Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpRayleigh.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 //
 29 ////////////////////////////////////////////////////////////////////////
 30 // Optical Photon Rayleigh Scattering Class Implementation
 31 ////////////////////////////////////////////////////////////////////////
 32 //
 33 // File:        G4OpRayleigh.cc
 34 // Description: Discrete Process -- Rayleigh scattering of optical
 35 //    photons
 36 // Version:     1.0
 37 // Created:     1996-05-31
 38 // Author:      Juliet Armstrong
 39 // Updated:     2014-10-10 -  This version calculates the Rayleigh scattering
 40 //              length for more materials than just Water (although the Water
 41 //              default is kept). To do this the user would need to specify the
 42 //              ISOTHERMAL_COMPRESSIBILITY as a material property and
 43 //              optionally an RS_SCALE_LENGTH (useful for testing). Code comes
 44 //              from Philip Graham (Queen Mary University of London).
 45 //              2010-06-11 - Fix Bug 207; Thanks to Xin Qian
 46 //              (Kellogg Radiation Lab of Caltech)
 47 //              2005-07-28 - add G4ProcessType to constructor
 48 //              2001-10-18 by Peter Gumplinger
 49 //              eliminate unused variable warning on Linux (gcc-2.95.2)
 50 //              2001-09-18 by mma
 51 //              >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy
 52 //              2001-01-30 by Peter Gumplinger
 53 //              > allow for positiv and negative CosTheta and force the
 54 //              > new momentum direction to be in the same plane as the
 55 //              > new and old polarization vectors
 56 //              2001-01-29 by Peter Gumplinger
 57 //              > fix calculation of SinTheta (from CosTheta)
 58 //              1997-04-09 by Peter Gumplinger
 59 //              > new physics/tracking scheme
 60 //
 61 ////////////////////////////////////////////////////////////////////////
 62 
 63 #include "G4OpRayleigh.hh"
 64 #include "G4ios.hh"
 65 #include "G4PhysicalConstants.hh"
 66 #include "G4SystemOfUnits.hh"
 67 #include "G4OpticalParameters.hh"
 68 #include "G4OpProcessSubType.hh"
 69 
 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 71 G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type)
 72   : G4VDiscreteProcess(processName, type)
 73 {
 74   Initialise();
 75   SetProcessSubType(fOpRayleigh);
 76   thePhysicsTable = nullptr;
 77 
 78   if(verboseLevel > 0)
 79   {
 80     G4cout << GetProcessName() << " is created " << G4endl;
 81   }
 82 }
 83 
 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85 G4OpRayleigh::~G4OpRayleigh()
 86 {
 87   // VI: inside this PhysicsTable all properties are unique
 88   //     it is not possible to destroy
 89   delete thePhysicsTable;
 90 }
 91 
 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 93 void G4OpRayleigh::PreparePhysicsTable(const G4ParticleDefinition&)
 94 {
 95   Initialise();
 96 }
 97 
 98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 99 void G4OpRayleigh::Initialise()
100 {
101   SetVerboseLevel(G4OpticalParameters::Instance()->GetRayleighVerboseLevel());
102 }
103 
104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105 G4VParticleChange* G4OpRayleigh::PostStepDoIt(const G4Track& aTrack,
106                                               const G4Step& aStep)
107 {
108   aParticleChange.Initialize(aTrack);
109   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
110 
111   if(verboseLevel > 1)
112   {
113     G4cout << "OpRayleigh: Scattering Photon!" << G4endl
114            << "Old Momentum Direction: " << aParticle->GetMomentumDirection()
115            << G4endl << "Old Polarization: " << aParticle->GetPolarization()
116            << G4endl;
117   }
118 
119   G4double cosTheta;
120   G4ThreeVector oldMomDir, newMomDir;
121   G4ThreeVector oldPol, newPol;
122   G4double rand;
123   G4double cost, sint, sinphi, cosphi;
124 
125   do
126   {
127     // Try to simulate the scattered photon momentum direction
128     // w.r.t. the initial photon momentum direction
129     cost = G4UniformRand();
130     sint = std::sqrt(1. - cost * cost);
131     // consider for the angle 90-180 degrees
132     if(G4UniformRand() < 0.5)
133       cost = -cost;
134 
135     // simulate the phi angle
136     rand   = twopi * G4UniformRand();
137     sinphi = std::sin(rand);
138     cosphi = std::cos(rand);
139 
140     // construct the new momentum direction
141     newMomDir.set(sint * cosphi, sint * sinphi, cost);
142     oldMomDir = aParticle->GetMomentumDirection();
143     newMomDir.rotateUz(oldMomDir);
144 
145     // calculate the new polarization direction
146     // The new polarization needs to be in the same plane as the new
147     // momentum direction and the old polarization direction
148     oldPol = aParticle->GetPolarization();
149     newPol = (oldPol - newMomDir.dot(oldPol) * newMomDir).unit();
150 
151     // There is a corner case, where the new momentum direction
152     // is the same as old polarization direction:
153     // random generate the azimuthal angle w.r.t. new momentum direction
154     if(newPol.mag() == 0.)
155     {
156       rand = G4UniformRand() * twopi;
157       newPol.set(std::cos(rand), std::sin(rand), 0.);
158       newPol.rotateUz(newMomDir);
159     }
160     else
161     {
162       // There are two directions perpendicular to the new momentum direction
163       if(G4UniformRand() < 0.5)
164         newPol = -newPol;
165     }
166 
167     // simulate according to the distribution cos^2(theta)
168     cosTheta = newPol.dot(oldPol);
169     // Loop checking, 13-Aug-2015, Peter Gumplinger
170   } while(std::pow(cosTheta, 2) < G4UniformRand());
171 
172   aParticleChange.ProposePolarization(newPol);
173   aParticleChange.ProposeMomentumDirection(newMomDir);
174 
175   if(verboseLevel > 1)
176   {
177     G4cout << "New Polarization: " << newPol << G4endl
178            << "Polarization Change: " << *(aParticleChange.GetPolarization())
179            << G4endl << "New Momentum Direction: " << newMomDir << G4endl
180            << "Momentum Change: " << *(aParticleChange.GetMomentumDirection())
181            << G4endl;
182   }
183 
184   return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
185 }
186 
187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
188 void G4OpRayleigh::BuildPhysicsTable(const G4ParticleDefinition&)
189 {
190   if(thePhysicsTable)
191   {
192     // thePhysicsTable->clearAndDestroy();
193     delete thePhysicsTable;
194     thePhysicsTable = nullptr;
195   }
196 
197   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
198   const size_t numOfMaterials             = G4Material::GetNumberOfMaterials();
199   thePhysicsTable                         = new G4PhysicsTable(numOfMaterials);
200 
201   for(size_t i = 0; i < numOfMaterials; ++i)
202   {
203     G4Material* material               = (*theMaterialTable)[i];
204     G4MaterialPropertiesTable* matProp = material->GetMaterialPropertiesTable();
205     G4PhysicsFreeVector* rayleigh = nullptr;
206     if(matProp)
207     {
208       rayleigh = matProp->GetProperty(kRAYLEIGH);
209       if(rayleigh == nullptr)
210         rayleigh = CalculateRayleighMeanFreePaths(material);
211     }
212     thePhysicsTable->insertAt(i, rayleigh);
213   }
214 }
215 
216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
217 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, G4double,
218                                        G4ForceCondition*)
219 {
220   auto rayleigh = static_cast<G4PhysicsFreeVector*>(
221       (*thePhysicsTable)(aTrack.GetMaterial()->GetIndex()));
222 
223   G4double rsLength = DBL_MAX;
224   if(rayleigh)
225   {
226     rsLength = rayleigh->Value(aTrack.GetDynamicParticle()->GetTotalMomentum(),
227                                idx_rslength);
228   }
229   return rsLength;
230 }
231 
232 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRayleighMeanFreePaths(
234   const G4Material* material) const
235 {
236   G4MaterialPropertiesTable* MPT = material->GetMaterialPropertiesTable();
237 
238   // Retrieve the beta_T or isothermal compressibility value. For backwards
239   // compatibility use a constant if the material is "Water". If the material
240   // doesn't have an ISOTHERMAL_COMPRESSIBILITY constant then return
241   G4double betat;
242   if(material->GetName() == "Water")
243   {
244     betat = 7.658e-23 * m3 / MeV;
245   }
246   else if(MPT->ConstPropertyExists(kISOTHERMAL_COMPRESSIBILITY))
247   {
248     betat = MPT->GetConstProperty(kISOTHERMAL_COMPRESSIBILITY);
249   }
250   else
251   {
252     return nullptr;
253   }
254 
255   // If the material doesn't have a RINDEX property vector then return
256   G4MaterialPropertyVector* rIndex = MPT->GetProperty(kRINDEX);
257   if(rIndex == nullptr)
258     return nullptr;
259 
260   // Retrieve the optional scale factor (scales the scattering length)
261   G4double scaleFactor = 1.0;
262   if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR))
263   {
264     scaleFactor = MPT->GetConstProperty(kRS_SCALE_FACTOR);
265   }
266 
267   // Retrieve the material temperature. For backwards compatibility use a
268   // constant if the material is "Water"
269   G4double temperature;
270   if(material->GetName() == "Water")
271   {
272     temperature =
273       283.15 * kelvin;  // Temperature of water is 10 degrees celsius
274   }
275   else
276   {
277     temperature = material->GetTemperature();
278   }
279 
280   auto rayleighMFPs = new G4PhysicsFreeVector();
281   // This calculates the meanFreePath via the Einstein-Smoluchowski formula
282   const G4double c1 =
283     scaleFactor * betat * temperature * k_Boltzmann / (6.0 * pi);
284 
285   for(size_t uRIndex = 0; uRIndex < rIndex->GetVectorLength(); ++uRIndex)
286   {
287     const G4double energy        = rIndex->Energy(uRIndex);
288     const G4double rIndexSquared = (*rIndex)[uRIndex] * (*rIndex)[uRIndex];
289     const G4double xlambda       = h_Planck * c_light / energy;
290     const G4double c2            = std::pow(twopi / xlambda, 4);
291     const G4double c3 =
292       std::pow(((rIndexSquared - 1.0) * (rIndexSquared + 2.0) / 3.0), 2);
293 
294     const G4double meanFreePath = 1.0 / (c1 * c2 * c3);
295 
296     if(verboseLevel > 0)
297     {
298       G4cout << energy << "MeV\t" << meanFreePath << "mm" << G4endl;
299     }
300 
301     rayleighMFPs->InsertValues(energy, meanFreePath);
302   }
303 
304   return rayleighMFPs;
305 }
306 
307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
308 void G4OpRayleigh::SetVerboseLevel(G4int verbose)
309 {
310   verboseLevel = verbose;
311   G4OpticalParameters::Instance()->SetRayleighVerboseLevel(verboseLevel);
312 }
313