Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4PSSphereSurfaceFlux.cc,v 1.3 2009/11/14 00:01:13 asaim Exp $ >> 28 // GEANT4 tag $Name: geant4-09-03 $ 27 // 29 // 28 // G4PSSphereSurfaceFlux 30 // G4PSSphereSurfaceFlux 29 #include "G4PSSphereSurfaceFlux.hh" 31 #include "G4PSSphereSurfaceFlux.hh" 30 << 31 #include "G4SystemOfUnits.hh" << 32 #include "G4StepStatus.hh" 32 #include "G4StepStatus.hh" 33 #include "G4Track.hh" 33 #include "G4Track.hh" 34 #include "G4VSolid.hh" 34 #include "G4VSolid.hh" 35 #include "G4VPhysicalVolume.hh" 35 #include "G4VPhysicalVolume.hh" 36 #include "G4VPVParameterisation.hh" 36 #include "G4VPVParameterisation.hh" 37 #include "G4UnitsTable.hh" 37 #include "G4UnitsTable.hh" 38 #include "G4GeometryTolerance.hh" 38 #include "G4GeometryTolerance.hh" 39 ////////////////////////////////////////////// 39 //////////////////////////////////////////////////////////////////////////////// 40 // (Description) 40 // (Description) 41 // This is a primitive scorer class for scor 41 // This is a primitive scorer class for scoring only Surface Flux. 42 // Flux version assumes only for G4Sphere sha << 42 // Flux version assumes only for G4Sphere shape. 43 // 43 // 44 // Surface is defined at the inside of sphere 44 // Surface is defined at the inside of sphere. 45 // Direction -Rmin +Rmax 45 // Direction -Rmin +Rmax 46 // 0 IN || OUT ->|<- | 46 // 0 IN || OUT ->|<- | 47 // 1 IN ->| | 47 // 1 IN ->| | 48 // 2 OUT |<- | 48 // 2 OUT |<- | 49 // 49 // 50 // Created: 2005-11-14 Tsukasa ASO, Akinori K 50 // Created: 2005-11-14 Tsukasa ASO, Akinori Kimura. 51 // 29-Mar-2007 T.Aso, Bug fix for momentum d 51 // 29-Mar-2007 T.Aso, Bug fix for momentum direction at outgoing flux. 52 // 2010-07-22 Introduce Unit specification. << 52 // 53 // 2010-07-22 Add weighted and divideByAre o << 54 // 2011-02-21 Get correct momentum direction << 55 // 2011-09-09 Modify comment in PrintAll(). << 56 // 2014-03-03 T.Aso, To use always positive << 57 ////////////////////////////////////////////// 53 /////////////////////////////////////////////////////////////////////////////// 58 54 59 G4PSSphereSurfaceFlux::G4PSSphereSurfaceFlux(c << 55 G4PSSphereSurfaceFlux::G4PSSphereSurfaceFlux(G4String name, 60 G << 56 G4int direction, G4int depth) 61 : G4PSSphereSurfaceFlux(name, direction, "pe << 57 :G4VPrimitiveScorer(name,depth),HCID(-1),fDirection(direction) 62 {} << 58 {;} 63 << 59 64 G4PSSphereSurfaceFlux::G4PSSphereSurfaceFlux(c << 60 G4PSSphereSurfaceFlux::~G4PSSphereSurfaceFlux() 65 c << 61 {;} 66 : G4VPrimitiveScorer(name, depth) << 67 , HCID(-1) << 68 , fDirection(direction) << 69 , EvtMap(nullptr) << 70 , weighted(true) << 71 , divideByArea(true) << 72 { << 73 DefineUnitAndCategory(); << 74 SetUnit(unit); << 75 } << 76 62 77 G4bool G4PSSphereSurfaceFlux::ProcessHits(G4St << 63 G4bool G4PSSphereSurfaceFlux::ProcessHits(G4Step* aStep,G4TouchableHistory*) 78 { 64 { 79 G4StepPoint* preStep = aStep->GetPreStepPoin 65 G4StepPoint* preStep = aStep->GetPreStepPoint(); 80 << 66 G4VPhysicalVolume* physVol = preStep->GetPhysicalVolume(); 81 G4VPhysicalVolume* physVol = preStep-> << 82 G4VPVParameterisation* physParam = physVol-> 67 G4VPVParameterisation* physParam = physVol->GetParameterisation(); 83 G4VSolid* solid = nullptr; << 68 G4VSolid * solid = 0; 84 if(physParam != nullptr) << 69 if(physParam) 85 { // for parameterized volume << 70 { // for parameterized volume 86 G4int idx = << 71 G4int idx = ((G4TouchableHistory*)(aStep->GetPreStepPoint()->GetTouchable())) 87 ((G4TouchableHistory*) (aStep->GetPreSte << 72 ->GetReplicaNumber(indexDepth); 88 ->GetReplicaNumber(indexDepth); << 89 solid = physParam->ComputeSolid(idx, physV 73 solid = physParam->ComputeSolid(idx, physVol); 90 solid->ComputeDimensions(physParam, idx, p << 74 solid->ComputeDimensions(physParam,idx,physVol); 91 } 75 } 92 else 76 else 93 { // for ordinary volume << 77 { // for ordinary volume 94 solid = physVol->GetLogicalVolume()->GetSo 78 solid = physVol->GetLogicalVolume()->GetSolid(); 95 } 79 } 96 80 97 auto sphereSolid = (G4Sphere*) (solid); << 81 // if( solid->GetEntityType() != "G4Sphere" ){ 98 << 82 // G4Exception("G4PSSphereSurfaceFluxScorer. - Solid type is not supported."); 99 G4int dirFlag = IsSelectedSurface(aStep, sph << 83 // return FALSE; 100 if(dirFlag > 0) << 84 // } 101 { << 85 G4Sphere* sphereSolid = (G4Sphere*)(solid); 102 if(fDirection == fFlux_InOut || fDirection << 86 103 { << 87 G4int dirFlag =IsSelectedSurface(aStep,sphereSolid); 104 G4StepPoint* thisStep = nullptr; << 88 if ( dirFlag > 0 ) { 105 if(dirFlag == fFlux_In) << 89 if ( fDirection == fFlux_InOut || fDirection == dirFlag ){ 106 { << 90 107 thisStep = preStep; << 91 G4StepPoint* thisStep=0; 108 } << 92 if ( dirFlag == fFlux_In ){ 109 else if(dirFlag == fFlux_Out) << 93 thisStep = preStep; 110 { << 94 }else if ( dirFlag == fFlux_Out ){ 111 thisStep = aStep->GetPostStepPoint(); << 95 thisStep = aStep->GetPreStepPoint(); 112 } << 96 }else{ 113 else << 97 return FALSE; 114 { << 115 return false; << 116 } 98 } 117 99 118 G4TouchableHandle theTouchable = thisSte 100 G4TouchableHandle theTouchable = thisStep->GetTouchableHandle(); 119 G4ThreeVector pdirection = thisSte << 101 G4ThreeVector pdirection = thisStep->GetMomentumDirection(); 120 G4ThreeVector localdir = << 102 G4ThreeVector localdir = 121 theTouchable->GetHistory()->GetTopTran << 103 theTouchable->GetHistory()->GetTopTransform().TransformAxis(pdirection); 122 G4double localdirL2 = localdir.x() * loc << 104 G4double localdirL2 = localdir.x()*localdir.x() 123 localdir.y() * loc << 105 +localdir.y()*localdir.y() 124 localdir.z() * loc << 106 +localdir.z()*localdir.z(); 125 G4ThreeVector stppos1 = aStep->GetPreSte << 107 G4ThreeVector stppos1= aStep->GetPreStepPoint()->GetPosition(); 126 G4ThreeVector localpos1 = << 108 G4ThreeVector localpos1 = 127 theTouchable->GetHistory()->GetTopTran << 109 theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos1); 128 G4double localR2 = localpos1.x() * local << 110 G4double localR2 = localpos1.x()*localpos1.x() 129 localpos1.y() * local << 111 +localpos1.y()*localpos1.y() 130 localpos1.z() * local << 112 +localpos1.z()*localpos1.z(); 131 G4double anglefactor = << 113 G4double anglefactor = (localdir.x()*localpos1.x() 132 (localdir.x() * localpos1.x() + locald << 114 +localdir.y()*localpos1.y() 133 localdir.z() * localpos1.z()) / << 115 +localdir.z()*localpos1.z()) 134 std::sqrt(localdirL2) / std::sqrt(loca << 116 /std::sqrt(localdirL2)/std::sqrt(localR2); 135 if(anglefactor < 0.0) << 117 136 anglefactor *= -1.0; << 118 G4double radi = sphereSolid->GetInsideRadius(); 137 << 119 G4double dph = sphereSolid->GetDeltaPhiAngle()/radian; 138 G4double current = 1.0 / anglefactor; << 120 G4double stth = sphereSolid->GetStartThetaAngle()/radian; 139 if(weighted) << 121 G4double enth = stth+sphereSolid->GetDeltaThetaAngle()/radian; 140 current *= thisStep->GetWeight(); // << 122 G4double square = radi*radi*dph*( -std::cos(enth) + std::cos(stth) ); 141 if(divideByArea) // << 123 142 { << 124 G4double current = thisStep->GetWeight(); // Flux (Particle Weight) 143 G4double radi = sphereSolid->GetInnerR << 125 current = current/square; // Flux with angle. 144 G4double dph = sphereSolid->GetDeltaP << 126 145 G4double stth = sphereSolid->GetStartT << 127 current /= anglefactor; 146 G4double enth = stth + sphereSolid->Ge << 147 current /= radi * radi * dph * (-std:: << 148 } << 149 128 150 G4int index = GetIndex(aStep); 129 G4int index = GetIndex(aStep); 151 EvtMap->add(index, current); << 130 EvtMap->add(index,current); 152 } 131 } 153 } 132 } 154 133 155 return true; << 134 return TRUE; 156 } 135 } 157 136 158 G4int G4PSSphereSurfaceFlux::IsSelectedSurface << 137 G4int G4PSSphereSurfaceFlux::IsSelectedSurface(G4Step* aStep, G4Sphere* sphereSolid){ 159 << 160 { << 161 G4TouchableHandle theTouchable = << 162 aStep->GetPreStepPoint()->GetTouchableHand << 163 G4double kCarTolerance = << 164 G4GeometryTolerance::GetInstance()->GetSur << 165 138 166 if(aStep->GetPreStepPoint()->GetStepStatus() << 139 G4TouchableHandle theTouchable = 167 { << 140 aStep->GetPreStepPoint()->GetTouchableHandle(); >> 141 G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); >> 142 >> 143 if (aStep->GetPreStepPoint()->GetStepStatus() == fGeomBoundary ){ 168 // Entering Geometry 144 // Entering Geometry 169 G4ThreeVector stppos1 = aStep->GetPreStepP << 145 G4ThreeVector stppos1= aStep->GetPreStepPoint()->GetPosition(); 170 G4ThreeVector localpos1 = << 146 G4ThreeVector localpos1 = 171 theTouchable->GetHistory()->GetTopTransf 147 theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos1); 172 G4double localR2 = localpos1.x() * localpo << 148 G4double localR2 = localpos1.x()*localpos1.x() 173 localpos1.y() * localpo << 149 +localpos1.y()*localpos1.y() 174 localpos1.z() * localpo << 150 +localpos1.z()*localpos1.z(); 175 // G4double InsideRadius2 = << 151 //G4double InsideRadius2 = 176 // sphereSolid->GetInsideRadius()*sphereS 152 // sphereSolid->GetInsideRadius()*sphereSolid->GetInsideRadius(); 177 // if(std::fabs( localR2 - InsideRadius2 ) << 153 //if(std::fabs( localR2 - InsideRadius2 ) < kCarTolerance ){ 178 G4double InsideRadius = sphereSolid->GetIn << 154 G4double InsideRadius = sphereSolid->GetInsideRadius(); 179 if(localR2 > << 155 if ( localR2 > (InsideRadius-kCarTolerance)*(InsideRadius-kCarTolerance) 180 (InsideRadius - kCarTolerance) * (Ins << 156 &&localR2 < (InsideRadius+kCarTolerance)*(InsideRadius+kCarTolerance)){ 181 localR2 < << 182 (InsideRadius + kCarTolerance) * (Ins << 183 { << 184 return fFlux_In; 157 return fFlux_In; 185 } 158 } 186 } 159 } 187 160 188 if(aStep->GetPostStepPoint()->GetStepStatus( << 161 if (aStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary ){ 189 { << 190 // Exiting Geometry 162 // Exiting Geometry 191 G4ThreeVector stppos2 = aStep->GetPostStep << 163 G4ThreeVector stppos2= aStep->GetPostStepPoint()->GetPosition(); 192 G4ThreeVector localpos2 = << 164 G4ThreeVector localpos2 = 193 theTouchable->GetHistory()->GetTopTransf 165 theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos2); 194 G4double localR2 = localpos2.x() * localpo << 166 G4double localR2 = localpos2.x()*localpos2.x() 195 localpos2.y() * localpo << 167 +localpos2.y()*localpos2.y() 196 localpos2.z() * localpo << 168 +localpos2.z()*localpos2.z(); 197 // G4double InsideRadius2 = << 169 //G4double InsideRadius2 = 198 // sphereSolid->GetInsideRadius()*sphereS 170 // sphereSolid->GetInsideRadius()*sphereSolid->GetInsideRadius(); 199 // if(std::facb(localR2 - InsideRadius2) ) << 171 //if(std::facb(localR2 - InsideRadius2) ) < kCarTolerance ){ 200 G4double InsideRadius = sphereSolid->GetIn << 172 G4double InsideRadius = sphereSolid->GetInsideRadius(); 201 if(localR2 > << 173 if ( localR2 > (InsideRadius-kCarTolerance)*(InsideRadius-kCarTolerance) 202 (InsideRadius - kCarTolerance) * (Ins << 174 &&localR2 < (InsideRadius+kCarTolerance)*(InsideRadius+kCarTolerance)){ 203 localR2 < << 204 (InsideRadius + kCarTolerance) * (Ins << 205 { << 206 return fFlux_Out; 175 return fFlux_Out; 207 } 176 } 208 } 177 } 209 178 210 return -1; 179 return -1; 211 } 180 } 212 181 213 void G4PSSphereSurfaceFlux::Initialize(G4HCofT 182 void G4PSSphereSurfaceFlux::Initialize(G4HCofThisEvent* HCE) 214 { 183 { 215 EvtMap = new G4THitsMap<G4double>(detector-> 184 EvtMap = new G4THitsMap<G4double>(detector->GetName(), GetName()); 216 if(HCID < 0) << 185 if ( HCID < 0 ) HCID = GetCollectionID(0); 217 HCID = GetCollectionID(0); << 186 HCE->AddHitsCollection(HCID, (G4VHitsCollection*)EvtMap); 218 HCE->AddHitsCollection(HCID, (G4VHitsCollect << 219 } 187 } 220 188 221 void G4PSSphereSurfaceFlux::clear() { EvtMap-> << 189 void G4PSSphereSurfaceFlux::EndOfEvent(G4HCofThisEvent*) >> 190 {;} >> 191 >> 192 void G4PSSphereSurfaceFlux::clear(){ >> 193 EvtMap->clear(); >> 194 } >> 195 >> 196 void G4PSSphereSurfaceFlux::DrawAll() >> 197 {;} 222 198 223 void G4PSSphereSurfaceFlux::PrintAll() 199 void G4PSSphereSurfaceFlux::PrintAll() 224 { 200 { 225 G4cout << " MultiFunctionalDet " << detecto 201 G4cout << " MultiFunctionalDet " << detector->GetName() << G4endl; 226 G4cout << " PrimitiveScorer " << GetName() < << 202 G4cout << " PrimitiveScorer " << GetName() <<G4endl; 227 G4cout << " Number of entries " << EvtMap->e 203 G4cout << " Number of entries " << EvtMap->entries() << G4endl; 228 for(const auto& [copy, flux] : *(EvtMap->Get << 204 std::map<G4int,G4double*>::iterator itr = EvtMap->GetMap()->begin(); 229 { << 205 for(; itr != EvtMap->GetMap()->end(); itr++) { 230 G4cout << " copy no.: " << copy << 206 G4cout << " copy no.: " << itr->first 231 << " Flux : " << *(flux) / GetUni << 207 << " current : " << *(itr->second) 232 << GetUnit() << "]" << G4endl; << 208 << G4endl; 233 } 209 } 234 } 210 } 235 211 236 void G4PSSphereSurfaceFlux::SetUnit(const G4St << 237 { << 238 if(divideByArea) << 239 { << 240 CheckAndSetUnit(unit, "Per Unit Surface"); << 241 } << 242 else << 243 { << 244 if(unit.empty()) << 245 { << 246 unitName = unit; << 247 unitValue = 1.0; << 248 } << 249 else << 250 { << 251 G4String msg = "Invalid unit [" + unit + << 252 GetUnit() + "] ) for " + << 253 G4Exception("G4PSSphereSurfaceFlux::SetU << 254 msg); << 255 } << 256 } << 257 } << 258 << 259 void G4PSSphereSurfaceFlux::DefineUnitAndCateg << 260 { << 261 // Per Unit Surface << 262 new G4UnitDefinition("percentimeter2", "perc << 263 (1. / cm2)); << 264 new G4UnitDefinition("permillimeter2", "perm << 265 (1. / mm2)); << 266 new G4UnitDefinition("permeter2", "perm2", " << 267 } << 268 212