Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/particle_hp/src/G4ParticleHPFFFissionFS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // neutron_hp -- source file
 27 // J.P. Wellisch, Nov-1996
 28 // A prototype of the low energy neutron transport model.
 29 //
 30 // P. Arce, June-2014 Conversion neutron_hp to particle_hp
 31 //
 32 #include "G4ParticleHPFFFissionFS.hh"
 33 
 34 #include "G4ParticleHPManager.hh"
 35 #include "G4SystemOfUnits.hh"
 36 
 37 G4ParticleHPFFFissionFS::~G4ParticleHPFFFissionFS()
 38 {
 39   auto it = FissionProductYieldData.begin();
 40   while (it != FissionProductYieldData.end()) {  // Loop checking, 11.05.2015, T. Koi
 41     std::map<G4double, std::map<G4int, G4double>*>* firstLevel = it->second;
 42     if (firstLevel != nullptr) {
 43       auto it2 = firstLevel->begin();
 44       while (it2 != firstLevel->end()) {  // Loop checking, 11.05.2015, T. Koi
 45         delete it2->second;
 46         it2->second = 0;
 47         firstLevel->erase(it2);
 48         it2 = firstLevel->begin();
 49       }
 50     }
 51     delete firstLevel;
 52     it->second = 0;
 53     FissionProductYieldData.erase(it);
 54     it = FissionProductYieldData.begin();
 55   }
 56 
 57   auto ii = mMTInterpolation.begin();
 58   while (ii != mMTInterpolation.end()) {  // Loop checking, 11.05.2015, T. Koi
 59     delete ii->second;
 60     mMTInterpolation.erase(ii);
 61     ii = mMTInterpolation.begin();
 62   }
 63 }
 64 
 65 void G4ParticleHPFFFissionFS::Init(G4double A, G4double Z, G4int M, const G4String& dirName,
 66                                    const G4String&, G4ParticleDefinition*)
 67 {
 68   // G4cout << "G4ParticleHPFFFissionFS::Init" << G4endl;
 69   G4String aString = "FF";
 70 
 71   G4String tString = dirName;
 72   G4bool dbool;
 73   G4ParticleHPDataUsed aFile =
 74     theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, tString, aString, dbool);
 75   G4String filename = aFile.GetName();
 76   theBaseA = aFile.GetA();
 77   theBaseZ = aFile.GetZ();
 78 
 79   // 3456
 80   if (!dbool || (Z < 2.5 && (std::abs(theBaseZ - Z) > 0.0001 || std::abs(theBaseA - A) > 0.0001))) {
 81     hasAnyData = false;
 82     hasFSData = false;
 83     hasXsec = false;
 84     return;  // no data for exactly this isotope.
 85   }
 86   // std::ifstream theData(filename, std::ios::in);
 87   std::istringstream theData(std::ios::in);
 88   G4ParticleHPManager::GetInstance()->GetDataStream(filename, theData);
 89   G4double dummy;
 90   if (!theData) {
 91     // theData.close();
 92     hasFSData = false;
 93     hasXsec = false;
 94     hasAnyData = false;
 95     return;  // no data for this FS for this isotope
 96   }
 97 
 98   hasFSData = true;
 99   //          MT              Energy            FPS    Yield
100   // std::map< int , std::map< double , std::map< int , double >* >* > FisionProductYieldData;
101   while (theData.good())  // Loop checking, 11.05.2015, T. Koi
102   {
103     G4int iMT, iMF;
104     G4int imax;
105     // Reading the data
106     //          MT       MF       AWR
107     theData >> iMT >> iMF >> dummy;
108     //         nBlock
109     theData >> imax;
110     // if ( !theData.good() ) continue;
111     //         Ei                   FPS     Yield
112     auto mEnergyFSPData = new std::map<G4double, std::map<G4int, G4double>*>;
113 
114     auto mInterporation = new std::map<G4double, G4int>;
115     for (G4int i = 0; i <= imax; i++) {
116       G4double YY = 0.0;
117       G4double Ei;
118       G4int jmax;
119       G4int ip;
120       //        energy of incidence neutron
121       theData >> Ei;
122       //        Number of data set followings
123       theData >> jmax;
124       //         interpolation scheme
125       theData >> ip;
126       mInterporation->insert(std::pair<G4double, G4int>(Ei * eV, ip));
127       //         nNumber  nIP
128       auto mFSPYieldData = new std::map<G4int, G4double>;
129       for (G4int j = 0; j < jmax; j++) {
130         G4int FSP;
131         G4int mFSP;
132         G4double Y;
133         theData >> FSP >> mFSP >> Y;
134         G4int k = FSP * 100 + mFSP;
135         YY = YY + Y;
136         // if ( iMT == 454 )G4cout << iMT << " " << i << " " << j << " " <<  k << " " << Y << " " <<
137         // YY << G4endl;
138         mFSPYieldData->insert(std::pair<G4int, G4double>(k, YY));
139       }
140       mEnergyFSPData->insert(
141         std::pair<G4double, std::map<G4int, G4double>*>(Ei * eV, mFSPYieldData));
142     }
143 
144     FissionProductYieldData.insert(
145       std::pair<G4int, std::map<G4double, std::map<G4int, G4double>*>*>(iMT, mEnergyFSPData));
146     mMTInterpolation.insert(std::pair<G4int, std::map<G4double, G4int>*>(iMT, mInterporation));
147   }
148   // theData.close();
149 }
150 
151 G4DynamicParticleVector* G4ParticleHPFFFissionFS::ApplyYourself(G4int nNeutrons)
152 {
153   G4DynamicParticleVector* aResult;
154   //    G4cout <<"G4ParticleHPFFFissionFS::ApplyYourself +"<<G4endl;
155   aResult = G4ParticleHPFissionBaseFS::ApplyYourself(nNeutrons);
156   return aResult;
157 }
158 
159 void G4ParticleHPFFFissionFS::GetAFissionFragment(G4double energy, G4int& fragZ, G4int& fragA,
160                                                   G4int& fragM)
161 {
162   // G4cout << "G4ParticleHPFFFissionFS::GetAFissionFragment " << G4endl;
163 
164   G4double rand = G4UniformRand();
165   // G4cout << rand << G4endl;
166 
167   auto ptr = FissionProductYieldData.find(454);
168   if (ptr == FissionProductYieldData.end())
169     return;
170 
171   auto mEnergyFSPData = ptr->second;
172 
173   // It is not clear that the treatment of the scheme 2 on two-dimensional interpolation.
174   // So, here just use the closest energy point array of yield data.
175   // TK120531
176   G4double key_energy = DBL_MAX;
177   if (mEnergyFSPData->size() == 1) {
178     key_energy = mEnergyFSPData->cbegin()->first;
179   }
180   else {
181     // Find closest energy point
182     G4double Dmin = DBL_MAX;
183     for (auto it = mEnergyFSPData->cbegin(); it != mEnergyFSPData->cend(); ++it) {
184       G4double e = (it->first);
185       G4double d = std::fabs(energy - e);
186       if (d < Dmin) {
187         Dmin = d;
188         key_energy = e;
189       }
190     }
191   }
192 
193   std::map<G4int, G4double>* mFSPYieldData = (*mEnergyFSPData)[key_energy];
194 
195   G4int ifrag = 0;
196   G4double ceilling =
197     mFSPYieldData->rbegin()->second;  // Because of numerical accuracy, this is not always 2
198   for (auto it = mFSPYieldData->cbegin(); it != mFSPYieldData->cend(); ++it) {
199     // if ( ( rand - it->second/ceilling ) < 1.0e-6 ) std::cout << rand - it->second/ceilling <<
200     // std::endl;
201     if (rand <= it->second / ceilling) {
202       // G4cout << it->first << " " << it->second/ceilling << G4endl;
203       ifrag = it->first;
204       break;
205     }
206   }
207 
208   fragZ = ifrag / 100000;
209   fragA = (ifrag % 100000) / 100;
210   fragM = (ifrag % 100);
211 
212   // G4cout << fragZ << " " << fragA << " " << fragM << G4endl;
213 }
214