Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // 29 // G4 Physics class: G4QuasiElRatios for N+A elastic cross sections 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10-OCT-01 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Oct-06 32 // 33 // ---------------------------------------------------------------------- 34 // This class has been extracted from the CHIPS model. 35 // All the dependencies on CHIPS classes have been removed. 36 // Short description: Provides percentage of quasi-free and quasi-elastic 37 // reactions in the inelastic reactions. 38 // ---------------------------------------------------------------------- 39 40 41 #include "G4QuasiElRatios.hh" 42 #include "G4PhysicalConstants.hh" 43 #include "G4SystemOfUnits.hh" 44 #include "G4Proton.hh" 45 #include "G4Neutron.hh" 46 #include "G4Deuteron.hh" 47 #include "G4Triton.hh" 48 #include "G4He3.hh" 49 #include "G4Alpha.hh" 50 #include "G4ThreeVector.hh" 51 #include "G4CrossSectionDataSetRegistry.hh" 52 #include "G4Pow.hh" 53 #include "G4Log.hh" 54 #include "G4Exp.hh" 55 56 namespace { 57 const G4int nps=150; // Number of steps in the R(s) LinTable 58 const G4int mps=nps+1; // Number of elements in the R(s) LinTable 59 const G4double sma=150.; // The first LinTabEl(s=0)=1., s>sma -> logTab 60 const G4double ds=sma/nps; // Step of the linear Table 61 const G4int nls=100; // Number of steps in the R(lns) logTable 62 const G4int mls=nls+1; // Number of elements in the R(lns) logTable 63 const G4double lsi=5.; // The min ln(s) logTabEl(s=148.4 < sma=150.) 64 const G4double lsa=9.; // The max ln(s) logTabEl(s=148.4 - 8103. mb) 65 const G4double mi=G4Exp(lsi);// The min s of logTabEl(~ 148.4 mb) 66 const G4double min_s=G4Exp(lsa);// The max s of logTabEl(~ 8103. mb) 67 const G4double dls=(lsa-lsi)/nls;// Step of the logarithmic Table 68 const G4double edls=G4Exp(dls);// Multiplication step of the logarithmic Table 69 const G4double toler=.01; // The tolarence mb defining the same cross-section 70 const G4double C=1.246; 71 const G4double lmi=3.5; // min of (lnP-lmi)^2 parabola 72 const G4double pbe=.0557; // elastic (lnP-lmi)^2 parabola coefficient 73 const G4double pbt=.3; // total (lnP-lmi)^2 parabola coefficient 74 const G4double pmi=.1; // Below that fast LE calculation is made 75 const G4double pma=1000.; // Above that fast HE calculation is made 76 const G4int nlp=300; // Number of steps in the S(lnp) logTable(5% step) 77 const G4int mlp=nlp+1; // Number of elements in the S(lnp) logTable 78 const G4double lpi=-5.; // The min ln(p) logTabEl(p=6.7 MeV/c - 22. TeV/c) 79 const G4double lpa=10.; // The max ln(p) logTabEl(p=6.7 MeV/c - 22. TeV/c) 80 const G4double mip=G4Exp(lpi);// The min p of logTabEl(~ 6.7 MeV/c) 81 const G4double map=G4Exp(lpa);// The max p of logTabEl(~ 22. TeV) 82 const G4double dlp=(lpa-lpi)/nlp;// Step of the logarithmic Table 83 const G4double edlp=G4Exp(dlp);// Multiplication step of the logarithmic Table 84 } 85 86 87 G4QuasiElRatios::G4QuasiElRatios() 88 { 89 vT = new std::vector<G4double*>; 90 vL = new std::vector<G4double*>; 91 vX = new std::vector<std::pair<G4double,G4double>*>; 92 93 lastSRatio=0.; // The last sigma value for which R was calculated 94 lastRRatio=0.; // The last ratio R which was calculated 95 lastARatio=0; // theLast of calculated A 96 lastHRatio=0.; // theLast of max s initialized in the LinTable 97 lastNRatio=0; // theLast of topBin number initialized in LinTable 98 lastMRatio=0.; // theLast of rel max ln(s) initialized in LogTable 99 lastKRatio=0; // theLast of topBin number initialized in LogTable 100 lastTRatio=0; // theLast of pointer to LinTable in the C++ heap 101 lastLRatio=0; // theLast of pointer to LogTable in the C++ heap 102 lastPtot=0.; // The last momentum for which XS was calculated 103 lastHtot=0; // The last projPDG for which XS was calculated 104 lastFtot=true; // The last nucleon for which XS was calculated 105 lastItot=0; // The Last index for which XS was calculated 106 lastMtot=0.; // The Last rel max ln(p) initialized in LogTable 107 lastKtot=0; // The Last topBin number initialized in LogTable 108 lastXtot = nullptr; // The Last ETPointers to LogTable in heap 109 110 PCSmanager=(G4ChipsProtonElasticXS*)G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(G4ChipsProtonElasticXS::Default_Name()); 111 112 NCSmanager=(G4ChipsNeutronElasticXS*)G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(G4ChipsNeutronElasticXS::Default_Name()); 113 } 114 115 G4QuasiElRatios::~G4QuasiElRatios() 116 { 117 std::vector<G4double*>::iterator pos; 118 for(pos=vT->begin(); pos<vT->end(); pos++) 119 { delete [] *pos; } 120 vT->clear(); 121 delete vT; 122 123 for(pos=vL->begin(); pos<vL->end(); pos++) 124 { delete [] *pos; } 125 vL->clear(); 126 delete vL; 127 128 std::vector<std::pair<G4double,G4double>*>::iterator pos2; 129 for(pos2=vX->begin(); pos2<vX->end(); pos2++) 130 { delete [] *pos2; } 131 vX->clear(); 132 delete vX; 133 } 134 135 // Calculation of pair(QuasiFree/Inelastic,QuasiElastic/QuasiFree) 136 std::pair<G4double,G4double> G4QuasiElRatios::GetRatios(G4double pIU, G4int pPDG, 137 G4int tgZ, G4int tgN) 138 { 139 G4double R=0.; 140 G4double QF2In=1.; // Prototype of QuasiFree/Inel ratio for hN_tot 141 G4int tgA=tgZ+tgN; 142 if(tgA<2) return std::make_pair(QF2In,R); // No quasi-elastic on the only nucleon 143 std::pair<G4double,G4double> ElTot=GetElTot(pIU, pPDG, tgZ, tgN); // mean hN El&Tot(IU) 144 //if( ( (pPDG>999 && pIU<227.) || pIU<27.) && tgA>1) R=1.; // @@ TMP to accelerate @lowE 145 if(pPDG>999 && pIU<227. && tgZ+tgN>1) R=1.; // To accelerate @lowE 146 else if(ElTot.second>0.) 147 { 148 R=ElTot.first/ElTot.second; // El/Total ratio (does not depend on units 149 QF2In=GetQF2IN_Ratio(ElTot.second/millibarn, tgZ+tgN); // QuasiFree/Inelastic ratio 150 } 151 return std::make_pair(QF2In,R); 152 } 153 154 // Calculatio QasiFree/Inelastic Ratio as a function of total hN cross-section (mb) and A 155 G4double G4QuasiElRatios::GetQF2IN_Ratio(G4double m_s, G4int A) 156 { 157 // LogTable is created only if necessary. The ratio R(s>8100 mb) = 0 for any nuclei 158 if(m_s<toler || A<2) return 1.; 159 if(m_s>min_s) return 0.; 160 161 //if(A>238) 162 //{ 163 // G4cout<<"-Warning-G4QuasiElRatio::GetQF2IN_Ratio:A="<<A<<">238, return zero"<<G4endl; 164 // return 0.; 165 //} 166 G4int nDB=(G4int)vARatio.size(); // A number of nuclei already initialized in AMDB 167 if(nDB && lastARatio==A && m_s==lastSRatio) return lastRRatio; // VI do not use tolerance 168 G4bool found=false; 169 G4int i=-1; 170 if(nDB) for (i=0; i<nDB; i++) if(A==vARatio[i]) // Search for this A in AMDB 171 { 172 found=true; // The A value is found 173 break; 174 } 175 if(!nDB || !found) // Create new line in the AMDB 176 { 177 lastARatio = A; 178 lastTRatio = new G4double[mps]; // Create the linear Table 179 lastNRatio = static_cast<int>(m_s/ds)+1; // MaxBin to be initialized 180 if(lastNRatio>nps) 181 { 182 lastNRatio=nps; 183 lastHRatio=sma; 184 } 185 else lastHRatio = lastNRatio*ds; // Calculate max initialized s for LinTab 186 G4double sv=0; 187 lastTRatio[0]=1.; 188 for(G4int j=1; j<=lastNRatio; j++) // Calculate LogTab values 189 { 190 sv+=ds; 191 lastTRatio[j]=CalcQF2IN_Ratio(sv,A); 192 } 193 lastLRatio=new G4double[mls]; // Create the logarithmic Table 194 // Initialize the logarithmic Table 195 for(G4int j=0; j<mls; ++j) lastLRatio[j]=0.0; 196 if(m_s>sma) 197 { 198 G4double ls=G4Log(m_s); 199 lastKRatio = static_cast<int>((ls-lsi)/dls)+1; // MaxBin to be initialized in LogTaB 200 if(lastKRatio>nls) 201 { 202 lastKRatio=nls; 203 lastMRatio=lsa-lsi; 204 } 205 else lastMRatio = lastKRatio*dls; // Calculate max initialized ln(s)-lsi for LogTab 206 sv=mi; 207 for(G4int j=0; j<=lastKRatio; j++) // Calculate LogTab values 208 { 209 lastLRatio[j]=CalcQF2IN_Ratio(sv,A); 210 if(j!=lastKRatio) sv*=edls; 211 } 212 } 213 else // LogTab is not initialized 214 { 215 lastKRatio = 0; 216 lastMRatio = 0.; 217 } 218 i++; // Make a new record to AMDB and position on it 219 vARatio.push_back(lastARatio); 220 vHRatio.push_back(lastHRatio); 221 vNRatio.push_back(lastNRatio); 222 vMRatio.push_back(lastMRatio); 223 vKRatio.push_back(lastKRatio); 224 vT->push_back(lastTRatio); 225 vL->push_back(lastLRatio); 226 } 227 else // The A value was found in AMDB 228 { 229 lastARatio=vARatio[i]; 230 lastHRatio=vHRatio[i]; 231 lastNRatio=vNRatio[i]; 232 lastMRatio=vMRatio[i]; 233 lastKRatio=vKRatio[i]; 234 lastTRatio=(*vT)[i]; 235 lastLRatio=(*vL)[i]; 236 if(m_s>lastHRatio) // At least LinTab must be updated 237 { 238 G4int nextN=lastNRatio+1; // The next bin to be initialized 239 if(lastNRatio<nps) 240 { 241 G4double sv=lastHRatio; // bug fix by WP 242 243 lastNRatio = static_cast<int>(m_s/ds)+1;// MaxBin to be initialized 244 if(lastNRatio>nps) 245 { 246 lastNRatio=nps; 247 lastHRatio=sma; 248 } 249 else lastHRatio = lastNRatio*ds; // Calculate max initialized s for LinTab 250 251 for(G4int j=nextN; j<=lastNRatio; j++)// Calculate LogTab values 252 { 253 sv+=ds; 254 lastTRatio[j]=CalcQF2IN_Ratio(sv,A); 255 } 256 } // End of LinTab update 257 if(lastNRatio>=nextN) 258 { 259 vHRatio[i]=lastHRatio; 260 vNRatio[i]=lastNRatio; 261 } 262 G4int nextK=lastKRatio+1; 263 if(!lastKRatio) nextK=0; 264 if(m_s>sma && lastKRatio<nls) // LogTab must be updated 265 { 266 G4double sv=G4Exp(lastMRatio+lsi); // Define starting poit (lastM will be changed) 267 G4double ls=G4Log(m_s); 268 lastKRatio = static_cast<int>((ls-lsi)/dls)+1; // MaxBin to be initialized in LogTaB 269 if(lastKRatio>nls) 270 { 271 lastKRatio=nls; 272 lastMRatio=lsa-lsi; 273 } 274 else lastMRatio = lastKRatio*dls; // Calculate max initialized ln(s)-lsi for LogTab 275 for(G4int j=nextK; j<=lastKRatio; j++)// Calculate LogTab values 276 { 277 sv*=edls; 278 lastLRatio[j]=CalcQF2IN_Ratio(sv,A); 279 } 280 } // End of LogTab update 281 if(lastKRatio>=nextK) 282 { 283 vMRatio[i]=lastMRatio; 284 vKRatio[i]=lastKRatio; 285 } 286 } 287 } 288 // Now one can use tabeles to calculate the value 289 if(m_s<sma) // Use linear table 290 { 291 G4int n=static_cast<int>(m_s/ds); // Low edge number of the bin 292 G4double d=m_s-n*ds; // Linear shift 293 G4double v=lastTRatio[n]; // Base 294 lastRRatio=v+d*(lastTRatio[n+1]-v)/ds; // Result 295 } 296 else // Use log table 297 { 298 G4double ls=G4Log(m_s)-lsi; // ln(s)-l_min 299 G4int n=static_cast<int>(ls/dls); // Low edge number of the bin 300 G4double d=ls-n*dls; // Log shift 301 G4double v=lastLRatio[n]; // Base 302 lastRRatio=v+d*(lastLRatio[n+1]-v)/dls; // Result 303 } 304 if(lastRRatio<0.) lastRRatio=0.; 305 if(lastRRatio>1.) lastRRatio=1.; 306 return lastRRatio; 307 } // End of CalcQF2IN_Ratio 308 309 // Calculatio QasiFree/Inelastic Ratio as a function of total hN cross-section and A 310 G4double G4QuasiElRatios::CalcQF2IN_Ratio(G4double m_s, G4int A) 311 { 312 G4double s2=m_s*m_s; 313 G4double s4=s2*s2; 314 G4double ss=std::sqrt(std::sqrt(m_s)); 315 G4double P=7.48e-5*s2/(1.+8.77e12/s4/s4/s2); 316 G4double E=.2644+.016/(1.+G4Exp((29.54-m_s)/2.49)); 317 G4double F=ss*.1526*G4Exp(-s2*ss*.0000859); 318 return C*G4Exp(-E*G4Pow::GetInstance()->powA(G4double(A-1.),F))/G4Pow::GetInstance()->powA(G4double(A),P); 319 } // End of CalcQF2IN_Ratio 320 321 // Calculatio pair(hN_el,hN_tot) (mb): p in GeV/c, index(PDG,F) (see FetchElTot) 322 std::pair<G4double,G4double> G4QuasiElRatios::CalcElTot(G4double p, G4int I) 323 { 324 // ---------> Each parameter set can have not more than nPoints=128 parameters 325 326 G4double El=0.; // prototype of the elastic hN cross-section 327 G4double To=0.; // prototype of the total hN cross-section 328 if(p<=0.) 329 { 330 G4cout<<"-Warning-G4QuasiElRatios::CalcElTot: p="<<p<<" is zero or negative"<<G4endl; 331 return std::make_pair(El,To); 332 } 333 if (!I) // pp/nn 334 { 335 if(p<pmi) 336 { 337 G4double p2=p*p; 338 El=1./(.00012+p2*.2); 339 To=El; 340 } 341 else if(p>pma) 342 { 343 G4double lp=G4Log(p)-lmi; 344 G4double lp2=lp*lp; 345 El=pbe*lp2+6.72; 346 To=pbt*lp2+38.2; 347 } 348 else 349 { 350 G4double p2=p*p; 351 G4double LE=1./(.00012+p2*.2); 352 G4double lp=G4Log(p)-lmi; 353 G4double lp2=lp*lp; 354 G4double rp2=1./p2; 355 El=LE+(pbe*lp2+6.72+32.6/p)/(1.+rp2/p); 356 To=LE+(pbt*lp2+38.2+52.7*rp2)/(1.+2.72*rp2*rp2); 357 } 358 } 359 else if(I==1) // np/pn 360 { 361 if(p<pmi) 362 { 363 G4double p2=p*p; 364 El=1./(.00012+p2*(.051+.1*p2)); 365 To=El; 366 } 367 else if(p>pma) 368 { 369 G4double lp=G4Log(p)-lmi; 370 G4double lp2=lp*lp; 371 El=pbe*lp2+6.72; 372 To=pbt*lp2+38.2; 373 } 374 else 375 { 376 G4double p2=p*p; 377 G4double LE=1./(.00012+p2*(.051+.1*p2)); 378 G4double lp=G4Log(p)-lmi; 379 G4double lp2=lp*lp; 380 G4double rp2=1./p2; 381 El=LE+(pbe*lp2+6.72+30./p)/(1.+.49*rp2/p); 382 To=LE+(pbt*lp2+38.2)/(1.+.54*rp2*rp2); 383 } 384 } 385 else if(I==2) // pimp/pipn 386 { 387 G4double lp=G4Log(p); 388 if(p<pmi) 389 { 390 G4double lr=lp+1.27; 391 El=1.53/(lr*lr+.0676); 392 To=El*3; 393 } 394 else if(p>pma) 395 { 396 G4double ld=lp-lmi; 397 G4double ld2=ld*ld; 398 G4double sp=std::sqrt(p); 399 El=pbe*ld2+2.4+7./sp; 400 To=pbt*ld2+22.3+12./sp; 401 } 402 else 403 { 404 G4double lr=lp+1.27; // p1 405 G4double LE=1.53/(lr*lr+.0676); // p2, p3 406 G4double ld=lp-lmi; // p4 (lmi=3.5) 407 G4double ld2=ld*ld; 408 G4double p2=p*p; 409 G4double p4=p2*p2; 410 G4double sp=std::sqrt(p); 411 G4double lm=lp+.36; // p5 412 G4double md=lm*lm+.04; // p6 413 G4double lh=lp-.017; // p7 414 G4double hd=lh*lh+.0025; // p8 415 El=LE+(pbe*ld2+2.4+7./sp)/(1.+.7/p4)+.6/md+.05/hd;//p9(pbe=.0557),p10,p11,p12,p13,p14 416 To=LE*3+(pbt*ld2+22.3+12./sp)/(1.+.4/p4)+1./md+.06/hd; 417 } 418 } 419 else if(I==3) // pipp/pimn 420 { 421 G4double lp=G4Log(p); 422 if(p<pmi) 423 { 424 G4double lr=lp+1.27; 425 G4double lr2=lr*lr; 426 El=13./(lr2+lr2*lr2+.0676); 427 To=El; 428 } 429 else if(p>pma) 430 { 431 G4double ld=lp-lmi; 432 G4double ld2=ld*ld; 433 G4double sp=std::sqrt(p); 434 El=pbe*ld2+2.4+6./sp; 435 To=pbt*ld2+22.3+5./sp; 436 } 437 else 438 { 439 G4double lr=lp+1.27; // p1 440 G4double lr2=lr*lr; 441 G4double LE=13./(lr2+lr2*lr2+.0676); // p2, p3 442 G4double ld=lp-lmi; // p4 (lmi=3.5) 443 G4double ld2=ld*ld; 444 G4double p2=p*p; 445 G4double p4=p2*p2; 446 G4double sp=std::sqrt(p); 447 G4double lm=lp-.32; // p5 448 G4double md=lm*lm+.0576; // p6 449 El=LE+(pbe*ld2+2.4+6./sp)/(1.+3./p4)+.7/md; // p7(pbe=.0557), p8, p9, p10, p11 450 To=LE+(pbt*ld2+22.3+5./sp)/(1.+1./p4)+.8/md; 451 } 452 } 453 else if(I==4) // Kmp/Kmn/K0p/K0n 454 { 455 456 if(p<pmi) 457 { 458 G4double psp=p*std::sqrt(p); 459 El=5.2/psp; 460 To=14./psp; 461 } 462 else if(p>pma) 463 { 464 G4double ld=G4Log(p)-lmi; 465 G4double ld2=ld*ld; 466 El=pbe*ld2+2.23; 467 To=pbt*ld2+19.5; 468 } 469 else 470 { 471 G4double ld=G4Log(p)-lmi; 472 G4double ld2=ld*ld; 473 G4double sp=std::sqrt(p); 474 G4double psp=p*sp; 475 G4double p2=p*p; 476 G4double p4=p2*p2; 477 G4double lm=p-.39; 478 G4double md=lm*lm+.000156; 479 G4double lh=p-1.; 480 G4double hd=lh*lh+.0156; 481 El=5.2/psp+(pbe*ld2+2.23)/(1.-.7/sp+.075/p4)+.004/md+.15/hd; 482 To=14./psp+(pbt*ld2+19.5)/(1.-.21/sp+.52/p4)+.006/md+.30/hd; 483 } 484 } 485 else if(I==5) // Kpp/Kpn/aKp/aKn 486 { 487 if(p<pmi) 488 { 489 G4double lr=p-.38; 490 G4double lm=p-1.; 491 G4double md=lm*lm+.372; 492 El=.7/(lr*lr+.0676)+2./md; 493 To=El+.6/md; 494 } 495 else if(p>pma) 496 { 497 G4double ld=G4Log(p)-lmi; 498 G4double ld2=ld*ld; 499 El=pbe*ld2+2.23; 500 To=pbt*ld2+19.5; 501 } 502 else 503 { 504 G4double ld=G4Log(p)-lmi; 505 G4double ld2=ld*ld; 506 G4double lr=p-.38; 507 G4double LE=.7/(lr*lr+.0676); 508 G4double sp=std::sqrt(p); 509 G4double p2=p*p; 510 G4double p4=p2*p2; 511 G4double lm=p-1.; 512 G4double md=lm*lm+.372; 513 El=LE+(pbe*ld2+2.23)/(1.-.7/sp+.1/p4)+2./md; 514 To=LE+(pbt*ld2+19.5)/(1.+.46/sp+1.6/p4)+2.6/md; 515 } 516 } 517 else if(I==6) // hyperon-N 518 { 519 if(p<pmi) 520 { 521 G4double p2=p*p; 522 El=1./(.002+p2*(.12+p2)); 523 To=El; 524 } 525 else if(p>pma) 526 { 527 G4double lp=G4Log(p)-lmi; 528 G4double lp2=lp*lp; 529 G4double sp=std::sqrt(p); 530 El=(pbe*lp2+6.72)/(1.+2./sp); 531 To=(pbt*lp2+38.2+900./sp)/(1.+27./sp); 532 } 533 else 534 { 535 G4double p2=p*p; 536 G4double LE=1./(.002+p2*(.12+p2)); 537 G4double lp=G4Log(p)-lmi; 538 G4double lp2=lp*lp; 539 G4double p4=p2*p2; 540 G4double sp=std::sqrt(p); 541 El=LE+(pbe*lp2+6.72+99./p2)/(1.+2./sp+2./p4); 542 To=LE+(pbt*lp2+38.2+900./sp)/(1.+27./sp+3./p4); 543 } 544 } 545 else if(I==7) // antibaryon-N 546 { 547 if(p>pma) 548 { 549 G4double lp=G4Log(p)-lmi; 550 G4double lp2=lp*lp; 551 El=pbe*lp2+6.72; 552 To=pbt*lp2+38.2; 553 } 554 else 555 { 556 G4double ye=G4Pow::GetInstance()->powA(p,1.25); 557 G4double yt=G4Pow::GetInstance()->powA(p,.35); 558 G4double lp=G4Log(p)-lmi; 559 G4double lp2=lp*lp; 560 El=80./(ye+1.)+pbe*lp2+6.72; 561 To=(80./yt+.3)/yt+pbt*lp2+38.2; 562 } 563 } 564 else 565 { 566 G4cout<<"*Error*G4QuasiElRatios::CalcElTot:ind="<<I<<" is not defined (0-7)"<<G4endl; 567 G4Exception("G4QuasiElRatios::CalcElTot:","23",FatalException,"QEcrash"); 568 } 569 if(El>To) El=To; 570 return std::make_pair(El,To); 571 } // End of CalcElTot 572 573 // For hadron PDG with momentum Mom (GeV/c) on N (p/n) calculate <sig_el,sig_tot> pair (mb) 574 std::pair<G4double,G4double> G4QuasiElRatios::GetElTotXS(G4double p, G4int PDG, G4bool F) 575 { 576 G4int ind=0; // Prototype of the reaction index 577 G4bool kfl=true; // Flag of K0/aK0 oscillation 578 G4bool kf=false; 579 if(PDG==130||PDG==310) 580 { 581 kf=true; 582 if(G4UniformRand()>.5) kfl=false; 583 } 584 if ( (PDG == 2212 && F) || (PDG == 2112 && !F) ) ind=0; // pp/nn 585 else if ( (PDG == 2112 && F) || (PDG == 2212 && !F) ) ind=1; // np/pn 586 else if ( (PDG == -211 && F) || (PDG == 211 && !F) ) ind=2; // pimp/pipn 587 else if ( (PDG == 211 && F) || (PDG == -211 && !F) ) ind=3; // pipp/pimn 588 //AR-Jul2020: Extended to charmed and bottom hadrons: 589 // - treat mesons with constituent c quark or b quark as a meson with s quark (e.g. K-); 590 // - treat mesons with constituent cbar antiquark or bbar antiquark as a meson with sbar antiquark (e.g. K+); 591 // - treat all heavy baryons (i.e. hyperons, charmed and bottom baryons) as lambda; 592 // - treat all heavy anti-baryons (i.e. anti-hyperons, charmed and bottom anti-baryons) as anti-p/anti-n. 593 else if ( PDG == -321 || PDG == -311 || (kf && !kfl) || // mesons with s quark 594 PDG == 411 || PDG == 421 || PDG == 431 || // mesons with c quark 595 PDG == -521 || PDG == -511 || PDG == -531 || PDG == -541 ) ind=4; // mesons with b quark 596 else if ( PDG == 321 || PDG == 311 || (kf && kfl) || // mesons with sbar antiquark 597 PDG == -411 || PDG == -421 || PDG == -431 || // mesons with cbar antiquark 598 PDG == 521 || PDG == 511 || PDG == 531 || PDG == 541 ) ind=5; // mesons with bbar antiquark 599 else if ( PDG > 3000 && PDG < 5333 ) ind=6; // @@ for all heavy baryons - take Lambda 600 else if ( PDG > -5333 && PDG < -2000 ) ind=7; // @@ for all anti-baryons (anti-p/anti-n) 601 else { 602 G4cout<<"*Error*G4QuasiElRatios::CalcElTotXS: PDG="<<PDG 603 <<", while it is defined only for p,n,hyperons,anti-baryons,pi,K/antiK"<<G4endl; 604 G4Exception("G4QuasiElRatio::CalcElTotXS:","22",FatalException,"QEcrash"); 605 } 606 return CalcElTot(p,ind); 607 } 608 609 // Calculatio pair(hN_el,hN_tot)(mb): p in GeV/c, F=true -> N=proton, F=false -> N=neutron 610 std::pair<G4double,G4double> G4QuasiElRatios::FetchElTot(G4double p, G4int PDG, G4bool F) 611 { 612 // LogTable is created only if necessary. The ratio R(s>8100 mb) = 0 for any nuclei 613 G4int nDB=(G4int)vItot.size(); // A number of hadrons already initialized in AMDB 614 if(nDB && lastHtot==PDG && lastFtot==F && p>0. && p==lastPtot) return lastRtot;// VI don't use toler. 615 // if(nDB && lastH==PDG && lastF==F && p>0. && std::fabs(p-lastP)/p<toler) return lastR; 616 lastHtot=PDG; 617 lastFtot=F; 618 G4int ind=-1; // Prototipe of the index of the PDG/F combination 619 // i=0: pp(nn), i=1: np(pn), i=2: pimp(pipn), i=3: pipp(pimn), i=4: Kmp(Kmn,K0n,K0p), 620 // i=5: Kpp(Kpn,aK0n,aK0p), i=6: Hp(Hn), i=7: app(apn,ann,anp) 621 G4bool kfl=true; // Flag of K0/aK0 oscillation 622 G4bool kf=false; 623 if(PDG==130||PDG==310) 624 { 625 kf=true; 626 if(G4UniformRand()>.5) kfl=false; 627 } 628 if ( (PDG == 2212 && F) || (PDG == 2112 && !F) ) ind=0; // pp/nn 629 else if ( (PDG == 2112 && F) || (PDG == 2212 && !F) ) ind=1; // np/pn 630 else if ( (PDG == -211 && F) || (PDG == 211 && !F) ) ind=2; // pimp/pipn 631 else if ( (PDG == 211 && F) || (PDG == -211 && !F) ) ind=3; // pipp/pimn 632 //AR-Jul2020: Extended to charmed and bottom hadrons: 633 // - treat mesons with constituent c quark or b quark as a meson with s quark (e.g. K-); 634 // - treat mesons with constituent cbar antiquark or bbar antiquark as a meson with sbar antiquark (e.g. K+); 635 // - treat all heavy baryons (i.e. hyperons, charmed and bottom baryons) as lambda; 636 // - treat all heavy anti-baryons (i.e. anti-hyperons, charmed and bottom anti-baryons) as anti-p/anti-n. 637 else if ( PDG == -321 || PDG == -311 || (kf && !kfl) || // mesons with s quark 638 PDG == 411 || PDG == 421 || PDG == 431 || // mesons with c quark 639 PDG == -521 || PDG == -511 || PDG == -531 || PDG == -541 ) ind=4; // mesons with b quark 640 else if ( PDG == 321 || PDG == 311 || (kf && kfl) || // mesons with sbar antiquark 641 PDG == -411 || PDG == -421 || PDG == -431 || // mesons with cbar antiquark 642 PDG == 521 || PDG == 511 || PDG == 531 || PDG == 541 ) ind=5; // mesons with bbar antiquark 643 else if ( PDG > 3000 && PDG < 5333 ) ind=6; // @@ for all heavy baryons - take Lambda 644 else if ( PDG > -5333 && PDG < -2000 ) ind=7; // @@ for all anti-baryons (anti-p/anti-n) 645 else { 646 G4cout<<"*Error*G4QuasiElRatios::FetchElTot: PDG="<<PDG 647 <<", while it is defined only for p,n,hyperons,anti-baryons,pi,K/antiK"<<G4endl; 648 G4Exception("G4QuasiELRatio::FetchElTot:","22",FatalException,"QECrash"); 649 } 650 if(nDB && lastItot==ind && p>0. && p==lastPtot) return lastRtot; // VI do not use toler 651 // if(nDB && lastI==ind && p>0. && std::fabs(p-lastP)/p<toler) return lastR; 652 if(p<=mip || p>=map) return CalcElTot(p,ind); // @@ Slow calculation ! (Warning?) 653 G4bool found=false; 654 G4int i=-1; 655 if(nDB) for (i=0; i<nDB; i++) if(ind==vItot[i]) // Sirch for this index in AMDB 656 { 657 found=true; // The index is found 658 break; 659 } 660 G4double lp=G4Log(p); 661 if(!nDB || !found) // Create new line in the AMDB 662 { 663 lastXtot = new std::pair<G4double,G4double>[mlp]; // Create logarithmic Table for ElTot 664 lastItot = ind; // Remember the initialized inex 665 lastKtot = static_cast<int>((lp-lpi)/dlp)+1; // MaxBin to be initialized in LogTaB 666 if(lastKtot>nlp) 667 { 668 lastKtot=nlp; 669 lastMtot=lpa-lpi; 670 } 671 else lastMtot = lastKtot*dlp; // Calculate max initialized ln(p)-lpi for LogTab 672 G4double pv=mip; 673 for(G4int j=0; j<=lastKtot; j++) // Calculate LogTab values 674 { 675 lastXtot[j]=CalcElTot(pv,ind); 676 if(j!=lastKtot) pv*=edlp; 677 } 678 i++; // Make a new record to AMDB and position on it 679 vItot.push_back(lastItot); 680 vMtot.push_back(lastMtot); 681 vKtot.push_back(lastKtot); 682 vX->push_back(lastXtot); 683 } 684 else // The A value was found in AMDB 685 { 686 lastItot=vItot[i]; 687 lastMtot=vMtot[i]; 688 lastKtot=vKtot[i]; 689 lastXtot=(*vX)[i]; 690 G4int nextK=lastKtot+1; 691 G4double lpM=lastMtot+lpi; 692 if(lp>lpM && lastKtot<nlp) // LogTab must be updated 693 { 694 lastKtot = static_cast<int>((lp-lpi)/dlp)+1; // MaxBin to be initialized in LogTab 695 if(lastKtot>nlp) 696 { 697 lastKtot=nlp; 698 lastMtot=lpa-lpi; 699 } 700 else lastMtot = lastKtot*dlp; // Calculate max initialized ln(p)-lpi for LogTab 701 G4double pv=G4Exp(lpM); // momentum of the last calculated beam 702 for(G4int j=nextK; j<=lastKtot; j++)// Calculate LogTab values 703 { 704 pv*=edlp; 705 lastXtot[j]=CalcElTot(pv,ind); 706 } 707 } // End of LogTab update 708 if(lastKtot>=nextK) // The AMDB was apdated 709 { 710 vMtot[i]=lastMtot; 711 vKtot[i]=lastKtot; 712 } 713 } 714 // Now one can use tabeles to calculate the value 715 G4double dlpp=lp-lpi; // Shifted log(p) value 716 G4int n=static_cast<int>(dlpp/dlp); // Low edge number of the bin 717 G4double d=dlpp-n*dlp; // Log shift 718 G4double e=lastXtot[n].first; // E-Base 719 lastRtot.first=e+d*(lastXtot[n+1].first-e)/dlp; // E-Result 720 if(lastRtot.first<0.) lastRtot.first = 0.; 721 G4double t=lastXtot[n].second; // T-Base 722 lastRtot.second=t+d*(lastXtot[n+1].second-t)/dlp; // T-Result 723 if(lastRtot.second<0.) lastRtot.second= 0.; 724 if(lastRtot.first>lastRtot.second) lastRtot.first = lastRtot.second; 725 return lastRtot; 726 } // End of FetchElTot 727 728 // (Mean Elastic and Mean Total) Cross-Sections (mb) for PDG+(Z,N) at P=p[GeV/c] 729 std::pair<G4double,G4double> G4QuasiElRatios::GetElTot(G4double pIU, G4int hPDG, 730 G4int Z, G4int N) 731 { 732 G4double pGeV=pIU/gigaelectronvolt; 733 if(Z<1 && N<1) 734 { 735 G4cout<<"-Warning-G4QuasiElRatio::GetElTot:Z="<<Z<<",N="<<N<<", return zero"<<G4endl; 736 return std::make_pair(0.,0.); 737 } 738 std::pair<G4double,G4double> hp=FetchElTot(pGeV, hPDG, true); 739 std::pair<G4double,G4double> hn=FetchElTot(pGeV, hPDG, false); 740 G4double A=(Z+N)/millibarn; // To make the result in independent units(IU) 741 return std::make_pair((Z*hp.first+N*hn.first)/A,(Z*hp.second+N*hn.second)/A); 742 } // End of GetElTot 743 744 // (Mean Elastic and Mean Total) Cross-Sections (mb) for PDG+(Z,N) at P=p[GeV/c] 745 std::pair<G4double,G4double> G4QuasiElRatios::GetChExFactor(G4double pIU, G4int hPDG, 746 G4int Z, G4int N) 747 { 748 G4double pGeV=pIU/gigaelectronvolt; 749 G4double resP=0.; 750 G4double resN=0.; 751 if(Z<1 && N<1) 752 { 753 G4cout<<"-Warning-G4QuasiElRatio::GetChExF:Z="<<Z<<",N="<<N<<", return zero"<<G4endl; 754 return std::make_pair(resP,resN); 755 } 756 G4double A=Z+N; 757 G4double pf=0.; // Possibility to interact with a proton 758 G4double nf=0.; // Possibility to interact with a neutron 759 if (hPDG==-211||hPDG==-321||hPDG==3112||hPDG==3212||hPDG==3312) pf=Z/(A+N); 760 else if(hPDG==211||hPDG==321||hPDG==3222||hPDG==3212||hPDG==3322) nf=N/(A+Z); 761 else if(hPDG==-311||hPDG==311||hPDG==130||hPDG==310) 762 { 763 G4double dA=A+A; 764 pf=Z/(dA+N+N); 765 nf=N/(dA+Z+Z); 766 } 767 G4double mult=1.; // Factor of increasing multiplicity ( ? @@) 768 if(pGeV>.5) 769 { 770 mult=1./(1.+G4Log(pGeV+pGeV))/pGeV; 771 if(mult>1.) mult=1.; 772 } 773 if(pf) 774 { 775 std::pair<G4double,G4double> hp=FetchElTot(pGeV, hPDG, true); 776 resP=pf*(hp.second/hp.first-1.)*mult; 777 } 778 if(nf) 779 { 780 std::pair<G4double,G4double> hn=FetchElTot(pGeV, hPDG, false); 781 resN=nf*(hn.second/hn.first-1.)*mult; 782 } 783 return std::make_pair(resP,resN); 784 } // End of GetChExFactor 785 786 // scatter (pPDG,p4M) on a virtual nucleon (NPDG,N4M), result: final pair(newN4M,newp4M) 787 // if(newN4M.e()==0.) - below threshold, XS=0, no scattering of the progectile happened 788 std::pair<G4LorentzVector,G4LorentzVector> G4QuasiElRatios::Scatter(G4int NPDG, 789 G4LorentzVector N4M, G4int pPDG, G4LorentzVector p4M) 790 { 791 static const G4double mNeut= G4Neutron::Neutron()->GetPDGMass(); 792 static const G4double mProt= G4Proton::Proton()->GetPDGMass(); 793 static const G4double mDeut= G4Deuteron::Deuteron()->GetPDGMass(); 794 static const G4double mTrit= G4Triton::Triton()->GetPDGMass(); 795 static const G4double mHel3= G4He3::He3()->GetPDGMass(); 796 static const G4double mAlph= G4Alpha::Alpha()->GetPDGMass(); 797 798 G4LorentzVector pr4M=p4M/megaelectronvolt; // Convert 4-momenta in MeV (keep p4M) 799 N4M/=megaelectronvolt; 800 G4LorentzVector tot4M=N4M+p4M; 801 G4double mT=mNeut; 802 G4int Z=0; 803 G4int N=1; 804 if(NPDG==2212||NPDG==90001000) 805 { 806 mT=mProt; 807 Z=1; 808 N=0; 809 } 810 else if(NPDG==90001001) 811 { 812 mT=mDeut; 813 Z=1; 814 N=1; 815 } 816 else if(NPDG==90002001) 817 { 818 mT=mHel3; 819 Z=2; 820 N=1; 821 } 822 else if(NPDG==90001002) 823 { 824 mT=mTrit; 825 Z=1; 826 N=2; 827 } 828 else if(NPDG==90002002) 829 { 830 mT=mAlph; 831 Z=2; 832 N=2; 833 } 834 else if(NPDG!=2112&&NPDG!=90000001) 835 { 836 G4cout<<"Error:G4QuasiElRatios::Scatter:NPDG="<<NPDG<<" is not 2212 or 2112"<<G4endl; 837 G4Exception("G4QuasiElRatios::Scatter:","21",FatalException,"QEcomplain"); 838 //return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M);// Use this if not exception 839 } 840 G4double mT2=mT*mT; 841 G4double mP2=pr4M.m2(); 842 G4double E=(tot4M.m2()-mT2-mP2)/(mT+mT); 843 G4double E2=E*E; 844 if(E<0. || E2<mP2) 845 { 846 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); // Do Nothing Action 847 } 848 G4double P=std::sqrt(E2-mP2); // Momentum in pseudo laboratory system 849 // @@ Temporary NN t-dependence for all hadrons 850 //if(pPDG>3400 || pPDG<-3400) G4cout<<"-Warning-G4QE::Scatter: pPDG="<<pPDG<<G4endl; 851 G4int PDG=2212; // *TMP* instead of pPDG 852 if(pPDG==2112||pPDG==-211||pPDG==-321) PDG=2112; // *TMP* instead of pPDG 853 if(!Z && N==1) // Change for Quasi-Elastic on neutron 854 { 855 Z=1; 856 N=0; 857 if (PDG==2212) PDG=2112; 858 else if(PDG==2112) PDG=2212; 859 } 860 G4double xSec=0.; // Prototype of Recalculated Cross Section *TMP* 861 if(PDG==2212) xSec=PCSmanager->GetChipsCrossSection(P, Z, N, PDG); // P CrossSect *TMP* 862 else xSec=NCSmanager->GetChipsCrossSection(P, Z, N, PDG); // N CrossSect *TMP* 863 // @@ check a possibility to separate p, n, or alpha (!) 864 if(xSec <= 0.) // The cross-section iz 0 -> Do Nothing 865 { 866 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); //Do Nothing Action 867 } 868 G4double mint=0.; // Prototype of functional rand -t (MeV^2) *TMP* 869 if(PDG==2212) mint=PCSmanager->GetExchangeT(Z,N,PDG);// P functional rand -t(MeV^2) *TMP* 870 else mint=NCSmanager->GetExchangeT(Z,N,PDG);// N functional rand -t(MeV^2) *TMP* 871 G4double maxt=0.; // Prototype of max possible -t 872 if(PDG==2212) maxt=PCSmanager->GetHMaxT(); // max possible -t 873 else maxt=NCSmanager->GetHMaxT(); // max possible -t 874 G4double cost=1.-(mint+mint)/maxt; // cos(theta) in CMS 875 if(cost>1. || cost<-1. || !(cost>-1. || cost<=1.)) 876 { 877 if (cost>1.) cost=1.; 878 else if(cost<-1.) cost=-1.; 879 else 880 { 881 G4double tm=0.; 882 if(PDG==2212) tm=PCSmanager->GetHMaxT(); 883 else tm=NCSmanager->GetHMaxT(); 884 G4cerr<<"G4QuasiFreeRatio::Scat:*NAN* cost="<<cost<<",-t="<<mint<<",tm="<<tm<<G4endl; 885 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); // Do Nothing Action 886 } 887 } 888 G4LorentzVector reco4M=G4LorentzVector(0.,0.,0.,mT); // 4mom of the recoil nucleon 889 G4LorentzVector dir4M=tot4M-G4LorentzVector(0.,0.,0.,(tot4M.e()-mT)*.01); 890 if(!RelDecayIn2(tot4M, pr4M, reco4M, dir4M, cost, cost)) 891 { 892 G4cerr<<"G4QFR::Scat:t="<<tot4M<<tot4M.m()<<",mT="<<mT<<",mP="<<std::sqrt(mP2)<<G4endl; 893 //G4Exception("G4QFR::Scat:","009",FatalException,"Decay of ElasticComp"); 894 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); // Do Nothing Action 895 } 896 return std::make_pair(reco4M*megaelectronvolt,pr4M*megaelectronvolt); // Result 897 } // End of Scatter 898 899 // scatter (pPDG,p4M) on a virtual nucleon (NPDG,N4M), result: final pair(newN4M,newp4M) 900 // if(newN4M.e()==0.) - below threshold, XS=0, no scattering of the progectile happened 901 // User should himself change the charge (PDG) (e.g. pn->np, pi+n->pi0p, pi-p->pi0n etc.) 902 //AR-Jul2020: No need to change this method in order to extended quasi-elastic to 903 // charmed and bottom mesons, because it is not used anywhere ! 904 std::pair<G4LorentzVector,G4LorentzVector> G4QuasiElRatios::ChExer(G4int NPDG, 905 G4LorentzVector N4M, G4int pPDG, G4LorentzVector p4M) 906 { 907 static const G4double mNeut= G4Neutron::Neutron()->GetPDGMass(); 908 static const G4double mProt= G4Proton::Proton()->GetPDGMass(); 909 G4LorentzVector pr4M=p4M/megaelectronvolt; // Convert 4-momenta in MeV(keep p4M) 910 N4M/=megaelectronvolt; 911 G4LorentzVector tot4M=N4M+p4M; 912 G4int Z=0; 913 G4int N=1; 914 G4int sPDG=0; // PDG code of the scattered hadron 915 G4double mS=0.; // proto of mass of scattered hadron 916 G4double mT=mProt; // mass of the recoil nucleon 917 if(NPDG==2212) 918 { 919 mT=mNeut; 920 Z=1; 921 N=0; 922 if(pPDG==-211) sPDG=111; // pi+ -> pi0 923 else if(pPDG==-321) 924 { 925 sPDG=310; // K+ -> K0S 926 if(G4UniformRand()>.5) sPDG=130; // K+ -> K0L 927 } 928 else if(pPDG==-311||pPDG==311||pPDG==130||pPDG==310) sPDG=321; // K0 -> K+ (?) 929 else if(pPDG==3112) sPDG=3212; // Sigma- -> Sigma0 930 else if(pPDG==3212) sPDG=3222; // Sigma0 -> Sigma+ 931 else if(pPDG==3312) sPDG=3322; // Xi- -> Xi0 932 } 933 else if(NPDG==2112) // Default 934 { 935 if(pPDG==211) sPDG=111; // pi+ -> pi0 936 else if(pPDG==321) 937 { 938 sPDG=310; // K+ -> K0S 939 if(G4UniformRand()>.5) sPDG=130; // K+ -> K0L 940 } 941 else if(pPDG==-311||pPDG==311||pPDG==130||pPDG==310) sPDG=-321; // K0 -> K- (?) 942 else if(pPDG==3222) sPDG=3212; // Sigma+ -> Sigma0 943 else if(pPDG==3212) sPDG=3112; // Sigma0 -> Sigma- 944 else if(pPDG==3322) sPDG=3312; // Xi0 -> Xi- 945 } 946 else 947 { 948 G4cout<<"Error:G4QuasiElRatios::ChExer: NPDG="<<NPDG<<" is not 2212 or 2112"<<G4endl; 949 G4Exception("G4QuasiElRatios::ChExer:","21",FatalException,"QE complain"); 950 //return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M);// Use this if not exception 951 } 952 if(sPDG) mS=mNeut; 953 else 954 { 955 G4cout<<"Error:G4QuasiElRatios::ChExer: BAD pPDG="<<pPDG<<", NPDG="<<NPDG<<G4endl; 956 G4Exception("G4QuasiElRatios::ChExer:","21",FatalException,"QE complain"); 957 //return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M);// Use this if not exception 958 } 959 G4double mT2=mT*mT; 960 G4double mS2=mS*mS; 961 G4double E=(tot4M.m2()-mT2-mS2)/(mT+mT); 962 G4double E2=E*E; 963 if(E<0. || E2<mS2) 964 { 965 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); // Do Nothing Action 966 } 967 G4double P=std::sqrt(E2-mS2); // Momentum in pseudo laboratory system 968 // @@ Temporary NN t-dependence for all hadrons 969 G4int PDG=2212; // *TMP* instead of pPDG 970 if(pPDG==2112||pPDG==-211||pPDG==-321) PDG=2112; // *TMP* instead of pPDG 971 if(!Z && N==1) // Change for Quasi-Elastic on neutron 972 { 973 Z=1; 974 N=0; 975 if (PDG==2212) PDG=2112; 976 else if(PDG==2112) PDG=2212; 977 } 978 G4double xSec=0.; // Prototype of Recalculated Cross Section *TMP* 979 if(PDG==2212) xSec=PCSmanager->GetChipsCrossSection(P, Z, N, PDG); // P CrossSect *TMP* 980 else xSec=NCSmanager->GetChipsCrossSection(P, Z, N, PDG); // N CrossSect *TMP* 981 // @@ check a possibility to separate p, n, or alpha (!) 982 if(xSec <= 0.) // The cross-section iz 0 -> Do Nothing 983 { 984 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); //Do Nothing Action 985 } 986 G4double mint=0.; // Prototype of functional rand -t (MeV^2) *TMP* 987 if(PDG==2212) mint=PCSmanager->GetExchangeT(Z,N,PDG);// P functional rand -t(MeV^2) *TMP* 988 else mint=NCSmanager->GetExchangeT(Z,N,PDG);// N functional rand -t(MeV^2) *TMP* 989 G4double maxt=0.; // Prototype of max possible -t 990 if(PDG==2212) maxt=PCSmanager->GetHMaxT(); // max possible -t 991 else maxt=NCSmanager->GetHMaxT(); // max possible -t 992 G4double cost=1.-mint/maxt; // cos(theta) in CMS 993 if(cost>1. || cost<-1. || !(cost>-1. || cost<=1.)) 994 { 995 if (cost>1.) cost=1.; 996 else if(cost<-1.) cost=-1.; 997 else 998 { 999 G4cerr<<"G4QuasiFreeRatio::ChExer:*NAN* c="<<cost<<",t="<<mint<<",tm="<<maxt<<G4endl; 1000 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); // Do Nothing Action 1001 } 1002 } 1003 G4LorentzVector reco4M=G4LorentzVector(0.,0.,0.,mT); // 4mom of the recoil nucleon 1004 pr4M=G4LorentzVector(0.,0.,0.,mS); // 4mom of the scattered hadron 1005 G4LorentzVector dir4M=tot4M-G4LorentzVector(0.,0.,0.,(tot4M.e()-mT)*.01); 1006 if(!RelDecayIn2(tot4M, pr4M, reco4M, dir4M, cost, cost)) 1007 { 1008 G4cerr<<"G4QFR::ChEx:t="<<tot4M<<tot4M.m()<<",mT="<<mT<<",mP="<<mS<<G4endl; 1009 //G4Exception("G4QFR::ChExer:","009",FatalException,"Decay of ElasticComp"); 1010 return std::make_pair(G4LorentzVector(0.,0.,0.,0.),p4M); // Do Nothing Action 1011 } 1012 return std::make_pair(reco4M*megaelectronvolt,pr4M*megaelectronvolt); // Result 1013 } // End of ChExer 1014 1015 // Calculate ChEx/El ratio (p is in independent units, (Z,N) is target, pPDG is projectile) 1016 G4double G4QuasiElRatios::ChExElCoef(G4double p, G4int Z, G4int N, G4int pPDG) 1017 { 1018 1019 p/=MeV; // Converted from independent units 1020 G4double A=Z+N; 1021 if(A<1.5) return 0.; 1022 G4double Cex=0.; 1023 if (pPDG==2212) Cex=N/(A+Z); 1024 else if(pPDG==2112) Cex=Z/(A+N); 1025 else G4cout<<"*Warning*G4CohChrgExchange::ChExElCoef: wrong PDG="<<pPDG<<G4endl; 1026 Cex*=Cex; // Coherent processes squares the amplitude 1027 // @@ This is true only for nucleons: other projectiles must be treated differently 1028 G4double sp=std::sqrt(p); 1029 G4double p2=p*p; 1030 G4double p4=p2*p2; 1031 G4double dl1=G4Log(p)-5.; 1032 G4double T=(6.75+.14*dl1*dl1+13./p)/(1.+.14/p4)+.6/(p4+.00013); 1033 G4double U=(6.25+8.33e-5/p4/p)*(p*sp+.34)/p2/p; 1034 G4double R=U/T; 1035 return Cex*R*R; 1036 } 1037 1038 // Decay of Hadron In2Particles f&s, f is in respect to the direction of HadronMomentumDir 1039 G4bool G4QuasiElRatios::RelDecayIn2(G4LorentzVector& theMomentum, G4LorentzVector& f4Mom, G4LorentzVector& s4Mom, 1040 G4LorentzVector& dir, G4double maxCost, G4double minCost) 1041 { 1042 G4double fM2 = f4Mom.m2(); 1043 G4double fM = std::sqrt(fM2); // Mass of the 1st Hadron 1044 G4double sM2 = s4Mom.m2(); 1045 G4double sM = std::sqrt(sM2); // Mass of the 2nd Hadron 1046 G4double iM2 = theMomentum.m2(); 1047 G4double iM = std::sqrt(iM2); // Mass of the decaying hadron 1048 G4double vP = theMomentum.rho(); // Momentum of the decaying hadron 1049 G4double dE = theMomentum.e(); // Energy of the decaying hadron 1050 if(dE<vP) 1051 { 1052 G4cerr<<"***G4QHad::RelDecIn2: Tachionic 4-mom="<<theMomentum<<", E-p="<<dE-vP<<G4endl; 1053 G4double accuracy=.000001*vP; 1054 G4double emodif=std::fabs(dE-vP); 1055 //if(emodif<accuracy) 1056 //{ 1057 G4cerr<<"G4QHadron::RelDecIn2: *Boost* E-p shift is corrected to "<<emodif<<G4endl; 1058 theMomentum.setE(vP+emodif+.01*accuracy); 1059 //} 1060 } 1061 G4ThreeVector ltb = theMomentum.boostVector();// Boost vector for backward Lorentz Trans. 1062 G4ThreeVector ltf = -ltb; // Boost vector for forward Lorentz Trans. 1063 G4LorentzVector cdir = dir; // A copy to make a transformation to CMS 1064 cdir.boost(ltf); // Direction transpormed to CMS of the Momentum 1065 G4ThreeVector vdir = cdir.vect(); // 3-Vector of the direction-particle 1066 G4ThreeVector vx(0.,0.,1.); // Ort in the direction of the reference particle 1067 G4ThreeVector vy(0.,1.,0.); // First ort orthogonal to the direction 1068 G4ThreeVector vz(1.,0.,0.); // Second ort orthoganal to the direction 1069 if(vdir.mag2() > 0.) // the refference particle isn't at rest in CMS 1070 { 1071 vx = vdir.unit(); // Ort in the direction of the reference particle 1072 G4ThreeVector vv= vx.orthogonal(); // Not normed orthogonal vector (!) 1073 vy = vv.unit(); // First ort orthogonal to the direction 1074 vz = vx.cross(vy); // Second ort orthoganal to the direction 1075 } 1076 if(maxCost> 1.) maxCost= 1.; 1077 if(minCost<-1.) minCost=-1.; 1078 if(maxCost<-1.) maxCost=-1.; 1079 if(minCost> 1.) minCost= 1.; 1080 if(minCost> maxCost) minCost=maxCost; 1081 if(std::fabs(iM-fM-sM)<.00000001) 1082 { 1083 G4double fR=fM/iM; 1084 G4double sR=sM/iM; 1085 f4Mom=fR*theMomentum; 1086 s4Mom=sR*theMomentum; 1087 return true; 1088 } 1089 else if (iM+.001<fM+sM || iM==0.) 1090 {//@@ Later on make a quark content check for the decay 1091 G4cerr<<"***G4QH::RelDecIn2: fM="<<fM<<"+sM="<<sM<<">iM="<<iM<<",d="<<iM-fM-sM<<G4endl; 1092 return false; 1093 } 1094 G4double d2 = iM2-fM2-sM2; 1095 G4double p2 = (d2*d2/4.-fM2*sM2)/iM2; // Decay momentum(^2) in CMS of Quasmon 1096 if(p2<0.) 1097 { 1098 p2=0.; 1099 } 1100 G4double p = std::sqrt(p2); 1101 G4double ct = maxCost; 1102 if(maxCost>minCost) 1103 { 1104 G4double dcost=maxCost-minCost; 1105 ct = minCost+dcost*G4UniformRand(); 1106 } 1107 G4double phi= twopi*G4UniformRand(); // @@ Change 360.*deg to M_TWOPI (?) 1108 G4double pss=0.; 1109 if(std::fabs(ct)<1.) pss = p * std::sqrt(1.-ct*ct); 1110 else 1111 { 1112 if(ct>1.) ct=1.; 1113 if(ct<-1.) ct=-1.; 1114 } 1115 G4ThreeVector pVect=(pss*std::sin(phi))*vz+(pss*std::cos(phi))*vy+p*ct*vx; 1116 1117 f4Mom.setVect(pVect); 1118 f4Mom.setE(std::sqrt(fM2+p2)); 1119 s4Mom.setVect((-1)*pVect); 1120 s4Mom.setE(std::sqrt(sM2+p2)); 1121 1122 if(f4Mom.e()+.001<f4Mom.rho())G4cerr<<"*G4QH::RDIn2:*Boost* f4M="<<f4Mom<<",e-p=" 1123 <<f4Mom.e()-f4Mom.rho()<<G4endl; 1124 f4Mom.boost(ltb); // Lor.Trans. of 1st hadron back to LS 1125 if(s4Mom.e()+.001<s4Mom.rho())G4cerr<<"*G4QH::RDIn2:*Boost* s4M="<<s4Mom<<",e-p=" 1126 <<s4Mom.e()-s4Mom.rho()<<G4endl; 1127 s4Mom.boost(ltb); // Lor.Trans. of 2nd hadron back to LS 1128 return true; 1129 } // End of "RelDecayIn2" 1130 1131 1132 1133 1134 1135 1136