Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4AdjointPosOnPhysVolGenerator << 26 // $Id: G4AdjointPosOnPhysVolGenerator.hh,v 1.2 2009/11/18 17:57:59 gcosmo Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03-patch-02 $ 27 // 28 // 28 // Class description: << 29 ///////////////////////////////////////////////////////////////////////////////// >> 30 // Class Name: G4AdjointPosOnPhysVolGenerator >> 31 // Author: L. Desorgher >> 32 // Organisation: SpaceIT GmbH >> 33 // Contract: ESA contract 21435/08/NL/AT >> 34 // Customer: ESA/ESTEC >> 35 ///////////////////////////////////////////////////////////////////////////////// 29 // 36 // 30 // This class is responsible for the generatio << 37 // CHANGE HISTORY 31 // on the external surface of a user selected << 38 // -------------- 32 // The particles are generated uniformly on th << 39 // ChangeHistory: 33 // distribution set to a cosine law relative t << 40 // 1st June 2006 creation by L. Desorgher 34 // It is equivalent to the flux going in from << 41 // 35 // is considered outside. << 42 //------------------------------------------------------------- 36 // It uses ray tracking technique and can be a << 43 // Documentation: 37 // volumes. Using the ray tracking technique t << 44 // This class is responsible for the generation of primary adjoint particle on the external surface of a user selected volume. 38 // is also computed. The area is needed to fix << 45 // The particle are generated uniformly on the surface with the angular distribution set to a cosine law relative to normal of the surface. 39 // adjoint particle. << 46 // It is equivalent to the flux going in from the surface if an isotropic flux is considered outside. 40 // At the time of the development of this clas << 47 // It uses ray tracking technique and can be applied to all kind of convex volume. Uisng the ray tracking technique the area 41 // volume surface and computation of surface w << 48 // of the external surface is also computed. The area is needed to fix the weight of the primary adjoint particle. 42 // the general ray tracking technique was adop << 49 // At the time of the development of this class, generation of particle on volume surface and computation of surface was limited in G4, 43 // G4VSolid could be now (2009) used instead. << 50 // therfore the general ray tracking technique was adopted. It could be now (2009) that direct method of G4VSolid could be used instead. To be checked! 44 << 51 // 45 // Author: L. Desorgher, SpaceIT GmbH - 01.06. << 52 // 46 // Contract: ESA contract 21435/08/NL/AT << 53 // 47 // Customer: ESA/ESTEC << 54 #ifndef G4AdjointPosOnPhysVolGenerator_h 48 // ------------------------------------------- << 55 #define G4AdjointPosOnPhysVolGenerator_h 1 49 #ifndef G4AdjointPosOnPhysVolGenerator_hh << 50 #define G4AdjointPosOnPhysVolGenerator_hh 1 << 51 56 52 #include "G4VPhysicalVolume.hh" 57 #include "G4VPhysicalVolume.hh" 53 #include "G4AffineTransform.hh" 58 #include "G4AffineTransform.hh" 54 #include "G4ThreeVector.hh" 59 #include "G4ThreeVector.hh" 55 60 56 class G4VSolid; 61 class G4VSolid; 57 62 58 class G4AdjointPosOnPhysVolGenerator 63 class G4AdjointPosOnPhysVolGenerator >> 64 /////////////////////// 59 { 65 { 60 //--------- << 61 public: << 62 //--------- << 63 66 64 static G4AdjointPosOnPhysVolGenerator* Ge << 67 //-------- >> 68 public: //without description >> 69 //-------- >> 70 >> 71 static G4AdjointPosOnPhysVolGenerator* GetInstance(); 65 72 66 G4VPhysicalVolume* DefinePhysicalVolume(co << 73 //-------- 67 void DefinePhysicalVolume1(const G4String& << 74 public: //public methods 68 G4double ComputeAreaOfExtSurface(); << 75 //-------- 69 G4double ComputeAreaOfExtSurface(G4int NSt << 76 G4VPhysicalVolume* DefinePhysicalVolume(const G4String& aName); 70 G4double ComputeAreaOfExtSurface(G4double << 77 void DefinePhysicalVolume1(const G4String& aName); 71 G4double ComputeAreaOfExtSurface(G4VSolid* << 78 G4double ComputeAreaOfExtSurface(); 72 G4double ComputeAreaOfExtSurface(G4VSolid* << 79 G4double ComputeAreaOfExtSurface(G4int NStat); 73 G4double ComputeAreaOfExtSurface(G4VSolid* << 80 G4double ComputeAreaOfExtSurface(G4double epsilon); >> 81 G4double ComputeAreaOfExtSurface(G4VSolid* aSolid); >> 82 G4double ComputeAreaOfExtSurface(G4VSolid* aSolid,G4int NStat); >> 83 G4double ComputeAreaOfExtSurface(G4VSolid* aSolid,G4double epsilon); 74 84 75 void GenerateAPositionOnTheExtSurfaceOfASo << 85 void GenerateAPositionOnTheExtSurfaceOfASolid(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); 76 << 86 void GenerateAPositionOnTheExtSurfaceOfTheSolid(G4ThreeVector& p, G4ThreeVector& direction); 77 << 87 void GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p, G4ThreeVector& direction); 78 void GenerateAPositionOnTheExtSurfaceOfThe << 88 void GenerateAPositionOnTheExtSurfaceOfThePhysicalVolume(G4ThreeVector& p, G4ThreeVector& direction, 79 << 89 G4double& costh_to_normal); 80 void GenerateAPositionOnTheExtSurfaceOfThe << 90 81 << 91 //inline public methods 82 void GenerateAPositionOnTheExtSurfaceOfThe << 92 83 << 93 inline void SetSolid(G4VSolid* aSolid){theSolid=aSolid;} 84 << 94 inline G4double GetAreaOfExtSurfaceOfThePhysicalVolume(){return AreaOfExtSurfaceOfThePhysicalVolume;} 85 << 95 inline G4double GetCosThDirComparedToNormal(){return CosThDirComparedToNormal;} 86 inline void SetSolid(G4VSolid* aSolid) << 87 { theSolid=aSolid; } << 88 inline G4double GetAreaOfExtSurfaceOfThePh << 89 { return AreaOfExtSurfaceOfThePhysicalVo << 90 inline G4double GetCosThDirComparedToNorma << 91 { return CosThDirComparedToNormal; } << 92 96 93 //--------- 97 //--------- 94 private: // private methods << 98 private: //private methods 95 //--------- 99 //--------- 96 G4AdjointPosOnPhysVolGenerator() = default << 100 G4AdjointPosOnPhysVolGenerator(); 97 ~G4AdjointPosOnPhysVolGenerator() = default << 101 ~G4AdjointPosOnPhysVolGenerator(); 98 G4double ComputeAreaOfExtSurfaceStartingFr << 102 G4double ComputeAreaOfExtSurfaceStartingFromSphere(G4VSolid* aSolid,G4int NStat); 99 << 103 G4double ComputeAreaOfExtSurfaceStartingFromBox(G4VSolid* aSolid,G4int NStat); 100 G4double ComputeAreaOfExtSurfaceStartingFr << 104 void GenerateAPositionOnASolidBoundary(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); 101 << 105 G4double GenerateAPositionOnASphereBoundary(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); 102 void GenerateAPositionOnASolidBoundary(G4V << 106 G4double GenerateAPositionOnABoxBoundary(G4VSolid* aSolid,G4ThreeVector& p, G4ThreeVector& direction); 103 G4T << 107 void ComputeTransformationFromPhysVolToWorld(); 104 G4T << 105 G4double GenerateAPositionOnASphereBoundar << 106 << 107 << 108 G4double GenerateAPositionOnABoxBoundary(G << 109 G << 110 G << 111 void ComputeTransformationFromPhysVolToWor << 112 108 113 //--------- 109 //--------- 114 private: // attributes << 110 private: //attributes 115 //--------- 111 //--------- 116 << 112 static G4AdjointPosOnPhysVolGenerator* theInstance; 117 static G4ThreadLocal G4AdjointPosOnPhysVolG << 113 G4VSolid* theSolid; 118 G4VSolid* theSolid = nullptr; << 114 G4VPhysicalVolume* thePhysicalVolume; 119 G4VPhysicalVolume* thePhysicalVolume = null << 115 G4int NStat; 120 << 116 G4double epsilon; 121 G4bool UseSphere{true}; << 117 G4bool UseSphere; 122 G4String ModelOfSurfaceSource{"OnSolid"}; << 118 G4String ModelOfSurfaceSource; >> 119 G4double ExtSourceRadius; >> 120 G4double ExtSourceDx,ExtSourceDy,ExtSourceDz ; 123 G4AffineTransform theTransformationFromPhys 121 G4AffineTransform theTransformationFromPhysVolToWorld; 124 G4double AreaOfExtSurfaceOfThePhysicalVolum << 122 G4double AreaOfExtSurfaceOfThePhysicalVolume; 125 G4double CosThDirComparedToNormal{0.}; << 123 G4double CosThDirComparedToNormal; 126 }; 124 }; 127 125 128 #endif 126 #endif >> 127 129 128