take the best solution.
                                                   >> 871 
                                                   >> 872   G4double erange = Emax - Emin;
                                                   >> 873   G4double steps = erange / 1000.;
                                                   >> 874   G4int i;
                                                   >> 875   G4double etest, diff, err;
                                                   >> 876 
                                                   >> 877   err = 100000.;
                                                   >> 878 
                                                   >> 879   for (i = 1; i < 1000; i++) {
                                                   >> 880     etest = Emin + (i - 1) * steps;
                                                   >> 881 
                                                   >> 882     diff = etest * (std::exp(-etest / (k * Temp))) + k * Temp * (std::exp(
                                                   >> 883         -etest / (k * Temp))) - bigc;
                                                   >> 884 
                                                   >> 885     if (diff < 0.)
                                                   >> 886       diff = -diff;
                                                   >> 887 
                                                   >> 888     if (diff < err) {
                                                   >> 889       err = diff;
                                                   >> 890       particle_energy = etest;
                                                   >> 891     }
                                                   >> 892   }
                                                   >> 893   if (verbosityLevel >= 1)
                                                   >> 894     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 895 }
                                                   >> 896 
                                                   >> 897 void G4SPSEneDistribution::GenerateBbodyEnergies() {
                                                   >> 898   // BBody_x holds Energies, and BBHist holds the cumulative histo.
                                                   >> 899   // binary search to find correct bin then lin interpolation.
                                                   >> 900   // Use the earlier defined histogram + RandGeneral method to generate
                                                   >> 901   // random numbers following the histos distribution.
                                                   >> 902   G4double rndm;
                                                   >> 903   G4int nabove, nbelow = 0, middle;
                                                   >> 904   nabove = 10001;
                                                   >> 905   rndm = eneRndm->GenRandEnergy();
                                                   >> 906 
                                                   >> 907   // Binary search to find bin that rndm is in
                                                   >> 908   while (nabove - nbelow > 1) {
                                                   >> 909     middle = (nabove + nbelow) / 2;
                                                   >> 910     if (rndm == BBHist[middle])
                                                   >> 911       break;
                                                   >> 912     if (rndm < BBHist[middle])
                                                   >> 913       nabove = middle;
                                                   >> 914     else
                                                   >> 915       nbelow = middle;
                                                   >> 916   }
                                                   >> 917 
                                                   >> 918   // Now interpolate in that bin to find the correct output value.
                                                   >> 919   G4double x1, x2, y1, y2, t, q;
                                                   >> 920   x1 = Bbody_x[nbelow];
                                                   >> 921   x2 = Bbody_x[nbelow + 1];
                                                   >> 922   y1 = BBHist[nbelow];
                                                   >> 923   y2 = BBHist[nbelow + 1];
                                                   >> 924   t = (y2 - y1) / (x2 - x1);
                                                   >> 925   q = y1 - t * x1;
                                                   >> 926 
                                                   >> 927   particle_energy = (rndm - q) / t;
                                                   >> 928 
                                                   >> 929   if (verbosityLevel >= 1) {
                                                   >> 930     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 931   }
                                                   >> 932 }
                                                   >> 933 
                                                   >> 934 void G4SPSEneDistribution::GenerateCdgEnergies() {
                                                   >> 935   // Gen random numbers, compare with values in cumhist
                                                   >> 936   // to find appropriate part of spectrum and then
                                                   >> 937   // generate energy in the usual inversion way.
                                                   >> 938   //  G4double pfact[2] = {8.5, 112};
                                                   >> 939   // G4double spind[2] = {1.4, 2.3};
                                                   >> 940   // G4double ene_line[3] = {1., 18., 1E6};
                                                   >> 941   G4double rndm, rndm2;
                                                   >> 942   G4double ene_line[3];
                                                   >> 943   G4double omalpha[2];
                                                   >> 944   if (Emin < 18 * keV && Emax < 18 * keV) {
                                                   >> 945     omalpha[0] = 1. - 1.4;
                                                   >> 946     ene_line[0] = Emin;
                                                   >> 947     ene_line[1] = Emax;
                                                   >> 948   }
                                                   >> 949   if (Emin < 18 * keV && Emax > 18 * keV) {
                                                   >> 950     omalpha[0] = 1. - 1.4;
                                                   >> 951     omalpha[1] = 1. - 2.3;
                                                   >> 952     ene_line[0] = Emin;
                                                   >> 953     ene_line[1] = 18. * keV;
                                                   >> 954     ene_line[2] = Emax;
                                                   >> 955   }
                                                   >> 956   if (Emin > 18 * keV) {
                                                   >> 957     omalpha[0] = 1. - 2.3;
                                                   >> 958     ene_line[0] = Emin;
                                                   >> 959     ene_line[1] = Emax;
                                                   >> 960   }
                                                   >> 961   rndm = eneRndm->GenRandEnergy();
                                                   >> 962   rndm2 = eneRndm->GenRandEnergy();
                                                   >> 963 
                                                   >> 964   G4int i = 0;
                                                   >> 965   while (rndm >= CDGhist[i]) {
                                                   >> 966     i++;
                                                   >> 967   }
                                                   >> 968   // Generate final energy.
                                                   >> 969   particle_energy = (std::pow(ene_line[i - 1], omalpha[i - 1]) + (std::pow(
                                                   >> 970       ene_line[i], omalpha[i - 1]) - std::pow(ene_line[i - 1], omalpha[i
                                                   >> 971       - 1])) * rndm2);
                                                   >> 972   particle_energy = std::pow(particle_energy, (1. / omalpha[i - 1]));
                                                   >> 973 
                                                   >> 974   if (verbosityLevel >= 1)
                                                   >> 975     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 976 }
                                                   >> 977 
                                                   >> 978 void G4SPSEneDistribution::GenUserHistEnergies() {
                                                   >> 979   // Histograms are DIFFERENTIAL.
                                                   >> 980   //  G4cout << "In GenUserHistEnergies " << G4endl;
                                                   >> 981   if (IPDFEnergyExist == false) {
                                                   >> 982     G4int ii;
                                                   >> 983     G4int maxbin = G4int(UDefEnergyH.GetVectorLength());
                                                   >> 984     G4double bins[1024], vals[1024], sum;
                                                   >> 985     sum = 0.;
                                                   >> 986 
                                                   >> 987     if ((EnergySpec == false) && (particle_definition == NULL))
                                                   >> 988       G4cout << "Error: particle definition is NULL" << G4endl;
                                                   >> 989 
                                                   >> 990     if (maxbin > 1024) {
                                                   >> 991       G4cout << "Maxbin > 1024" << G4endl;
                                                   >> 992       G4cout << "Setting maxbin to 1024, other bins are lost" << G4endl;
                                                   >> 993     }
                                                   >> 994 
                                                   >> 995     if (DiffSpec == false)
                                                   >> 996       G4cout << "Histograms are Differential!!! " << G4endl;
                                                   >> 997     else {
                                                   >> 998       bins[0] = UDefEnergyH.GetLowEdgeEnergy(size_t(0));
                                                   >> 999       vals[0] = UDefEnergyH(size_t(0));
                                                   >> 1000       sum = vals[0];
                                                   >> 1001       for (ii = 1; ii < maxbin; ii++) {
                                                   >> 1002         bins[ii] = UDefEnergyH.GetLowEdgeEnergy(size_t(ii));
                                                   >> 1003         vals[ii] = UDefEnergyH(size_t(ii)) + vals[ii - 1];
                                                   >> 1004         sum = sum + UDefEnergyH(size_t(ii));
                                                   >> 1005       }
                                                   >> 1006     }
                                                   >> 1007 
                                                   >> 1008     if (EnergySpec == false) {
                                                   >> 1009       G4double mass = particle_definition->GetPDGMass();
                                                   >> 1010       // multiply the function (vals) up by the bin width
                                                   >> 1011       // to make the function counts/s (i.e. get rid of momentum
                                                   >> 1012       // dependence).
                                                   >> 1013       for (ii = 1; ii < maxbin; ii++) {
                                                   >> 1014         vals[ii] = vals[ii] * (bins[ii] - bins[ii - 1]);
                                                   >> 1015       }
                                                   >> 1016       // Put energy bins into new histo, plus divide by energy bin width
                                                   >> 1017       // to make evals counts/s/energy
                                                   >> 1018       for (ii = 0; ii < maxbin; ii++) {
                                                   >> 1019         bins[ii] = std::sqrt((bins[ii] * bins[ii]) + (mass * mass))
                                                   >> 1020             - mass; //kinetic energy
                                                   >> 1021       }
                                                   >> 1022       for (ii = 1; ii < maxbin; ii++) {
                                                   >> 1023         vals[ii] = vals[ii] / (bins[ii] - bins[ii - 1]);
                                                   >> 1024       }
                                                   >> 1025       sum = vals[maxbin - 1];
                                                   >> 1026       vals[0] = 0.;
                                                   >> 1027     }
                                                   >> 1028     for (ii = 0; ii < maxbin; ii++) {
                                                   >> 1029       vals[ii] = vals[ii] / sum;
                                                   >> 1030       IPDFEnergyH.InsertValues(bins[ii], vals[ii]);
                                                   >> 1031     }
                                                   >> 1032 
                                                   >> 1033     // Make IPDFEnergyExist = true
                                                   >> 1034     IPDFEnergyExist = true;
                                                   >> 1035     if (verbosityLevel > 1)
                                                   >> 1036       IPDFEnergyH.DumpValues();
                                                   >> 1037   }
                                                   >> 1038 
                                                   >> 1039   // IPDF has been create so carry on
                                                   >> 1040   G4double rndm = eneRndm->GenRandEnergy();
                                                   >> 1041   particle_energy = IPDFEnergyH.GetEnergy(rndm);
                                                   >> 1042 
                                                   >> 1043   if (verbosityLevel >= 1)
                                                   >> 1044     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 1045 }
                                                   >> 1046 
                                                   >> 1047 void G4SPSEneDistribution::GenArbPointEnergies() {
                                                   >> 1048   if (verbosityLevel > 0)
                                                   >> 1049     G4cout << "In GenArbPointEnergies" << G4endl;
                                                   >> 1050   G4double rndm;
                                                   >> 1051   rndm = eneRndm->GenRandEnergy();
                                                   >> 1052   //      IPDFArbEnergyH.DumpValues();
                                                   >> 1053   // Find the Bin
                                                   >> 1054   // have x, y, no of points, and cumulative area distribution
                                                   >> 1055   G4int nabove, nbelow = 0, middle;
                                                   >> 1056   nabove = IPDFArbEnergyH.GetVectorLength();
                                                   >> 1057   //      G4cout << nabove << G4endl;
                                                   >> 1058   // Binary search to find bin that rndm is in
                                                   >> 1059   while (nabove - nbelow > 1) {
                                                   >> 1060     middle = (nabove + nbelow) / 2;
                                                   >> 1061     if (rndm == IPDFArbEnergyH(size_t(middle)))
                                                   >> 1062       break;
                                                   >> 1063     if (rndm < IPDFArbEnergyH(size_t(middle)))
                                                   >> 1064       nabove = middle;
                                                   >> 1065     else
                                                   >> 1066       nbelow = middle;
                                                   >> 1067   }
                                                   >> 1068   if (IntType == "Lin") {
                                                   >> 1069     Emax = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow + 1));
                                                   >> 1070     Emin = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow));
                                                   >> 1071     grad = Arb_grad[nbelow + 1];
                                                   >> 1072     cept = Arb_cept[nbelow + 1];
                                                   >> 1073     //    G4cout << rndm << " " << Emax << " " << Emin << " " << grad << " " << cept << G4endl;
                                                   >> 1074     GenerateLinearEnergies(true);
                                                   >> 1075   } else if (IntType == "Log") {
                                                   >> 1076     Emax = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow + 1));
                                                   >> 1077     Emin = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow));
                                                   >> 1078     alpha = Arb_alpha[nbelow + 1];
                                                   >> 1079     //    G4cout << rndm << " " << Emax << " " << Emin << " " << alpha << G4endl;
                                                   >> 1080     GeneratePowEnergies(true);
                                                   >> 1081   } else if (IntType == "Exp") {
                                                   >> 1082     Emax = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow + 1));
                                                   >> 1083     Emin = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow));
                                                   >> 1084     Ezero = Arb_ezero[nbelow + 1];
                                                   >> 1085     //    G4cout << rndm << " " << Emax << " " << Emin << " " << Ezero << G4endl;
                                                   >> 1086     GenerateExpEnergies(true);
                                                   >> 1087   } else if (IntType == "Spline") {
                                                   >> 1088     Emax = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow + 1));
                                                   >> 1089     Emin = IPDFArbEnergyH.GetLowEdgeEnergy(size_t(nbelow));
                                                   >> 1090     particle_energy = -1e100;
                                                   >> 1091     rndm = eneRndm->GenRandEnergy();
                                                   >> 1092     while (particle_energy < Emin || particle_energy > Emax) {
                                                   >> 1093       particle_energy = SplineInt[nbelow+1]->CubicSplineInterpolation(rndm);
                                                   >> 1094       rndm = eneRndm->GenRandEnergy();
                                                   >> 1095     }
                                                   >> 1096     if (verbosityLevel >= 1)
                                                   >> 1097       G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 1098   } else
                                                   >> 1099     G4cout << "Error: IntType unknown type" << G4endl;
                                                   >> 1100 }
                                                   >> 1101 
                                                   >> 1102 void G4SPSEneDistribution::GenEpnHistEnergies() {
                                                   >> 1103   //  G4cout << "In GenEpnHistEnergies " << Epnflag << G4endl;
                                                   >> 1104 
                                                   >> 1105   // Firstly convert to energy if not already done.
                                                   >> 1106   if (Epnflag == true)
                                                   >> 1107   // epnflag = true means spectrum is epn, false means e.
                                                   >> 1108   {
                                                   >> 1109     // convert to energy by multiplying by A number
                                                   >> 1110     ConvertEPNToEnergy();
                                                   >> 1111     // EpnEnergyH will be replace by UDefEnergyH.
                                                   >> 1112     //      UDefEnergyH.DumpValues();
                                                   >> 1113   }
                                                   >> 1114 
                                                   >> 1115   //  G4cout << "Creating IPDFEnergy if not already done so" << G4endl;
                                                   >> 1116   if (IPDFEnergyExist == false) {
                                                   >> 1117     // IPDF has not been created, so create it
                                                   >> 1118     G4double bins[1024], vals[1024], sum;
                                                   >> 1119     G4int ii;
                                                   >> 1120     G4int maxbin = G4int(UDefEnergyH.GetVectorLength());
                                                   >> 1121     bins[0] = UDefEnergyH.GetLowEdgeEnergy(size_t(0));
                                                   >> 1122     vals[0] = UDefEnergyH(size_t(0));
                                                   >> 1123     sum = vals[0];
                                                   >> 1124     for (ii = 1; ii < maxbin; ii++) {
                                                   >> 1125       bins[ii] = UDefEnergyH.GetLowEdgeEnergy(size_t(ii));
                                                   >> 1126       vals[ii] = UDefEnergyH(size_t(ii)) + vals[ii - 1];
                                                   >> 1127       sum = sum + UDefEnergyH(size_t(ii));
                                                   >> 1128     }
                                                   >> 1129 
                                                   >> 1130     for (ii = 0; ii < maxbin; ii++) {
                                                   >> 1131       vals[ii] = vals[ii] / sum;
                                                   >> 1132       IPDFEnergyH.InsertValues(bins[ii], vals[ii]);
                                                   >> 1133     }
                                                   >> 1134     // Make IPDFEpnExist = true
                                                   >> 1135     IPDFEnergyExist = true;
                                                   >> 1136   }
                                                   >> 1137   //  IPDFEnergyH.DumpValues();
                                                   >> 1138   // IPDF has been create so carry on
                                                   >> 1139   G4double rndm = eneRndm->GenRandEnergy();
                                                   >> 1140   particle_energy = IPDFEnergyH.GetEnergy(rndm);
                                                   >> 1141 
                                                   >> 1142   if (verbosityLevel >= 1)
                                                   >> 1143     G4cout << "Energy is " << particle_energy << G4endl;
                                                   >> 1144 }
                                                   >> 1145 
                                                   >> 1146 void G4SPSEneDistribution::ConvertEPNToEnergy() {
                                                   >> 1147   // Use this before particle generation to convert  the
                                                   >> 1148   // currently stored histogram from energy/nucleon
                                                   >> 1149   // to energy.
                                                   >> 1150   //  G4cout << "In ConvertEpntoEnergy " << G4endl;
                                                   >> 1151   if (particle_definition == NULL)
                                                   >> 1152     G4cout << "Error: particle not defined" << G4endl;
                                                   >> 1153   else {
                                                   >> 1154     // Need to multiply histogram by the number of nucleons.
                                                   >> 1155     // Baryon Number looks to hold the no. of nucleons.
                                                   >> 1156     G4int Bary = particle_definition->GetBaryonNumber();
                                                   >> 1157     //      G4cout << "Baryon No. " << Bary << G4endl;
                                                   >> 1158     // Change values in histogram, Read it out, delete it, re-create it
                                                   >> 1159     G4int count, maxcount;
                                                   >> 1160     maxcount = G4int(EpnEnergyH.GetVectorLength());
                                                   >> 1161     //      G4cout << maxcount << G4endl;
                                                   >> 1162     G4double ebins[1024], evals[1024];
                                                   >> 1163     if (maxcount > 1024) {
                                                   >> 1164       G4cout << "Histogram contains more than 1024 bins!" << G4endl;
                                                   >> 1165       G4cout << "Those above 1024 will be ignored" << G4endl;
                                                   >> 1166       maxcount = 1024;
                                                   >> 1167     }
                                                   >> 1168     if (maxcount < 1) {
                                                   >> 1169       G4cout << "Histogram contains less than 1 bin!" << G4endl;
                                                   >> 1170       G4cout << "Redefine the histogram" << G4endl;
                                                   >> 1171       return;
                                                   >> 1172     }
                                                   >> 1173     for (count = 0; count < maxcount; count++) {
                                                   >> 1174       // Read out
                                                   >> 1175       ebins[count] = EpnEnergyH.GetLowEdgeEnergy(size_t(count));
                                                   >> 1176       evals[count] = EpnEnergyH(size_t(count));
                                                   >> 1177     }
                                                   >> 1178 
                                                   >> 1179     // Multiply the channels by the nucleon number to give energies
                                                   >> 1180     for (count = 0; count < maxcount; count++) {
                                                   >> 1181       ebins[count] = ebins[count] * Bary;
                                                   >> 1182     }
                                                   >> 1183 
                                                   >> 1184     // Set Emin and Emax
                                                   >> 1185     Emin = ebins[0];
                                                   >> 1186     if (maxcount > 1)
                                                   >> 1187       Emax = ebins[maxcount - 1];
                                                   >> 1188     else
                                                   >> 1189       Emax = ebins[0];
                                                   >> 1190     // Put energy bins into new histogram - UDefEnergyH.
                                                   >> 1191     for (count = 0; count < maxcount; count++) {
                                                   >> 1192       UDefEnergyH.InsertValues(ebins[count], evals[count]);
                                                   >> 1193     }
                                                   >> 1194     Epnflag = false; //so that you dont repeat this method.
                                                   >> 1195   }
1146 }                                                1196 }
1147                                                  1197 
1148 void G4SPSEneDistribution::GenerateLinearEner << 1198 //
1149 {                                             << 1199 void G4SPSEneDistribution::ReSetHist(G4String atype) {
1150   G4double rndm;                              << 1200   if (atype == "energy") {
1151   threadLocal_t& params = threadLocalData.Get << 1201     UDefEnergyH = IPDFEnergyH = ZeroPhysVector;
1152   G4double emaxsq = std::pow(params.Emax, 2.) << 1202     IPDFEnergyExist = false;
1153   G4double eminsq = std::pow(params.Emin, 2.) << 1203     Emin = 0.;
1154   G4double intersq = std::pow(params.cept, 2. << 1204     Emax = 1e30;
1155                                               << 1205   } else if (atype == "arb") {
1156   if (bArb) rndm = G4UniformRand();           << 1206     ArbEnergyH = IPDFArbEnergyH = ZeroPhysVector;
1157   else      rndm = eneRndm->GenRandEnergy();  << 1207     IPDFArbExist = false;
1158                                               << 1208   } else if (atype == "epn") {
1159   G4double bracket = ((params.grad / 2.)      << 1209     UDefEnergyH = IPDFEnergyH = ZeroPhysVector;
1160                    * (emaxsq - eminsq)        << 1210     IPDFEnergyExist = false;
1161                    + params.cept * (params.Em << 1211     EpnEnergyH = ZeroPhysVector;
1162   bracket = bracket * rndm;                   << 1212   } else {
1163   bracket = bracket + (params.grad / 2.) * em << 1213     G4cout << "Error, histtype not accepted " << G4endl;
1164                                               << 1214   }
1165   // Now have a quad of form m/2 E**2 + cE -  << 1215 }
1166   //                                          << 1216 
1167   bracket = -bracket;                         << 1217 G4double G4SPSEneDistribution::GenerateOne(G4ParticleDefinition* a) {
1168                                               << 1218   particle_definition = a;
1169   if (params.grad != 0.)                      << 1219   particle_energy = -1.;
1170   {                                           << 1220 
1171     G4double sqbrack = (intersq - 4 * (params << 1221   while ((EnergyDisType == "Arb") ? (particle_energy < ArbEmin
1172     sqbrack = std::sqrt(sqbrack);             << 1222       || particle_energy > ArbEmax) : (particle_energy < Emin
1173     G4double root1 = -params.cept + sqbrack;  << 1223       || particle_energy > Emax)) {
1174     root1 = root1 / (2. * (params.grad / 2.)) << 1224     if (Biased) {
1175                                               << 1225       GenerateBiasPowEnergies();
1176     G4double root2 = -params.cept - sqbrack;  << 1226     } else {
1177     root2 = root2 / (2. * (params.grad / 2.)) << 1227       if (EnergyDisType == "Mono")
1178                                               << 1228         GenerateMonoEnergetic();
1179     if (root1 > params.Emin && root1 < params << 1229       else if (EnergyDisType == "Lin")
1180     {                                         << 1230         GenerateLinearEnergies();
1181       params.particle_energy = root1;         << 1231       else if (EnergyDisType == "Pow")
1182     }                                         << 1232         GeneratePowEnergies();
1183     if (root2 > params.Emin && root2 < params << 1233       else if (EnergyDisType == "Exp")
1184     {                                         << 1234         GenerateExpEnergies();
1185       params.particle_energy = root2;         << 1235       else if (EnergyDisType == "Gauss")
1186     }                                         << 1236         GenerateGaussEnergies();
1187   }                                           << 1237       else if (EnergyDisType == "Brem")
1188   else if (params.grad == 0.)                 << 1238         GenerateBremEnergies();
1189   {                                           << 1239       else if (EnergyDisType == "Bbody")
1190     // have equation of form cE - bracket =0  << 1240         GenerateBbodyEnergies();
1191     //                                        << 1241       else if (EnergyDisType == "Cdg")
1192     params.particle_energy = bracket / params << 1242         GenerateCdgEnergies();
1193   }                                           << 1243       else if (EnergyDisType == "User")
1194                                               << 1244         GenUserHistEnergies();
1195   if (params.particle_energy < 0.)            << 1245       else if (EnergyDisType == "Arb")
1196   {                                           << 1246         GenArbPointEnergies();
1197     params.particle_energy = -params.particle << 1247       else if (EnergyDisType == "Epn")
1198   }                                           << 1248         GenEpnHistEnergies();
1199                                               << 1249       else
1200   if (verbosityLevel >= 1)                    << 1250         G4cout << "Error: EnergyDisType has unusual value" << G4endl;
1201   {                                           << 1251     }
1202     G4cout << "Energy is " << params.particle << 1252   }
1203   }                                           << 1253   return particle_energy;
1204 }                                             << 1254 }
1205                                               << 1255 
1206 void G4SPSEneDistribution::GeneratePowEnergie << 1256 G4double G4SPSEneDistribution::GetProbability(G4double ene) {
1207 {                                             << 1257   G4double prob = 1.;
1208   // Method to generate particle energies dis << 1258 
1209                                               << 1259   if (EnergyDisType == "Lin") {
1210   G4double rndm;                              << 1260     if (prob_norm == 1.) {
1211   G4double emina, emaxa;                      << 1261       prob_norm = 0.5*grad*Emax*Emax + cept*Emax - 0.5*grad*Emin*Emin - cept*Emin;
1212                                               << 1262     }
1213   threadLocal_t& params = threadLocalData.Get << 1263     prob = cept + grad * ene;
1214                                               << 1264     prob /= prob_norm;
1215   emina = std::pow(params.Emin, params.alpha  << 1265   }
1216   emaxa = std::pow(params.Emax, params.alpha  << 1266   else if (EnergyDisType == "Pow") {
1217                                               << 1267     if (prob_norm == 1.) {
1218   if (bArb) rndm = G4UniformRand();           << 1268       if (alpha != -1.) {
1219   else      rndm = eneRndm->GenRandEnergy();  << 1269         G4double emina = std::pow(Emin, alpha + 1);
1220                                               << 1270         G4double emaxa = std::pow(Emax, alpha + 1);
1221   if (params.alpha != -1.)                    << 1271         prob_norm = 1./(1.+alpha) * (emaxa - emina);
1222   {                                           << 1272       } else {
1223     G4double ene = ((rndm * (emaxa - emina))  << 1273         prob_norm = std::log(Emax) - std::log(Emin) ;
1224     ene = std::pow(ene, (1. / (params.alpha + << 1274       }
1225     params.particle_energy = ene;             << 1275     }
1226   }                                           << 1276     prob = std::pow(ene, alpha)/prob_norm;
1227   else                                        << 1277   }
1228   {                                           << 1278   else if (EnergyDisType == "Exp"){
1229     G4double ene = (std::log(params.Emin)     << 1279     if (prob_norm == 1.) {
1230                  + rndm * (std::log(params.Em << 1280       prob_norm = -Ezero*(std::exp(-Emax/Ezero) - std::exp(Emin/Ezero));
1231     params.particle_energy = std::exp(ene);   << 1281     }  
1232   }                                           << 1282     prob = std::exp(-ene / Ezero);
1233   if (verbosityLevel >= 1)                    << 1283     prob /= prob_norm;
1234   {                                           << 1284   }
1235     G4cout << "Energy is " << params.particle << 1285   else if (EnergyDisType == "Arb") {
1236   }                                           << 1286     prob = ArbEnergyH.Value(ene);
1237 }                                             << 1287     //  prob = ArbEInt->CubicSplineInterpolation(ene);
1238                                               << 1288     //G4double deltaY;
1239 void G4SPSEneDistribution::GenerateCPowEnergi << 1289     //prob = ArbEInt->PolynomInterpolation(ene, deltaY);
1240 {                                             << 1290     if (prob <= 0.) {
1241   // Method to generate particle energies dis << 1291       //G4cout << " Warning:G4SPSEneDistribution::GetProbability: prob<= 0. "<<prob <<" "<<ene << " " <<deltaY<< G4endl;
1242   // cutoff power-law distribution            << 1292       G4cout << " Warning:G4SPSEneDistribution::GetProbability: prob<= 0. "<<prob <<" "<<ene << G4endl;
1243   //                                          << 1293       prob = 1e-30;
1244   // CP_x holds Energies, and CPHist holds th << 1294     }
1245   // binary search to find correct bin then l << 1295     // already normalised
1246   // Use the earlier defined histogram + Rand << 1296   }
1247   // random numbers following the histos dist << 1297   else
1248                                               << 1298     G4cout << "Error: EnergyDisType not supported" << G4endl;
1249   G4double rndm = eneRndm->GenRandEnergy();   << 
1250   G4int nabove = 10001, nbelow = 0, middle;   << 
1251                                               << 
1252   G4AutoLock l(&mutex);                       << 
1253   G4bool done = CPhistCalcd;                  << 
1254   l.unlock();                                 << 
1255                                               << 
1256   if(!done)                                   << 
1257   {                                           << 
1258     Calculate(); //This is has a lock inside, << 
1259     l.lock();                                 << 
1260     CPhistCalcd = true;                       << 
1261     l.unlock();                               << 
1262   }                                           << 
1263                                               << 
1264   // Binary search to find bin that rndm is i << 
1265   //                                          << 
1266   while (nabove - nbelow > 1)                 << 
1267   {                                           << 
1268     middle = (nabove + nbelow) / 2;           << 
1269     if (rndm == CPHist->at(middle))           << 
1270     {                                         << 
1271       break;                                  << 
1272     }                                         << 
1273     if (rndm < CPHist->at(middle))            << 
1274     {                                         << 
1275       nabove = middle;                        << 
1276     }                                         << 
1277     else                                      << 
1278     {                                         << 
1279       nbelow = middle;                        << 
1280     }                                         << 
1281   }                                           << 
1282                                               << 
1283   // Now interpolate in that bin to find the  << 
1284   //                                          << 
1285   G4double x1, x2, y1, y2, t, q;              << 
1286   x1 = CP_x->at(nbelow);                      << 
1287   if(nbelow+1 == static_cast<G4int>(CP_x->siz << 
1288   {                                           << 
1289     x2 = CP_x->back();                        << 
1290   }                                           << 
1291   else                                        << 
1292   {                                           << 
1293     x2 = CP_x->at(nbelow + 1);                << 
1294   }                                           << 
1295   y1 = CPHist->at(nbelow);                    << 
1296   if(nbelow+1 == static_cast<G4int>(CPHist->s << 
1297   {                                           << 
1298     G4cout << CPHist->back() << G4endl;       << 
1299     y2 = CPHist->back();                      << 
1300   }                                           << 
1301   else                                        << 
1302   {                                           << 
1303     y2 = CPHist->at(nbelow + 1);              << 
1304   }                                           << 
1305   t = (y2 - y1) / (x2 - x1);                  << 
1306   q = y1 - t * x1;                            << 
1307                                               << 
1308   threadLocalData.Get().particle_energy = (rn << 
1309                                               << 
1310   if (verbosityLevel >= 1)                    << 
1311   {                                           << 
1312     G4cout << "Energy is " << threadLocalData << 
1313   }                                           << 
1314 }                                             << 
1315                                               << 
1316 void G4SPSEneDistribution::GenerateBiasPowEne << 
1317 {                                             << 
1318   // Method to generate particle energies dis << 
1319   // in biased power-law and calculate its we << 
1320                                               << 
1321   threadLocal_t& params = threadLocalData.Get << 
1322                                               << 
1323   G4double rndm;                              << 
1324   G4double emina, emaxa, emin, emax;          << 
1325                                               << 
1326   G4double normal = 1.;                       << 
1327                                               << 
1328   emin = params.Emin;                         << 
1329   emax = params.Emax;                         << 
1330                                               << 
1331   rndm = eneRndm->GenRandEnergy();            << 
1332                                               << 
1333   if (biasalpha != -1.)                       << 
1334   {                                           << 
1335     emina = std::pow(emin, biasalpha + 1);    << 
1336     emaxa = std::pow(emax, biasalpha + 1);    << 
1337     G4double ee = ((rndm * (emaxa - emina)) + << 
1338     params.particle_energy = std::pow(ee, (1. << 
1339     normal = 1./(1+biasalpha) * (emaxa - emin << 
1340   }                                           << 
1341   else                                        << 
1342   {                                           << 
1343     G4double ee = (std::log(emin) + rndm * (s << 
1344     params.particle_energy = std::exp(ee);    << 
1345     normal = std::log(emax) - std::log(emin); << 
1346   }                                           << 
1347   params.weight = GetProbability(params.parti << 
1348                 / (std::pow(params.particle_e << 
1349                                               << 
1350   if (verbosityLevel >= 1)                    << 
1351   {                                           << 
1352     G4cout << "Energy is " << params.particle << 
1353   }                                           << 
1354 }                                             << 
1355                                               << 
1356 void G4SPSEneDistribution::GenerateExpEnergie << 
1357 {                                             << 
1358   // Method to generate particle energies dis << 
1359   // to an exponential curve                  << 
1360                                               << 
1361   G4double rndm;                              << 
1362                                               << 
1363   if (bArb) rndm = G4UniformRand();           << 
1364   else      rndm = eneRndm->GenRandEnergy();  << 
1365                                               << 
1366   threadLocal_t& params = threadLocalData.Get << 
1367   params.particle_energy = -params.Ezero      << 
1368                          * (std::log(rndm * ( << 
1369                                               << 
1370                                            -  << 
1371                                               << 
1372                                    + std::exp << 
1373   if (verbosityLevel >= 1)                    << 
1374   {                                           << 
1375     G4cout << "Energy is " << params.particle << 
1376   }                                           << 
1377 }                                             << 
1378                                               << 
1379 void G4SPSEneDistribution::GenerateBremEnergi << 
1380 {                                             << 
1381   // Method to generate particle energies dis << 
1382   // to a Bremstrahlung equation of the form  << 
1383   // I = const*((kT)**1/2)*E*(e**(-E/kT))     << 
1384                                               << 
1385   G4double rndm = eneRndm->GenRandEnergy();   << 
1386   G4double expmax, expmin, k;                 << 
1387                                               << 
1388   k = 8.6181e-11; // Boltzmann's const in MeV << 
1389   G4double ksq = std::pow(k, 2.); // k square << 
1390   G4double Tsq = std::pow(Temp, 2.); // Temp  << 
1391                                               << 
1392   threadLocal_t& params = threadLocalData.Get << 
1393                                               << 
1394   expmax = std::exp(-params.Emax / (k * Temp) << 
1395   expmin = std::exp(-params.Emin / (k * Temp) << 
1396                                               << 
1397   // If either expmax or expmin are zero then << 
1398   // Most probably this will be because T is  << 
1399                                               << 
1400   if (expmax == 0.)                           << 
1401   {                                           << 
1402     G4Exception("G4SPSEneDistribution::Genera << 
1403                 "Event0302", FatalException,  << 
1404                 "*****EXPMAX=0. Choose differ << 
1405   }                                           << 
1406   if (expmin == 0.)                           << 
1407   {                                           << 
1408     G4Exception("G4SPSEneDistribution::Genera << 
1409                 "Event0302", FatalException,  << 
1410                 "*****EXPMIN=0. Choose differ << 
1411   }                                           << 
1412                                               << 
1413   G4double tempvar = rndm * ((-k) * Temp * (p << 
1414                                           - p << 
1415                           - (ksq * Tsq * (exp << 
1416                                               << 
1417   G4double bigc = (tempvar - k * Temp * param << 
1418                  - ksq * Tsq * expmin) / (-k  << 
1419                                               << 
1420   // This gives an equation of form: Ee(-E/kT << 
1421   // Solve this iteratively, step from Emin t << 
1422   // and take the best solution.              << 
1423                                               << 
1424   G4double erange = params.Emax - params.Emin << 
1425   G4double steps = erange / 1000.;            << 
1426   G4int i;                                    << 
1427   G4double etest, diff, err = 100000.;        << 
1428                                               << 
1429   for (i = 1; i < 1000; ++i)                  << 
1430   {                                           << 
1431     etest = params.Emin + (i - 1) * steps;    << 
1432     diff = etest * (std::exp(-etest / (k * Te << 
1433          + k * Temp * (std::exp(-etest / (k * << 
1434                                               << 
1435     if (diff < 0.)                            << 
1436     {                                         << 
1437       diff = -diff;                           << 
1438     }                                         << 
1439                                               << 
1440     if (diff < err)                           << 
1441     {                                         << 
1442       err = diff;                             << 
1443       params.particle_energy = etest;         << 
1444     }                                         << 
1445   }                                           << 
1446   if (verbosityLevel >= 1)                    << 
1447   {                                           << 
1448     G4cout << "Energy is " << params.particle << 
1449   }                                           << 
1450 }                                             << 
1451                                               << 
1452 void G4SPSEneDistribution::GenerateBbodyEnerg << 
1453 {                                             << 
1454   // BBody_x holds Energies, and BBHist holds << 
1455   // Binary search to find correct bin then l << 
1456   // Use the earlier defined histogram + Rand << 
1457   // random numbers following the histos dist << 
1458                                               << 
1459   G4double rndm = eneRndm->GenRandEnergy();   << 
1460   G4int nabove = 10001, nbelow = 0, middle;   << 
1461                                               << 
1462   G4AutoLock l(&mutex);                       << 
1463   G4bool done = BBhistCalcd;                  << 
1464   l.unlock();                                 << 
1465                                               << 
1466   if(!done)                                   << 
1467   {                                           << 
1468     Calculate(); //This is has a lock inside, << 
1469     l.lock();                                 << 
1470     BBhistCalcd = true;                       << 
1471     l.unlock();                               << 
1472   }                                           << 
1473                                               << 
1474   // Binary search to find bin that rndm is i << 
1475   //                                          << 
1476   while (nabove - nbelow > 1)                 << 
1477   {                                           << 
1478     middle = (nabove + nbelow) / 2;           << 
1479     if (rndm == BBHist->at(middle))           << 
1480     {                                         << 
1481       break;                                  << 
1482     }                                         << 
1483     if (rndm < BBHist->at(middle))            << 
1484     {                                         << 
1485       nabove = middle;                        << 
1486     }                                         << 
1487     else                                      << 
1488     {                                         << 
1489       nbelow = middle;                        << 
1490     }                                         << 
1491   }                                           << 
1492                                               << 
1493   // Now interpolate in that bin to find the  << 
1494   //                                          << 
1495   G4double x1, x2, y1, y2, t, q;              << 
1496   x1 = Bbody_x->at(nbelow);                   << 
1497                                               << 
1498   if(nbelow+1 == static_cast<G4int>(Bbody_x-> << 
1499   {                                           << 
1500     x2 = Bbody_x->back();                     << 
1501   }                                           << 
1502   else                                        << 
1503   {                                           << 
1504     x2 = Bbody_x->at(nbelow + 1);             << 
1505   }                                           << 
1506   y1 = BBHist->at(nbelow);                    << 
1507   if(nbelow+1 == static_cast<G4int>(BBHist->s << 
1508   {                                           << 
1509     G4cout << BBHist->back() << G4endl;       << 
1510     y2 = BBHist->back();                      << 
1511   }                                           << 
1512   else                                        << 
1513   {                                           << 
1514     y2 = BBHist->at(nbelow + 1);              << 
1515   }                                           << 
1516   t = (y2 - y1) / (x2 - x1);                  << 
1517   q = y1 - t * x1;                            << 
1518                                               << 
1519   threadLocalData.Get().particle_energy = (rn << 
1520                                               << 
1521   if (verbosityLevel >= 1)                    << 
1522   {                                           << 
1523     G4cout << "Energy is " << threadLocalData << 
1524   }                                           << 
1525 }                                             << 
1526                                               << 
1527 void G4SPSEneDistribution::GenerateCdgEnergie << 
1528 {                                             << 
1529   // Generate random numbers, compare with va << 
1530   // to find appropriate part of spectrum and << 
1531   // generate energy in the usual inversion w << 
1532                                               << 
1533   G4double rndm, rndm2;                       << 
1534   G4double ene_line[3]={0,0,0};               << 
1535   G4double omalpha[2]={0,0};                  << 
1536   threadLocal_t& params = threadLocalData.Get << 
1537   if (params.Emin < 18 * keV && params.Emax < << 
1538   {                                           << 
1539     omalpha[0] = 1. - 1.4;                    << 
1540     ene_line[0] = params.Emin;                << 
1541     ene_line[1] = params.Emax;                << 
1542   }                                           << 
1543   if (params.Emin < 18 * keV && params.Emax > << 
1544   {                                           << 
1545     omalpha[0] = 1. - 1.4;                    << 
1546     omalpha[1] = 1. - 2.3;                    << 
1547     ene_line[0] = params.Emin;                << 
1548     ene_line[1] = 18. * keV;                  << 
1549     ene_line[2] = params.Emax;                << 
1550   }                                           << 
1551   if (params.Emin > 18 * keV)                 << 
1552   {                                           << 
1553     omalpha[0] = 1. - 2.3;                    << 
1554     ene_line[0] = params.Emin;                << 
1555     ene_line[1] = params.Emax;                << 
1556   }                                           << 
1557   rndm = eneRndm->GenRandEnergy();            << 
1558   rndm2 = eneRndm->GenRandEnergy();           << 
1559                                               << 
1560   G4int i = 0;                                << 
1561   while (rndm >= CDGhist[i])                  << 
1562   {                                           << 
1563     ++i;                                      << 
1564   }                                           << 
1565                                               << 
1566   // Generate final energy                    << 
1567   //                                          << 
1568   G4double ene = (std::pow(ene_line[i - 1], o << 
1569                + (std::pow(ene_line[i], omalp << 
1570                 - std::pow(ene_line[i - 1], o << 
1571   params.particle_energy = std::pow(ene, (1.  << 
1572                                               << 
1573   if (verbosityLevel >= 1)                    << 
1574   {                                           << 
1575     G4cout << "Energy is " << params.particle << 
1576   }                                           << 
1577 }                                             << 
1578                                               << 
1579 void G4SPSEneDistribution::GenUserHistEnergie << 
1580 {                                             << 
1581   // Histograms are DIFFERENTIAL              << 
1582                                               << 
1583   G4AutoLock l(&mutex);                       << 
1584                                               << 
1585   if (!IPDFEnergyExist)                       << 
1586   {                                           << 
1587     std::size_t ii;                           << 
1588     std::size_t maxbin = UDefEnergyH.GetVecto << 
1589     G4double bins[1024], vals[1024], sum;     << 
1590     for ( ii = 0 ; ii<1024 ; ++ii ) { bins[ii << 
1591     sum = 0.;                                 << 
1592                                               << 
1593     if ( (!EnergySpec)                        << 
1594       && (threadLocalData.Get().particle_defi << 
1595     {                                         << 
1596       G4Exception("G4SPSEneDistribution::GenU << 
1597                   "Event0302", FatalException << 
1598                   "Error: particle definition << 
1599     }                                         << 
1600                                               << 
1601     if (maxbin > 1024)                        << 
1602     {                                         << 
1603       G4Exception("G4SPSEneDistribution::GenU << 
1604                   "Event0302", JustWarning,   << 
1605                  "Maxbin>1024\n Setting maxbi << 
1606       maxbin = 1024;                          << 
1607     }                                         << 
1608                                               << 
1609     if (!DiffSpec)                            << 
1610     {                                         << 
1611       G4cout << "Histograms are Differential! << 
1612     }                                         << 
1613     else                                      << 
1614     {                                         << 
1615       bins[0] = UDefEnergyH.GetLowEdgeEnergy( << 
1616       vals[0] = UDefEnergyH(0);               << 
1617       sum = vals[0];                          << 
1618       for (ii = 1; ii < maxbin; ++ii)         << 
1619       {                                       << 
1620         bins[ii] = UDefEnergyH.GetLowEdgeEner << 
1621         vals[ii] = UDefEnergyH(ii) + vals[ii  << 
1622         sum = sum + UDefEnergyH(ii);          << 
1623       }                                       << 
1624     }                                         << 
1625                                               << 
1626     if (!EnergySpec)                          << 
1627     {                                         << 
1628       G4double mass = threadLocalData.Get().p << 
1629                                               << 
1630       // Multiply the function (vals) up by t << 
1631       // to make the function counts/s (i.e.  << 
1632                                               << 
1633       for (ii = 1; ii < maxbin; ++ii)         << 
1634       {                                       << 
1635         vals[ii] = vals[ii] * (bins[ii] - bin << 
1636       }                                       << 
1637                                               << 
1638       // Put energy bins into new histo, plus << 
1639       // to make evals counts/s/energy        << 
1640       //                                      << 
1641       for (ii = 0; ii < maxbin; ++ii)         << 
1642       {                                       << 
1643         // kinetic energy                     << 
1644         //                                    << 
1645         bins[ii] = std::sqrt((bins[ii]*bins[i << 
1646       }                                       << 
1647       for (ii = 1; ii < maxbin; ++ii)         << 
1648       {                                       << 
1649         vals[ii] = vals[ii] / (bins[ii] - bin << 
1650       }                                       << 
1651       sum = vals[maxbin - 1];                 << 
1652       vals[0] = 0.;                           << 
1653     }                                         << 
1654     for (ii = 0; ii < maxbin; ++ii)           << 
1655     {                                         << 
1656       vals[ii] = vals[ii] / sum;              << 
1657       IPDFEnergyH.InsertValues(bins[ii], vals << 
1658     }                                         << 
1659                                               << 
1660     IPDFEnergyExist = true;                   << 
1661     if (verbosityLevel > 1)                   << 
1662     {                                         << 
1663       IPDFEnergyH.DumpValues();               << 
1664     }                                         << 
1665   }                                           << 
1666   l.unlock();                                 << 
1667                                               << 
1668   // IPDF has been create so carry on         << 
1669   //                                          << 
1670   G4double rndm = eneRndm->GenRandEnergy();   << 
1671   threadLocalData.Get().particle_energy= IPDF << 
1672                                               << 
1673   if (verbosityLevel >= 1)                    << 
1674   {                                           << 
1675     G4cout << "Energy is " << particle_energy << 
1676   }                                           << 
1677 }                                             << 
1678                                               << 
1679 G4double G4SPSEneDistribution::GetArbEneWeigh << 
1680 {                                             << 
1681   auto nbelow = IPDFArbEnergyH.FindBin(ene,(I << 
1682   G4double wei = 0.;                          << 
1683   if(IntType=="Lin")                          << 
1684   {                                           << 
1685     // note: grad[i] and cept[i] are calculat << 
1686     auto gr = Arb_grad[nbelow + 1];           << 
1687     auto ce = Arb_cept[nbelow + 1];           << 
1688     wei = ene*gr + ce;                        << 
1689   }                                           << 
1690   else if(IntType=="Log")                     << 
1691   {                                           << 
1692     auto alp = Arb_alpha[nbelow + 1];         << 
1693     auto cns = Arb_Const[nbelow + 1];         << 
1694     wei = cns * std::pow(ene,alp);            << 
1695   }                                           << 
1696   else if(IntType=="Exp")                     << 
1697   {                                           << 
1698     auto e0 = Arb_ezero[nbelow + 1];          << 
1699     auto cns = Arb_Const[nbelow + 1];         << 
1700     wei = cns * std::exp(-ene/e0);            << 
1701   }                                           << 
1702   else if(IntType=="Spline")                  << 
1703   {                                           << 
1704     wei = SplineInt[nbelow+1]->CubicSplineInt << 
1705   }                                           << 
1706   return wei;                                 << 
1707 }                                             << 
1708                                               << 
1709 void G4SPSEneDistribution::GenArbPointEnergie << 
1710 {                                             << 
1711   if (verbosityLevel > 0)                     << 
1712   {                                           << 
1713     G4cout << "In GenArbPointEnergies" << G4e << 
1714   }                                           << 
1715                                               << 
1716   G4double rndm = eneRndm->GenRandEnergy();   << 
1717                                               << 
1718   // Find the Bin, have x, y, no of points, a << 
1719   //                                          << 
1720   std::size_t nabove = IPDFArbEnergyH.GetVect << 
1721                                               << 
1722   // Binary search to find bin that rndm is i << 
1723   //                                          << 
1724   while (nabove - nbelow > 1)                 << 
1725   {                                           << 
1726     middle = (nabove + nbelow) / 2;           << 
1727     if (rndm == IPDFArbEnergyH(middle))       << 
1728     {                                         << 
1729       break;                                  << 
1730     }                                         << 
1731     if (rndm < IPDFArbEnergyH(middle))        << 
1732     {                                         << 
1733       nabove = middle;                        << 
1734     }                                         << 
1735     else                                      << 
1736     {                                         << 
1737       nbelow = middle;                        << 
1738     }                                         << 
1739   }                                           << 
1740   threadLocal_t& params = threadLocalData.Get << 
1741   if (IntType == "Lin")                       << 
1742   {                                           << 
1743     // Update thread-local copy of parameters << 
1744     //                                        << 
1745     params.Emax = IPDFArbEnergyH.GetLowEdgeEn << 
1746     params.Emin = IPDFArbEnergyH.GetLowEdgeEn << 
1747     params.grad = Arb_grad[nbelow + 1];       << 
1748     params.cept = Arb_cept[nbelow + 1];       << 
1749     GenerateLinearEnergies(true);             << 
1750   }                                           << 
1751   else if (IntType == "Log")                  << 
1752   {                                           << 
1753     params.Emax = IPDFArbEnergyH.GetLowEdgeEn << 
1754     params.Emin = IPDFArbEnergyH.GetLowEdgeEn << 
1755     params.alpha = Arb_alpha[nbelow + 1];     << 
1756     GeneratePowEnergies(true);                << 
1757   }                                           << 
1758   else if (IntType == "Exp")                  << 
1759   {                                           << 
1760     params.Emax = IPDFArbEnergyH.GetLowEdgeEn << 
1761     params.Emin = IPDFArbEnergyH.GetLowEdgeEn << 
1762     params.Ezero = Arb_ezero[nbelow + 1];     << 
1763     GenerateExpEnergies(true);                << 
1764   }                                           << 
1765   else if (IntType == "Spline")               << 
1766   {                                           << 
1767     params.Emax = IPDFArbEnergyH.GetLowEdgeEn << 
1768     params.Emin = IPDFArbEnergyH.GetLowEdgeEn << 
1769     params.particle_energy = -1e100;          << 
1770     rndm = eneRndm->GenRandEnergy();          << 
1771     while (params.particle_energy < params.Em << 
1772         || params.particle_energy > params.Em << 
1773     {                                         << 
1774       params.particle_energy =                << 
1775         SplineInt[nbelow+1]->CubicSplineInter << 
1776       rndm = eneRndm->GenRandEnergy();        << 
1777     }                                         << 
1778     if (verbosityLevel >= 1)                  << 
1779     {                                         << 
1780       G4cout << "Energy is " << params.partic << 
1781     }                                         << 
1782   }                                           << 
1783   else                                        << 
1784   {                                           << 
1785     G4Exception("G4SPSEneDistribution::GenArb << 
1786                 FatalException, "Error: IntTy << 
1787   }                                           << 
1788 }                                             << 
1789                                               << 
1790 void G4SPSEneDistribution::GenEpnHistEnergies << 
1791 {                                             << 
1792   // Firstly convert to energy if not already << 
1793                                               << 
1794   G4AutoLock l(&mutex);                       << 
1795                                               << 
1796   if (Epnflag)  // true means spectrum is epn << 
1797   {                                           << 
1798     // Convert to energy by multiplying by A  << 
1799     //                                        << 
1800     ConvertEPNToEnergy();                     << 
1801   }                                           << 
1802   if (!IPDFEnergyExist)                       << 
1803   {                                           << 
1804     // IPDF has not been created, so create i << 
1805     //                                        << 
1806     G4double bins[1024], vals[1024], sum;     << 
1807     std::size_t ii;                           << 
1808     std::size_t maxbin = UDefEnergyH.GetVecto << 
1809     bins[0] = UDefEnergyH.GetLowEdgeEnergy(0) << 
1810     vals[0] = UDefEnergyH(0);                 << 
1811     sum = vals[0];                            << 
1812     for (ii = 1; ii < maxbin; ++ii)           << 
1813     {                                         << 
1814       bins[ii] = UDefEnergyH.GetLowEdgeEnergy << 
1815       vals[ii] = UDefEnergyH(ii) + vals[ii -  << 
1816       sum = sum + UDefEnergyH(ii);            << 
1817     }                                         << 
1818                                               << 
1819     l.lock();                                 << 
1820     for (ii = 0; ii < maxbin; ++ii)           << 
1821     {                                         << 
1822       vals[ii] = vals[ii] / sum;              << 
1823       IPDFEnergyH.InsertValues(bins[ii], vals << 
1824     }                                         << 
1825     IPDFEnergyExist = true;                   << 
1826                                                  1299        
1827   }                                           << 1300   return prob;
1828   l.unlock();                                 << 
1829                                               << 
1830   // IPDF has been create so carry on         << 
1831   //                                          << 
1832   G4double rndm = eneRndm->GenRandEnergy();   << 
1833   threadLocalData.Get().particle_energy = IPD << 
1834                                               << 
1835   if (verbosityLevel >= 1)                    << 
1836   {                                           << 
1837     G4cout << "Energy is " << threadLocalData << 
1838   }                                           << 
1839 }                                             << 
1840                                               << 
1841 void G4SPSEneDistribution::ConvertEPNToEnergy << 
1842 {                                             << 
1843   // Use this before particle generation to c << 
1844   // currently stored histogram from energy/n << 
1845                                               << 
1846   threadLocal_t& params = threadLocalData.Get << 
1847   if (params.particle_definition == nullptr)  << 
1848   {                                           << 
1849     G4cout << "Error: particle not defined" < << 
1850   }                                           << 
1851   else                                        << 
1852   {                                           << 
1853     // Need to multiply histogram by the numb << 
1854     // Baryon Number looks to hold the no. of << 
1855     //                                        << 
1856     G4int Bary = params.particle_definition-> << 
1857                                               << 
1858     // Change values in histogram, Read it ou << 
1859     //                                        << 
1860     std::size_t count, maxcount;              << 
1861     maxcount = EpnEnergyH.GetVectorLength();  << 
1862     G4double ebins[1024], evals[1024];        << 
1863     if (maxcount > 1024)                      << 
1864     {                                         << 
1865       G4Exception("G4SPSEneDistribution::Conv << 
1866                   "gps001", JustWarning,      << 
1867                   "Histogram contains more th << 
1868                    Those above 1024 will be i << 
1869       maxcount = 1024;                        << 
1870     }                                         << 
1871     if (maxcount < 1)                         << 
1872     {                                         << 
1873       G4Exception("G4SPSEneDistribution::Conv << 
1874                  "gps001", FatalException,    << 
1875                  "Histogram contains less tha << 
1876       return;                                 << 
1877     }                                         << 
1878     for (count = 0; count < maxcount; ++count << 
1879     {                                         << 
1880       // Read out                             << 
1881       ebins[count] = EpnEnergyH.GetLowEdgeEne << 
1882       evals[count] = EpnEnergyH(count);       << 
1883     }                                         << 
1884                                               << 
1885     // Multiply the channels by the nucleon n << 
1886     //                                        << 
1887     for (count = 0; count < maxcount; ++count << 
1888     {                                         << 
1889       ebins[count] = ebins[count] * Bary;     << 
1890     }                                         << 
1891                                               << 
1892     // Set Emin and Emax                      << 
1893     //                                        << 
1894     params.Emin = ebins[0];                   << 
1895     if (maxcount > 1)                         << 
1896     {                                         << 
1897       params.Emax = ebins[maxcount - 1];      << 
1898     }                                         << 
1899     else                                      << 
1900     {                                         << 
1901       params.Emax = ebins[0];                 << 
1902     }                                         << 
1903                                               << 
1904     // Put energy bins into new histogram - U << 
1905     //                                        << 
1906     for (count = 0; count < maxcount; ++count << 
1907     {                                         << 
1908       UDefEnergyH.InsertValues(ebins[count],  << 
1909     }                                         << 
1910     Epnflag = false; // so that you dont repe << 
1911   }                                           << 
1912 }                                             << 
1913                                               << 
1914 void G4SPSEneDistribution::ReSetHist(const G4 << 
1915 {                                             << 
1916   G4AutoLock l(&mutex);                       << 
1917   if (atype == "energy")                      << 
1918   {                                           << 
1919     UDefEnergyH = IPDFEnergyH = ZeroPhysVecto << 
1920     IPDFEnergyExist = false;                  << 
1921     Emin = 0.;                                << 
1922     Emax = 1e30;                              << 
1923   }                                           << 
1924   else if (atype == "arb")                    << 
1925   {                                           << 
1926     ArbEnergyH = IPDFArbEnergyH = ZeroPhysVec << 
1927     IPDFArbExist = false;                     << 
1928   }                                           << 
1929   else if (atype == "epn")                    << 
1930   {                                           << 
1931     UDefEnergyH = IPDFEnergyH = ZeroPhysVecto << 
1932     IPDFEnergyExist = false;                  << 
1933     EpnEnergyH = ZeroPhysVector;              << 
1934   }                                           << 
1935   else                                        << 
1936   {                                           << 
1937     G4cout << "Error, histtype not accepted " << 
1938   }                                           << 
1939 }                                             << 
1940                                               << 
1941 G4double G4SPSEneDistribution::GenerateOne(G4 << 
1942 {                                             << 
1943   // Copy global shared status to thread-loca << 
1944   //                                          << 
1945   threadLocal_t& params = threadLocalData.Get << 
1946   params.particle_definition=a;               << 
1947   params.particle_energy=-1;                  << 
1948   if(applyEvergyWeight)                       << 
1949   {                                           << 
1950     params.Emax = ArbEmax;                    << 
1951     params.Emin = ArbEmin;                    << 
1952   }                                           << 
1953   else                                        << 
1954   {                                           << 
1955     params.Emax = Emax;                       << 
1956     params.Emin = Emin;                       << 
1957   }                                           << 
1958   params.alpha = alpha;                       << 
1959   params.Ezero = Ezero;                       << 
1960   params.grad = grad;                         << 
1961   params.cept = cept;                         << 
1962   params.weight = weight;                     << 
1963   // particle_energy = -1.;                   << 
1964                                               << 
1965   if((EnergyDisType == "Mono") && ((MonoEnerg << 
1966   {                                           << 
1967     G4ExceptionDescription ed;                << 
1968     ed << "MonoEnergy " << G4BestUnit(MonoEne << 
1969        << " is outside of [Emin,Emax] = ["    << 
1970        << G4BestUnit(Emin,"Energy") << ", "   << 
1971        << G4BestUnit(Emax,"Energy") << ". Mon << 
1972     G4Exception("G4SPSEneDistribution::Genera << 
1973                 "GPS0001", JustWarning, ed);  << 
1974     params.particle_energy=MonoEnergy;        << 
1975     return params.particle_energy;            << 
1976   }                                           << 
1977   while ( (EnergyDisType == "Arb")            << 
1978         ?   (params.particle_energy < ArbEmin << 
1979           || params.particle_energy > ArbEmax << 
1980         :   (params.particle_energy < params. << 
1981           || params.particle_energy > params. << 
1982   {                                           << 
1983     if (Biased)                               << 
1984     {                                         << 
1985       GenerateBiasPowEnergies();              << 
1986     }                                         << 
1987     else                                      << 
1988     {                                         << 
1989       if (EnergyDisType == "Mono")            << 
1990       {                                       << 
1991         GenerateMonoEnergetic();              << 
1992       }                                       << 
1993       else if (EnergyDisType == "Lin")        << 
1994       {                                       << 
1995         GenerateLinearEnergies(false);        << 
1996       }                                       << 
1997       else if (EnergyDisType == "Pow")        << 
1998       {                                       << 
1999         GeneratePowEnergies(false);           << 
2000       }                                       << 
2001       else if (EnergyDisType == "CPow")       << 
2002       {                                       << 
2003         GenerateCPowEnergies();               << 
2004       }                                       << 
2005       else if (EnergyDisType == "Exp")        << 
2006       {                                       << 
2007         GenerateExpEnergies(false);           << 
2008       }                                       << 
2009       else if (EnergyDisType == "Gauss")      << 
2010       {                                       << 
2011         GenerateGaussEnergies();              << 
2012       }                                       << 
2013       else if (EnergyDisType == "Brem")       << 
2014       {                                       << 
2015         GenerateBremEnergies();               << 
2016       }                                       << 
2017       else if (EnergyDisType == "Bbody")      << 
2018       {                                       << 
2019         GenerateBbodyEnergies();              << 
2020       }                                       << 
2021       else if (EnergyDisType == "Cdg")        << 
2022       {                                       << 
2023         GenerateCdgEnergies();                << 
2024       }                                       << 
2025       else if (EnergyDisType == "User")       << 
2026       {                                       << 
2027         GenUserHistEnergies();                << 
2028       }                                       << 
2029       else if (EnergyDisType == "Arb")        << 
2030       {                                       << 
2031         GenArbPointEnergies();                << 
2032       }                                       << 
2033       else if (EnergyDisType == "Epn")        << 
2034       {                                       << 
2035         GenEpnHistEnergies();                 << 
2036       }                                       << 
2037       else                                    << 
2038       {                                       << 
2039         G4cout << "Error: EnergyDisType has u << 
2040       }                                       << 
2041     }                                         << 
2042   }                                           << 
2043    return params.particle_energy;             << 
2044 }                                             << 
2045                                               << 
2046 G4double G4SPSEneDistribution::GetProbability << 
2047 {                                             << 
2048   G4double prob = 1.;                         << 
2049                                               << 
2050   threadLocal_t& params = threadLocalData.Get << 
2051   if (EnergyDisType == "Lin")                 << 
2052   {                                           << 
2053     if (prob_norm == 1.)                      << 
2054     {                                         << 
2055       prob_norm = 0.5*params.grad*params.Emax << 
2056                 + params.cept*params.Emax     << 
2057                 - 0.5*params.grad*params.Emin << 
2058                 - params.cept*params.Emin;    << 
2059     }                                         << 
2060     prob = params.cept + params.grad * ene;   << 
2061     prob /= prob_norm;                        << 
2062   }                                           << 
2063   else if (EnergyDisType == "Pow")            << 
2064   {                                           << 
2065     if (prob_norm == 1.)                      << 
2066     {                                         << 
2067       if (alpha != -1.)                       << 
2068       {                                       << 
2069         G4double emina = std::pow(params.Emin << 
2070         G4double emaxa = std::pow(params.Emax << 
2071         prob_norm = 1./(1.+alpha) * (emaxa -  << 
2072       }                                       << 
2073       else                                    << 
2074       {                                       << 
2075         prob_norm = std::log(params.Emax) - s << 
2076       }                                       << 
2077     }                                         << 
2078     prob = std::pow(ene, params.alpha)/prob_n << 
2079   }                                           << 
2080   else if (EnergyDisType == "Exp")            << 
2081   {                                           << 
2082     if (prob_norm == 1.)                      << 
2083     {                                         << 
2084       prob_norm = -params.Ezero*(std::exp(-pa << 
2085                                - std::exp(par << 
2086     }                                         << 
2087     prob = std::exp(-ene / params.Ezero);     << 
2088     prob /= prob_norm;                        << 
2089   }                                           << 
2090   else if (EnergyDisType == "Arb")            << 
2091   {                                           << 
2092     prob = ArbEnergyH.Value(ene);             << 
2093                                               << 
2094     if (prob <= 0.)                           << 
2095     {                                         << 
2096       G4cout << " Warning:G4SPSEneDistributio << 
2097              << prob << " " << ene << G4endl; << 
2098       prob = 1e-30;                           << 
2099     }                                         << 
2100   }                                           << 
2101   else                                        << 
2102   {                                           << 
2103     G4cout << "Error: EnergyDisType not suppo << 
2104   }                                           << 
2105                                               << 
2106   return prob;                                << 
2107 }                                                1301 }
2108                                                  1302