Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4MSSteppingAction implementation 27 // 28 // Author: M.Asai, 5 May 2006 29 // -------------------------------------------------------------------- 30 31 #include "G4MSSteppingAction.hh" 32 33 #include "G4LogicalVolume.hh" 34 #include "G4Material.hh" 35 #include "G4Region.hh" 36 #include "G4Step.hh" 37 #include "G4VPhysicalVolume.hh" 38 39 #include <map> 40 41 // -------------------------------------------------------------------- 42 void G4MSSteppingAction::Initialize(G4bool rSens, G4Region* reg) 43 { 44 regionSensitive = rSens; 45 theRegion = reg; 46 length = 0.; 47 x0 = 0.; 48 lambda = 0.; 49 shape_mat_info_v.clear(); 50 } 51 52 // -------------------------------------------------------------------- 53 void G4MSSteppingAction::UserSteppingAction(const G4Step* aStep) 54 { 55 G4StepPoint* preStepPoint = aStep->GetPreStepPoint(); 56 G4Region* region = preStepPoint->GetPhysicalVolume()->GetLogicalVolume()->GetRegion(); 57 58 if (regionSensitive && (region != theRegion)) return; 59 60 G4double stlen = aStep->GetStepLength(); 61 const G4Material* material = preStepPoint->GetMaterial(); 62 length += stlen; 63 x0 += stlen / (material->GetRadlen()); 64 lambda += stlen / (material->GetNuclearInterLength()); 65 66 // store information per step (1 geantino step = 1 solid) 67 { 68 shape_mat_info_v.push_back({}); 69 70 shape_mat_info_t & thisMaterialInfo = shape_mat_info_v.back(); 71 72 // calculate average mass number and atomic number 73 { 74 const std::vector<const G4Element*> * ElementVector_ptr = material->GetElementVector(); 75 for( auto & element : *ElementVector_ptr) 76 { 77 thisMaterialInfo.aveA += element->GetA(); 78 thisMaterialInfo.aveZ += element->GetZ(); 79 } 80 thisMaterialInfo.aveA /= ElementVector_ptr->size(); 81 thisMaterialInfo.aveZ /= ElementVector_ptr->size(); 82 } 83 thisMaterialInfo.density = material->GetDensity(); 84 thisMaterialInfo.radiation_length = material->GetRadlen(); 85 thisMaterialInfo.interaction_length = material->GetNuclearInterLength(); 86 thisMaterialInfo.thickness = aStep->GetStepLength(); 87 thisMaterialInfo.integrated_thickness = length; 88 thisMaterialInfo.lambda = stlen / (material->GetNuclearInterLength()); 89 thisMaterialInfo.x0 = stlen / (material->GetRadlen()); 90 thisMaterialInfo.integrated_lambda = lambda; 91 thisMaterialInfo.integrated_x0 = x0; 92 thisMaterialInfo.entry_point = preStepPoint->GetPosition(); 93 thisMaterialInfo.exit_point = aStep->GetPostStepPoint()->GetPosition(); 94 thisMaterialInfo.material_name = material->GetName(); 95 } 96 97 } 98 99 void G4MSSteppingAction::PrintEachMaterialVerbose(std::ostream & oss) 100 { 101 102 G4int colwidth = 11; 103 G4int matname_colwidth = 15; 104 105 oss << G4endl<< G4endl; 106 oss << " Material Atomic properties (averaged) Radiation Interaction Integr. Lambda X0 Entry point Exit point\n name Mass Z density length length Thickness Thickness (cm) (cm)\n (g/mole) (g/cm3) (cm) (cm) (cm) (cm) \n"; 107 oss << G4endl; 108 109 110 std::ios::fmtflags os_flags (oss.flags()); 111 for( auto & matInfo : shape_mat_info_v) 112 { 113 oss << std::setw(matname_colwidth) << std::left << matInfo.GetName(matname_colwidth) << " "; 114 115 oss << std::setw(colwidth) << std::fixed << std::setprecision(2) << matInfo.aveA / (CLHEP::g/CLHEP::mole); 116 oss << std::setw(colwidth) << std::fixed << std::setprecision(2) << matInfo.aveZ; 117 oss << std::setw(colwidth) << std::scientific << std::setprecision(2) << matInfo.density / (CLHEP::g/CLHEP::cm3); 118 oss << std::setw(colwidth) << std::scientific << matInfo.radiation_length / CLHEP::cm; 119 oss << std::setw(colwidth) << std::scientific << matInfo.interaction_length / CLHEP::cm; 120 oss << std::setw(colwidth) << std::scientific << matInfo.thickness/CLHEP::cm; 121 oss << std::setw(colwidth) << std::scientific << matInfo.integrated_thickness/CLHEP::cm; 122 oss << std::setw(colwidth) << std::scientific << matInfo.lambda; 123 oss << std::setw(colwidth) << std::scientific << matInfo.x0; 124 oss << std::setw(colwidth) << " "; 125 oss << std::scientific << std::right << "("; 126 oss << std::scientific << std::left << matInfo.entry_point.x()/CLHEP::cm; 127 oss << ", " << matInfo.entry_point.y()/CLHEP::cm; 128 oss << ", " << matInfo.entry_point.z()/CLHEP::cm << ")"; 129 oss << std::setw(colwidth) << " "; 130 oss << std::scientific << std::right << "("; 131 oss << std::scientific << std::left << matInfo.exit_point.x()/CLHEP::cm; 132 oss << ", " << matInfo.exit_point.y()/CLHEP::cm; 133 oss << ", " << matInfo.exit_point.z()/CLHEP::cm << ")"; 134 oss << G4endl; 135 oss << G4endl; 136 } 137 oss.flags(os_flags); // Restore original stream format 138 } 139 140 void G4MSSteppingAction::PrintIntegratedMaterialVerbose(std::ostream& oss) 141 { 142 // create database (db) of material name (key) and information 143 std::map<G4String, shape_mat_info_t> mat_db; 144 // accumulate information for each material name into mat_db 145 for(auto & matInfo : shape_mat_info_v) 146 { 147 G4String key = matInfo.material_name; 148 if( 0 == mat_db.count( key ) ) 149 { 150 mat_db[key] = shape_mat_info_t{}; 151 } 152 153 mat_db[key].x0 += matInfo.x0; 154 mat_db[key].thickness += matInfo.thickness; 155 mat_db[key].lambda += matInfo.lambda; 156 } 157 158 std::ios::fmtflags os_flags (oss.flags()); 159 oss << std::scientific << std::setprecision(2) << '\t'; 160 for(auto & [key,mat] : mat_db) 161 oss << '\t' << key 162 << '\t'<< mat.thickness/CLHEP::mm 163 << '\t'<< mat.x0 164 << '\t'<< mat.lambda; 165 oss.flags(os_flags); // Restore original stream format 166 return; 167 } 168