Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4PSCylinderSurfaceFlux.cc 67992 2013-03-13 10:59:57Z gcosmo $ 27 // 28 // 28 // // G4PSCylinderSurfaceFlux 29 // // G4PSCylinderSurfaceFlux 29 #include "G4PSCylinderSurfaceFlux.hh" 30 #include "G4PSCylinderSurfaceFlux.hh" 30 31 31 #include "G4SystemOfUnits.hh" 32 #include "G4SystemOfUnits.hh" 32 #include "G4StepStatus.hh" 33 #include "G4StepStatus.hh" 33 #include "G4Track.hh" 34 #include "G4Track.hh" 34 #include "G4VSolid.hh" 35 #include "G4VSolid.hh" 35 #include "G4VPhysicalVolume.hh" 36 #include "G4VPhysicalVolume.hh" 36 #include "G4VPVParameterisation.hh" 37 #include "G4VPVParameterisation.hh" 37 #include "G4UnitsTable.hh" 38 #include "G4UnitsTable.hh" 38 #include "G4GeometryTolerance.hh" 39 #include "G4GeometryTolerance.hh" 39 #include "G4VScoreHistFiller.hh" << 40 << 41 // /////////////////////////////////////////// 40 // //////////////////////////////////////////////////////////////////////////////// 42 // (Description) 41 // (Description) 43 // This is a primitive scorer class for scor 42 // This is a primitive scorer class for scoring Surface Flux. 44 // Current version assumes only for G4Tubs sh 43 // Current version assumes only for G4Tubs shape, and the surface 45 // is fixed on inner plane of the tube. 44 // is fixed on inner plane of the tube. 46 // 45 // 47 // Surface is defined at the innner surface of 46 // Surface is defined at the innner surface of the tube. 48 // Direction R R+dR 47 // Direction R R+dR 49 // 0 IN || OUT ->|<- | 48 // 0 IN || OUT ->|<- | 50 // 1 IN ->| | 49 // 1 IN ->| | 51 // 2 OUT |<- | 50 // 2 OUT |<- | 52 // 51 // 53 // Created: 2007-03-29 Tsukasa ASO 52 // Created: 2007-03-29 Tsukasa ASO 54 // 2010-07-22 Introduce Unit specification. 53 // 2010-07-22 Introduce Unit specification. 55 // 2010-07-22 Add weighted and divideByArea 54 // 2010-07-22 Add weighted and divideByArea options 56 // 2011-02-21 Get correct momentum direction 55 // 2011-02-21 Get correct momentum direction in Flux_Out. 57 // 2020-10-06 Use G4VPrimitivePlotter and fi << 58 // vs. surface flux * track weigh << 59 // << 60 ////////////////////////////////////////////// 56 /////////////////////////////////////////////////////////////////////////////// 61 57 62 G4PSCylinderSurfaceFlux::G4PSCylinderSurfaceFl << 58 G4PSCylinderSurfaceFlux::G4PSCylinderSurfaceFlux(G4String name, 63 << 59 G4int direction, G4int depth) 64 : G4PSCylinderSurfaceFlux(name, direction, " << 60 : G4VPrimitiveScorer(name,depth),HCID(-1),fDirection(direction), 65 {} << 61 weighted(true),divideByArea(true) 66 << 67 G4PSCylinderSurfaceFlux::G4PSCylinderSurfaceFl << 68 << 69 << 70 : G4VPrimitivePlotter(name, depth) << 71 , HCID(-1) << 72 , fDirection(direction) << 73 , EvtMap(nullptr) << 74 , weighted(true) << 75 , divideByArea(true) << 76 { 62 { 77 DefineUnitAndCategory(); << 63 DefineUnitAndCategory(); 78 SetUnit(unit); << 64 SetUnit("percm2"); 79 } 65 } 80 66 81 G4bool G4PSCylinderSurfaceFlux::ProcessHits(G4 << 67 G4PSCylinderSurfaceFlux::G4PSCylinderSurfaceFlux(G4String name, >> 68 G4int direction, >> 69 const G4String& unit, >> 70 G4int depth) >> 71 : G4VPrimitiveScorer(name,depth),HCID(-1),fDirection(direction), >> 72 weighted(true),divideByArea(true) >> 73 { >> 74 DefineUnitAndCategory(); >> 75 SetUnit(unit); >> 76 } >> 77 >> 78 G4PSCylinderSurfaceFlux::~G4PSCylinderSurfaceFlux() >> 79 {;} >> 80 >> 81 G4bool G4PSCylinderSurfaceFlux::ProcessHits(G4Step* aStep,G4TouchableHistory*) 82 { 82 { 83 G4StepPoint* preStep = aStep->GetPreStepPoin 83 G4StepPoint* preStep = aStep->GetPreStepPoint(); 84 G4VSolid* solid = ComputeCurrentSolid(a << 85 assert(dynamic_cast<G4Tubs*>(solid)); << 86 84 87 auto tubsSolid = static_cast<G4Tubs*>(solid << 85 G4VPhysicalVolume* physVol = preStep->GetPhysicalVolume(); >> 86 G4VPVParameterisation* physParam = physVol->GetParameterisation(); >> 87 G4VSolid * solid = 0; >> 88 if(physParam) >> 89 { // for parameterized volume >> 90 G4int idx = ((G4TouchableHistory*)(aStep->GetPreStepPoint()->GetTouchable())) >> 91 ->GetReplicaNumber(indexDepth); >> 92 solid = physParam->ComputeSolid(idx, physVol); >> 93 solid->ComputeDimensions(physParam,idx,physVol); >> 94 } >> 95 else >> 96 { // for ordinary volume >> 97 solid = physVol->GetLogicalVolume()->GetSolid(); >> 98 } 88 99 89 G4int dirFlag = IsSelectedSurface(aStep, tub << 100 G4Tubs* tubsSolid = (G4Tubs*)(solid); >> 101 >> 102 G4int dirFlag =IsSelectedSurface(aStep,tubsSolid); >> 103 >> 104 if ( dirFlag > 0 ){ >> 105 if (fDirection == fFlux_InOut || dirFlag == fDirection ){ 90 106 91 if(dirFlag > 0) << 107 G4StepPoint* thisStep=0; 92 { << 108 if ( dirFlag == fFlux_In ){ 93 if(fDirection == fFlux_InOut || dirFlag == << 109 thisStep = preStep; 94 { << 110 }else if ( dirFlag == fFlux_Out ){ 95 G4StepPoint* thisStep = nullptr; << 111 thisStep = aStep->GetPostStepPoint(); 96 if(dirFlag == fFlux_In) << 112 }else{ 97 { << 113 return FALSE; 98 thisStep = preStep; << 99 } << 100 else if(dirFlag == fFlux_Out) << 101 { << 102 thisStep = aStep->GetPostStepPoint(); << 103 } 114 } 104 else << 115 105 { << 106 return false; << 107 } << 108 << 109 G4TouchableHandle theTouchable = thisSte 116 G4TouchableHandle theTouchable = thisStep->GetTouchableHandle(); 110 G4ThreeVector pdirection = thisSte << 117 G4ThreeVector pdirection = thisStep->GetMomentumDirection(); 111 G4ThreeVector localdir = << 118 G4ThreeVector localdir = 112 theTouchable->GetHistory()->GetTopTran << 119 theTouchable->GetHistory()->GetTopTransform().TransformAxis(pdirection); 113 G4ThreeVector position = thisStep->GetPo 120 G4ThreeVector position = thisStep->GetPosition(); 114 G4ThreeVector localpos = << 121 G4ThreeVector localpos = 115 theTouchable->GetHistory()->GetTopTran << 122 theTouchable->GetHistory()->GetTopTransform().TransformAxis(position); 116 G4double angleFactor = << 123 G4double angleFactor = (localdir.x()*localpos.x()+localdir.y()*localpos.y()) 117 (localdir.x() * localpos.x() + localdi << 124 /std::sqrt(localdir.x()*localdir.x() 118 std::sqrt(localdir.x() * localdir.x() << 125 +localdir.y()*localdir.y()+localdir.z()*localdir.z()) 119 localdir.z() * localdir.z()) << 126 /std::sqrt(localpos.x()*localpos.x()+localpos.y()*localpos.y()); 120 std::sqrt(localpos.x() * localpos.x() << 127 121 << 128 if ( angleFactor < 0 ) angleFactor *= -1.; 122 if(angleFactor < 0) << 129 G4double square = 2.*tubsSolid->GetZHalfLength() 123 angleFactor *= -1.; << 130 *tubsSolid->GetInnerRadius()* tubsSolid->GetDeltaPhiAngle()/radian; 124 G4double square = 2. * tubsSolid->GetZHa << 131 125 tubsSolid->GetInnerRad << 126 tubsSolid->GetDeltaPhi << 127 << 128 G4double flux = 1.0; 132 G4double flux = 1.0; 129 if(weighted) << 133 if ( weighted ) flux *=preStep->GetWeight(); 130 flux *= preStep->GetWeight(); << 131 // Current (Particle Weight) 134 // Current (Particle Weight) 132 135 133 flux = flux / angleFactor; << 136 flux = flux/angleFactor; 134 if(divideByArea) << 137 if ( divideByArea ) flux /= square; 135 flux /= square; << 138 //Flux with angle. 136 // Flux with angle. << 137 G4int index = GetIndex(aStep); 139 G4int index = GetIndex(aStep); 138 EvtMap->add(index, flux); << 140 EvtMap->add(index,flux); 139 << 141 return TRUE; 140 if(!hitIDMap.empty() && hitIDMap.find(in << 142 }else{ 141 { << 143 return FALSE; 142 auto filler = G4VScoreHistFiller::Inst << 143 if(filler == nullptr) << 144 { << 145 G4Exception("G4PSCylinderSurfaceFlux << 146 JustWarning, << 147 "G4TScoreHistFiller is n << 148 "not filled."); << 149 } << 150 else << 151 { << 152 filler->FillH1(hitIDMap[index], this << 153 } << 154 } << 155 << 156 return true; << 157 } 144 } 158 << 145 }else{ 159 return false; << 146 return FALSE; 160 } 147 } 161 << 162 return false; << 163 } 148 } 164 149 165 G4int G4PSCylinderSurfaceFlux::IsSelectedSurfa << 150 G4int G4PSCylinderSurfaceFlux::IsSelectedSurface(G4Step* aStep, G4Tubs* tubsSolid){ 166 << 151 167 { << 152 G4TouchableHandle theTouchable = 168 G4TouchableHandle theTouchable = << 169 aStep->GetPreStepPoint()->GetTouchableHand 153 aStep->GetPreStepPoint()->GetTouchableHandle(); 170 G4double kCarTolerance = << 154 G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 171 G4GeometryTolerance::GetInstance()->GetSur << 172 155 173 if(aStep->GetPreStepPoint()->GetStepStatus() << 156 if (aStep->GetPreStepPoint()->GetStepStatus() == fGeomBoundary ){ 174 { << 175 // Entering Geometry 157 // Entering Geometry 176 G4ThreeVector stppos1 = aStep->GetPreStepP << 158 G4ThreeVector stppos1= aStep->GetPreStepPoint()->GetPosition(); 177 G4ThreeVector localpos1 = << 159 G4ThreeVector localpos1 = 178 theTouchable->GetHistory()->GetTopTransf 160 theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos1); 179 if(std::fabs(localpos1.z()) > tubsSolid->G << 161 if ( std::fabs(localpos1.z()) > tubsSolid->GetZHalfLength() ) return -1; 180 return -1; << 162 //if(std::fabs( localpos1.x()*localpos1.x()+localpos1.y()*localpos1.y() 181 // if(std::fabs( localpos1.x()*localpos1.x << 182 // - (tubsSolid->GetInnerRadius()*tubsSo 163 // - (tubsSolid->GetInnerRadius()*tubsSolid->GetInnerRadius())) 183 // <kCarTolerance ){ 164 // <kCarTolerance ){ 184 G4double localR2 = << 165 G4double localR2 = localpos1.x()*localpos1.x()+localpos1.y()*localpos1.y(); 185 localpos1.x() * localpos1.x() + localpos << 186 G4double InsideRadius = tubsSolid->GetInne 166 G4double InsideRadius = tubsSolid->GetInnerRadius(); 187 if(localR2 > << 167 if (localR2 > (InsideRadius-kCarTolerance)*(InsideRadius-kCarTolerance) 188 (InsideRadius - kCarTolerance) * (Ins << 168 &&localR2 < (InsideRadius+kCarTolerance)*(InsideRadius+kCarTolerance)){ 189 localR2 < << 190 (InsideRadius + kCarTolerance) * (Ins << 191 { << 192 return fFlux_In; 169 return fFlux_In; 193 } 170 } 194 } 171 } 195 172 196 if(aStep->GetPostStepPoint()->GetStepStatus( << 173 if (aStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary ){ 197 { << 198 // Exiting Geometry 174 // Exiting Geometry 199 G4ThreeVector stppos2 = aStep->GetPostStep << 175 G4ThreeVector stppos2= aStep->GetPostStepPoint()->GetPosition(); 200 G4ThreeVector localpos2 = << 176 G4ThreeVector localpos2 = 201 theTouchable->GetHistory()->GetTopTransf 177 theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos2); 202 if(std::fabs(localpos2.z()) > tubsSolid->G << 178 if ( std::fabs(localpos2.z()) > tubsSolid->GetZHalfLength() ) return -1; 203 return -1; << 179 //if(std::fabs( localpos2.x()*localpos2.x()+localpos2.y()*localpos2.y() 204 // if(std::fabs( localpos2.x()*localpos2.x << 180 // - (tubsSolid->GetInnerRadius()*tubsSolid->GetInnerRadius())) 205 // - (tubsSolid->GetInnerRadius()*tubsSo << 206 // <kCarTolerance ){ 181 // <kCarTolerance ){ 207 G4double localR2 = << 182 G4double localR2 = localpos2.x()*localpos2.x()+localpos2.y()*localpos2.y(); 208 localpos2.x() * localpos2.x() + localpos << 209 G4double InsideRadius = tubsSolid->GetInne 183 G4double InsideRadius = tubsSolid->GetInnerRadius(); 210 if(localR2 > << 184 if (localR2 > (InsideRadius-kCarTolerance)*(InsideRadius-kCarTolerance) 211 (InsideRadius - kCarTolerance) * (Ins << 185 &&localR2 < (InsideRadius+kCarTolerance)*(InsideRadius+kCarTolerance)){ 212 localR2 < << 213 (InsideRadius + kCarTolerance) * (Ins << 214 { << 215 return fFlux_Out; 186 return fFlux_Out; 216 } 187 } 217 } 188 } 218 189 219 return -1; 190 return -1; 220 } 191 } 221 192 222 void G4PSCylinderSurfaceFlux::Initialize(G4HCo 193 void G4PSCylinderSurfaceFlux::Initialize(G4HCofThisEvent* HCE) 223 { 194 { 224 EvtMap = new G4THitsMap<G4double>(GetMultiFu 195 EvtMap = new G4THitsMap<G4double>(GetMultiFunctionalDetector()->GetName(), 225 GetName()) << 196 GetName()); 226 if(HCID < 0) << 197 if ( HCID < 0 ) HCID = GetCollectionID(0); 227 HCID = GetCollectionID(0); << 198 HCE->AddHitsCollection(HCID, (G4VHitsCollection*)EvtMap); 228 HCE->AddHitsCollection(HCID, (G4VHitsCollect << 199 } >> 200 >> 201 void G4PSCylinderSurfaceFlux::EndOfEvent(G4HCofThisEvent*) >> 202 {;} >> 203 >> 204 void G4PSCylinderSurfaceFlux::clear(){ >> 205 EvtMap->clear(); 229 } 206 } 230 207 231 void G4PSCylinderSurfaceFlux::clear() { EvtMap << 208 void G4PSCylinderSurfaceFlux::DrawAll() >> 209 {;} 232 210 233 void G4PSCylinderSurfaceFlux::PrintAll() 211 void G4PSCylinderSurfaceFlux::PrintAll() 234 { 212 { 235 G4cout << " MultiFunctionalDet " << detecto 213 G4cout << " MultiFunctionalDet " << detector->GetName() << G4endl; 236 G4cout << " PrimitiveScorer" << GetName() << << 214 G4cout << " PrimitiveScorer" << GetName() <<G4endl; 237 G4cout << " Number of entries " << EvtMap->e 215 G4cout << " Number of entries " << EvtMap->entries() << G4endl; 238 for(const auto& [copy, flux] : *(EvtMap->Get << 216 std::map<G4int,G4double*>::iterator itr = EvtMap->GetMap()->begin(); 239 { << 217 for(; itr != EvtMap->GetMap()->end(); itr++) { 240 G4cout << " copy no.: " << copy << 218 G4cout << " copy no.: " << itr->first 241 << " flux : " << *(flux) / GetUni << 219 << " flux : " << *(itr->second)/GetUnitValue() 242 << GetUnit() << "]" << G4endl; << 220 << " ["<<GetUnit()<<"]" >> 221 << G4endl; 243 } 222 } 244 } 223 } 245 224 246 void G4PSCylinderSurfaceFlux::SetUnit(const G4 225 void G4PSCylinderSurfaceFlux::SetUnit(const G4String& unit) 247 { 226 { 248 if(divideByArea) << 227 if ( divideByArea ) { 249 { << 228 CheckAndSetUnit(unit,"Per Unit Surface"); 250 CheckAndSetUnit(unit, "Per Unit Surface"); << 229 } else { 251 } << 230 if (unit == "" ){ 252 else << 231 unitName = unit; 253 { << 232 unitValue = 1.0; 254 if(unit.empty()) << 233 }else{ 255 { << 234 G4String msg = "Invalid unit ["+unit+"] (Current unit is [" +GetUnit()+"] ) for " + GetName(); 256 unitName = unit; << 235 G4Exception("G4PSCylinderSurfaceFlux::SetUnit","DetPS0003",JustWarning,msg); 257 unitValue = 1.0; << 236 } 258 } << 259 else << 260 { << 261 G4String msg = "Invalid unit [" + unit + << 262 GetUnit() + "] ) for " + << 263 G4Exception("G4PSCylinderSurfaceFlux::Se << 264 msg); << 265 } 237 } 266 } << 267 } 238 } 268 239 269 void G4PSCylinderSurfaceFlux::DefineUnitAndCat << 240 void G4PSCylinderSurfaceFlux::DefineUnitAndCategory(){ 270 { << 241 // Per Unit Surface 271 // Per Unit Surface << 242 new G4UnitDefinition("percentimeter2","percm2","Per Unit Surface",(1./cm2)); 272 new G4UnitDefinition("percentimeter2", "perc << 243 new G4UnitDefinition("permillimeter2","permm2","Per Unit Surface",(1./mm2)); 273 (1. / cm2)); << 244 new G4UnitDefinition("permeter2","perm2","Per Unit Surface",(1./m2)); 274 new G4UnitDefinition("permillimeter2", "perm << 275 (1. / mm2)); << 276 new G4UnitDefinition("permeter2", "perm2", " << 277 } 245 } >> 246 >> 247 278 248