Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // neutron_hp -- source file 27 // J.P. Wellisch, Nov-1996 28 // A prototype of the low energy neutron transport model. 29 // 30 // P. Arce, June-2014 Conversion neutron_hp to particle_hp 31 // 32 #include "G4ParticleHPFFFissionFS.hh" 33 34 #include "G4ParticleHPManager.hh" 35 #include "G4SystemOfUnits.hh" 36 37 G4ParticleHPFFFissionFS::~G4ParticleHPFFFissionFS() 38 { 39 auto it = FissionProductYieldData.begin(); 40 while (it != FissionProductYieldData.end()) { // Loop checking, 11.05.2015, T. Koi 41 std::map<G4double, std::map<G4int, G4double>*>* firstLevel = it->second; 42 if (firstLevel != nullptr) { 43 auto it2 = firstLevel->begin(); 44 while (it2 != firstLevel->end()) { // Loop checking, 11.05.2015, T. Koi 45 delete it2->second; 46 it2->second = 0; 47 firstLevel->erase(it2); 48 it2 = firstLevel->begin(); 49 } 50 } 51 delete firstLevel; 52 it->second = 0; 53 FissionProductYieldData.erase(it); 54 it = FissionProductYieldData.begin(); 55 } 56 57 auto ii = mMTInterpolation.begin(); 58 while (ii != mMTInterpolation.end()) { // Loop checking, 11.05.2015, T. Koi 59 delete ii->second; 60 mMTInterpolation.erase(ii); 61 ii = mMTInterpolation.begin(); 62 } 63 } 64 65 void G4ParticleHPFFFissionFS::Init(G4double A, G4double Z, G4int M, const G4String& dirName, 66 const G4String&, G4ParticleDefinition*) 67 { 68 // G4cout << "G4ParticleHPFFFissionFS::Init" << G4endl; 69 G4String aString = "FF"; 70 71 G4String tString = dirName; 72 G4bool dbool; 73 G4ParticleHPDataUsed aFile = 74 theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, tString, aString, dbool); 75 G4String filename = aFile.GetName(); 76 theBaseA = aFile.GetA(); 77 theBaseZ = aFile.GetZ(); 78 79 // 3456 80 if (!dbool || (Z < 2.5 && (std::abs(theBaseZ - Z) > 0.0001 || std::abs(theBaseA - A) > 0.0001))) { 81 hasAnyData = false; 82 hasFSData = false; 83 hasXsec = false; 84 return; // no data for exactly this isotope. 85 } 86 // std::ifstream theData(filename, std::ios::in); 87 std::istringstream theData(std::ios::in); 88 G4ParticleHPManager::GetInstance()->GetDataStream(filename, theData); 89 G4double dummy; 90 if (!theData) { 91 // theData.close(); 92 hasFSData = false; 93 hasXsec = false; 94 hasAnyData = false; 95 return; // no data for this FS for this isotope 96 } 97 98 hasFSData = true; 99 // MT Energy FPS Yield 100 // std::map< int , std::map< double , std::map< int , double >* >* > FisionProductYieldData; 101 while (theData.good()) // Loop checking, 11.05.2015, T. Koi 102 { 103 G4int iMT, iMF; 104 G4int imax; 105 // Reading the data 106 // MT MF AWR 107 theData >> iMT >> iMF >> dummy; 108 // nBlock 109 theData >> imax; 110 // if ( !theData.good() ) continue; 111 // Ei FPS Yield 112 auto mEnergyFSPData = new std::map<G4double, std::map<G4int, G4double>*>; 113 114 auto mInterporation = new std::map<G4double, G4int>; 115 for (G4int i = 0; i <= imax; i++) { 116 G4double YY = 0.0; 117 G4double Ei; 118 G4int jmax; 119 G4int ip; 120 // energy of incidence neutron 121 theData >> Ei; 122 // Number of data set followings 123 theData >> jmax; 124 // interpolation scheme 125 theData >> ip; 126 mInterporation->insert(std::pair<G4double, G4int>(Ei * eV, ip)); 127 // nNumber nIP 128 auto mFSPYieldData = new std::map<G4int, G4double>; 129 for (G4int j = 0; j < jmax; j++) { 130 G4int FSP; 131 G4int mFSP; 132 G4double Y; 133 theData >> FSP >> mFSP >> Y; 134 G4int k = FSP * 100 + mFSP; 135 YY = YY + Y; 136 // if ( iMT == 454 )G4cout << iMT << " " << i << " " << j << " " << k << " " << Y << " " << 137 // YY << G4endl; 138 mFSPYieldData->insert(std::pair<G4int, G4double>(k, YY)); 139 } 140 mEnergyFSPData->insert( 141 std::pair<G4double, std::map<G4int, G4double>*>(Ei * eV, mFSPYieldData)); 142 } 143 144 FissionProductYieldData.insert( 145 std::pair<G4int, std::map<G4double, std::map<G4int, G4double>*>*>(iMT, mEnergyFSPData)); 146 mMTInterpolation.insert(std::pair<G4int, std::map<G4double, G4int>*>(iMT, mInterporation)); 147 } 148 // theData.close(); 149 } 150 151 G4DynamicParticleVector* G4ParticleHPFFFissionFS::ApplyYourself(G4int nNeutrons) 152 { 153 G4DynamicParticleVector* aResult; 154 // G4cout <<"G4ParticleHPFFFissionFS::ApplyYourself +"<<G4endl; 155 aResult = G4ParticleHPFissionBaseFS::ApplyYourself(nNeutrons); 156 return aResult; 157 } 158 159 void G4ParticleHPFFFissionFS::GetAFissionFragment(G4double energy, G4int& fragZ, G4int& fragA, 160 G4int& fragM) 161 { 162 // G4cout << "G4ParticleHPFFFissionFS::GetAFissionFragment " << G4endl; 163 164 G4double rand = G4UniformRand(); 165 // G4cout << rand << G4endl; 166 167 auto ptr = FissionProductYieldData.find(454); 168 if (ptr == FissionProductYieldData.end()) 169 return; 170 171 auto mEnergyFSPData = ptr->second; 172 173 // It is not clear that the treatment of the scheme 2 on two-dimensional interpolation. 174 // So, here just use the closest energy point array of yield data. 175 // TK120531 176 G4double key_energy = DBL_MAX; 177 if (mEnergyFSPData->size() == 1) { 178 key_energy = mEnergyFSPData->cbegin()->first; 179 } 180 else { 181 // Find closest energy point 182 G4double Dmin = DBL_MAX; 183 for (auto it = mEnergyFSPData->cbegin(); it != mEnergyFSPData->cend(); ++it) { 184 G4double e = (it->first); 185 G4double d = std::fabs(energy - e); 186 if (d < Dmin) { 187 Dmin = d; 188 key_energy = e; 189 } 190 } 191 } 192 193 std::map<G4int, G4double>* mFSPYieldData = (*mEnergyFSPData)[key_energy]; 194 195 G4int ifrag = 0; 196 G4double ceilling = 197 mFSPYieldData->rbegin()->second; // Because of numerical accuracy, this is not always 2 198 for (auto it = mFSPYieldData->cbegin(); it != mFSPYieldData->cend(); ++it) { 199 // if ( ( rand - it->second/ceilling ) < 1.0e-6 ) std::cout << rand - it->second/ceilling << 200 // std::endl; 201 if (rand <= it->second / ceilling) { 202 // G4cout << it->first << " " << it->second/ceilling << G4endl; 203 ifrag = it->first; 204 break; 205 } 206 } 207 208 fragZ = ifrag / 100000; 209 fragA = (ifrag % 100000) / 100; 210 fragM = (ifrag % 100); 211 212 // G4cout << fragZ << " " << fragA << " " << fragM << G4endl; 213 } 214