Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/processes/include/G4NeutronGeneralProcess.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class header file
 30 //
 31 //
 32 // File name:     G4NeutronGeneralProcess
 33 //
 34 // Author:        Vladimir Ivanchenko
 35 //
 36 // Creation date: 08.08.2022
 37 //
 38 // Modifications:
 39 //
 40 // Class Description:
 41 //
 42 // It is the neutron super process
 43 
 44 // -------------------------------------------------------------------
 45 //
 46 
 47 #ifndef G4NeutronGeneralProcess_h
 48 #define G4NeutronGeneralProcess_h 1
 49 
 50 #include "G4HadronicProcess.hh"
 51 #include "globals.hh"
 52 #include "G4HadDataHandler.hh"
 53 #include <vector>
 54 
 55 class G4Step;
 56 class G4Track;
 57 class G4ParticleDefinition;
 58 class G4VParticleChange;
 59 class G4VCrossSectionDataSet;
 60 class G4CrossSectionDataStore;
 61 
 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 63 
 64 class G4NeutronGeneralProcess : public G4HadronicProcess
 65 {
 66 public:
 67 
 68   explicit G4NeutronGeneralProcess(const G4String& pname="NeutronGeneralProc");
 69 
 70   ~G4NeutronGeneralProcess() override;
 71 
 72   G4bool IsApplicable(const G4ParticleDefinition&) override;
 73 
 74   void ProcessDescription(std::ostream& outFile) const override;
 75 
 76   // Initialise for build of tables
 77   void PreparePhysicsTable(const G4ParticleDefinition&) override;
 78 
 79   // Build physics table during initialisation
 80   void BuildPhysicsTable(const G4ParticleDefinition&) override;
 81 
 82   // Store internal tables after initialisation
 83   G4bool StorePhysicsTable(const G4ParticleDefinition* part,
 84                            const G4String& directory, G4bool ascii) override;
 85 
 86   // Called before tracking of each new G4Track
 87   void StartTracking(G4Track*) override;
 88 
 89   // implementation of virtual method, specific for G4NeutronGeneralProcess
 90   G4double PostStepGetPhysicalInteractionLength(
 91                              const G4Track& track,
 92                              G4double previousStepSize,
 93                              G4ForceCondition* condition) override;
 94 
 95   // implementation of virtual method, specific for G4NeutronGeneralProcess
 96   G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&) override;
 97 
 98   const G4VProcess* GetCreatorProcess() const override;
 99 
100   // Temporary method
101   const G4String& GetSubProcessName() const;
102 
103   // Temporary method
104   G4int GetSubProcessSubType() const;
105 
106   void SetInelasticProcess(G4HadronicProcess*);
107   void SetElasticProcess(G4HadronicProcess*);
108   void SetCaptureProcess(G4HadronicProcess*);
109 
110   // access methods to cross sections and processes
111   G4VCrossSectionDataSet* GetXSection(G4int type);  
112   G4HadronicProcess* GetHadronicProcess(G4int type);  
113 
114   inline const G4VProcess* GetSelectedProcess() const;
115 
116   inline void SetTimeLimit(G4double val);
117 
118   inline void SetMinEnergyLimit(G4double val);
119 
120   // hide copy constructor and assignment operator
121   G4NeutronGeneralProcess(G4NeutronGeneralProcess &) = delete;
122   G4NeutronGeneralProcess & operator=
123   (const G4NeutronGeneralProcess &right) = delete;
124 
125 protected:
126 
127   G4double GetMeanFreePath(const G4Track& track, G4double previousStepSize,
128                            G4ForceCondition* condition) override;
129 
130   inline G4double ComputeGeneralLambda(size_t idxe, size_t idxt);
131 
132   inline G4double GetProbability(size_t idxt);
133 
134   inline void SelectedProcess(const G4Step& step, G4HadronicProcess* ptr,
135                               G4CrossSectionDataStore*);
136 
137 private:
138 
139   // partial cross section
140   G4double ComputeCrossSection(G4VCrossSectionDataSet*, const G4Material*,
141                                G4double kinEnergy, G4double loge);
142 
143   G4VCrossSectionDataSet* InitialisationXS(G4HadronicProcess*);
144 
145   // total cross section
146   inline void CurrentCrossSection(const G4Track&);
147 
148   static G4HadDataHandler* theHandler;
149   static const size_t nTables = 5;
150   static G4String nameT[nTables];
151 
152   G4HadronicProcess* fInelasticP = nullptr;
153   G4HadronicProcess* fElasticP = nullptr;
154   G4HadronicProcess* fCaptureP = nullptr;
155   G4HadronicProcess* fSelectedProc = nullptr;
156 
157   G4VCrossSectionDataSet* fInelasticXS = nullptr;
158   G4VCrossSectionDataSet* fElasticXS = nullptr;
159   G4VCrossSectionDataSet* fCaptureXS = nullptr;
160 
161   G4CrossSectionDataStore* fXSSInelastic = nullptr;
162   G4CrossSectionDataStore* fXSSElastic = nullptr;
163   G4CrossSectionDataStore* fXSSCapture = nullptr;
164   G4CrossSectionDataStore* fCurrentXSS = nullptr;
165 
166   const G4ParticleDefinition* fNeutron;
167   const G4Material* fCurrMat = nullptr;
168 
169   G4double fMinEnergy;
170   G4double fMiddleEnergy;
171   G4double fMaxEnergy;
172   G4double fTimeLimit;
173   G4double fXSFactorInel = 1.0;
174   G4double fXSFactorEl = 1.0;
175   G4double fCurrE = 0.0;
176   G4double fCurrLogE = 0.0;
177   G4double fLambda = 0.0;
178 
179   // number of bins per decade
180   std::size_t nLowE = 100;
181   std::size_t nHighE = 10;
182 
183   std::size_t idxEnergy = 0;
184   std::size_t matIndex = 0;
185 
186   G4bool isMaster = true;
187   std::vector<G4double> fXsec;
188 };
189 
190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
191 
192 inline G4double
193 G4NeutronGeneralProcess::ComputeGeneralLambda(std::size_t idxe, std::size_t idxt)
194 {
195   idxEnergy = idxe;
196   return theHandler->GetVector(idxt, matIndex)
197     ->LogVectorValue(fCurrE, fCurrLogE);
198 }
199 
200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
201 
202 inline G4double G4NeutronGeneralProcess::GetProbability(std::size_t idxt)
203 {
204   return theHandler->GetVector(idxt, matIndex)
205     ->LogVectorValue(fCurrE, fCurrLogE);
206 }
207 
208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
209 
210 inline void
211 G4NeutronGeneralProcess::SelectedProcess(const G4Step& step,
212                                          G4HadronicProcess* ptr,
213                                          G4CrossSectionDataStore* xs)
214 
215 {
216   fSelectedProc = ptr;
217   fCurrentXSS = xs;
218   step.GetPostStepPoint()->SetProcessDefinedStep(ptr);
219 }
220 
221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
222 
223 inline const G4VProcess* G4NeutronGeneralProcess::GetSelectedProcess() const
224 {
225   return fSelectedProc;
226 }
227 
228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
229 
230 inline void G4NeutronGeneralProcess::CurrentCrossSection(const G4Track& track)
231 {
232   G4double energy = track.GetKineticEnergy();
233   const G4Material* mat = track.GetMaterial();
234   if(mat != fCurrMat || energy != fCurrE) {
235     fCurrMat = mat;
236     matIndex = mat->GetIndex();
237     fCurrE = energy;
238     fCurrLogE = track.GetDynamicParticle()->GetLogKineticEnergy();
239     fLambda = (energy <= fMiddleEnergy) ? ComputeGeneralLambda(0, 0)
240       : ComputeGeneralLambda(1, 3);
241     currentInteractionLength = 1.0/fLambda;
242   }
243 }
244 
245 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
246 
247 inline void G4NeutronGeneralProcess::SetTimeLimit(G4double val)
248 {
249   fTimeLimit = val;
250 }
251 
252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
253 
254 inline void G4NeutronGeneralProcess::SetMinEnergyLimit(G4double val)
255 {
256   fMinEnergy = val;
257 }
258 
259 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
260 
261 #endif
262