Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lend/src/G4LENDModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Class Description
 27 // Final state production model for a LEND (Low Energy Nuclear Data) 
 28 // LEND is Geant4 interface for GIDI (General Interaction Data Interface) 
 29 // which gives a discription of nuclear and atomic reactions, such as
 30 //    Binary collision cross sections
 31 //    Particle number multiplicity distributions of reaction products
 32 //    Energy and angular distributions of reaction products
 33 //    Derived calculational constants
 34 // GIDI is developped at Lawrence Livermore National Laboratory
 35 // Class Description - End
 36 
 37 // 071025 First implementation done by T. Koi (SLAC/SCCS)
 38 // 101118 Name modifications for release T. Koi (SLAC/PPA)
 39 
 40 #include "G4LENDModel.hh"
 41 #include "G4PhysicalConstants.hh"
 42 #include "G4SystemOfUnits.hh"
 43 #include "G4NistManager.hh"
 44 #include "G4PhysicsModelCatalog.hh"
 45 
 46 double MyRNG(void*) { return  G4Random::getTheEngine()->flat(); }
 47 
 48 G4LENDModel::G4LENDModel( G4String name )
 49   :G4HadronicInteraction( name ), secID(-1)
 50 {
 51 
 52    proj = NULL; //will be set in an inherited class
 53 
 54    SetMinEnergy( 0.*eV );
 55    SetMaxEnergy( 20.*MeV );
 56 
 57    //default_evaluation = "endl99"; 
 58    //default_evaluation = "ENDF.B-VII.0";
 59    default_evaluation = "ENDF/BVII.1";
 60 
 61    allow_nat = false;
 62    allow_any = false;
 63 
 64    lend_manager = G4LENDManager::GetInstance();  
 65 
 66    secID = G4PhysicsModelCatalog::GetModelID( "model_" + GetModelName() );
 67 }
 68 
 69 G4LENDModel::~G4LENDModel()
 70 {
 71    for ( std::map< G4int , G4LENDUsedTarget* >::iterator 
 72          it = usedTarget_map.begin() ; it != usedTarget_map.end() ; it ++ )
 73    { 
 74       delete it->second;  
 75    }
 76 }
 77 
 78 
 79 void G4LENDModel::recreate_used_target_map()
 80 {
 81 
 82    for ( std::map< G4int , G4LENDUsedTarget* >::iterator 
 83          it = usedTarget_map.begin() ; it != usedTarget_map.end() ; it ++ )
 84    { 
 85       delete it->second;  
 86    }
 87    usedTarget_map.clear();
 88 
 89    create_used_target_map();
 90 
 91 }
 92 
 93 
 94 
 95 void G4LENDModel::create_used_target_map()
 96 {
 97 
 98    lend_manager->RequestChangeOfVerboseLevel( verboseLevel );
 99 
100    std::size_t numberOfElements = G4Element::GetNumberOfElements();
101    static const G4ElementTable* theElementTable = G4Element::GetElementTable();
102 
103    for ( std::size_t i = 0 ; i < numberOfElements ; ++i )
104    {
105 
106       const G4Element* anElement = (*theElementTable)[i];
107       G4int numberOfIsotope = (G4int)anElement->GetNumberOfIsotopes(); 
108 
109       if ( numberOfIsotope > 0 )
110       {
111       // User Defined Abundances   
112          for ( G4int i_iso = 0 ; i_iso < numberOfIsotope ; ++i_iso )
113          {
114             G4int iZ = anElement->GetIsotope( i_iso )->GetZ();
115             G4int iA = anElement->GetIsotope( i_iso )->GetN();
116             G4int iIsomer = anElement->GetIsotope( i_iso )->Getm();
117 
118             G4LENDUsedTarget* aTarget = new G4LENDUsedTarget ( proj , default_evaluation , iZ , iA , iIsomer );  
119             if ( allow_nat == true ) aTarget->AllowNat();
120             if ( allow_any == true ) aTarget->AllowAny();
121             usedTarget_map.insert( std::pair< G4int , G4LENDUsedTarget* > ( lend_manager->GetNucleusEncoding( iZ , iA , iIsomer ) , aTarget ) );
122          }
123       }
124       else
125       {
126       // Natural Abundances   
127          G4NistElementBuilder* nistElementBuild = lend_manager->GetNistElementBuilder();
128          G4int iZ = int ( anElement->GetZ() );
129          //G4cout << nistElementBuild->GetNumberOfNistIsotopes( int ( anElement->GetZ() ) ) << G4endl;
130          G4int numberOfNistIso = nistElementBuild->GetNumberOfNistIsotopes( int ( anElement->GetZ() ) ); 
131 
132          for ( G4int ii = 0 ; ii < numberOfNistIso ; ii++ )
133          {
134             //G4cout << nistElementBuild->GetIsotopeAbundance( iZ , nistElementBuild->GetNistFirstIsotopeN( iZ ) + i ) << G4endl;
135             if ( nistElementBuild->GetIsotopeAbundance( iZ , nistElementBuild->GetNistFirstIsotopeN( iZ ) + ii ) > 0 )
136             {
137                G4int iMass = nistElementBuild->GetNistFirstIsotopeN( iZ ) + ii;  
138                //G4cout << iZ << " " << nistElementBuild->GetNistFirstIsotopeN( iZ ) + i << " " << nistElementBuild->GetIsotopeAbundance ( iZ , iMass ) << G4endl;  
139                G4int iIsomer = 0;
140 
141                G4LENDUsedTarget* aTarget = new G4LENDUsedTarget ( proj , default_evaluation , iZ , iMass );  
142                if ( allow_nat == true ) aTarget->AllowNat();
143                if ( allow_any == true ) aTarget->AllowAny();
144                usedTarget_map.insert( std::pair< G4int , G4LENDUsedTarget* > ( lend_manager->GetNucleusEncoding( iZ , iMass , iIsomer ) , aTarget ) );
145 
146             }
147 
148          }
149 
150       }
151    }
152 
153    DumpLENDTargetInfo();
154 }
155   
156 
157   
158 #include "G4IonTable.hh"
159   
160 G4HadFinalState * G4LENDModel::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& aTarg )
161 {
162 
163    G4double temp = aTrack.GetMaterial()->GetTemperature();
164 
165    //G4int iZ = int ( aTarg.GetZ() );
166    //G4int iA = int ( aTarg.GetN() );
167    //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this) 
168    G4int iZ = aTarg.GetZ_asInt();
169    G4int iA = aTarg.GetA_asInt();
170    G4int iM = 0;
171    if ( aTarg.GetIsotope() != NULL ) {
172       iM = aTarg.GetIsotope()->Getm();
173    }
174 
175    G4double ke = aTrack.GetKineticEnergy();
176 
177    G4HadFinalState* theResult = new G4HadFinalState();
178 
179    G4GIDI_target* aTarget = usedTarget_map.find( lend_manager->GetNucleusEncoding( iZ , iA , iM ) )->second->GetTarget();
180 
181    G4double aMu = aTarget->getElasticFinalState( ke*MeV, temp, NULL, NULL );
182 
183    G4double phi = twopi*G4UniformRand();
184    G4double theta = std::acos( aMu );
185    //G4double sinth = std::sin( theta );
186 
187    G4ReactionProduct theNeutron( aTrack.GetDefinition() );
188    theNeutron.SetMomentum( aTrack.Get4Momentum().vect() );
189    theNeutron.SetKineticEnergy( ke );
190 
191    G4ParticleDefinition* pd = G4IonTable::GetIonTable()->GetIon( iZ , iA , iM );
192    G4ReactionProduct theTarget( pd );
193 
194    G4double mass = pd->GetPDGMass();
195 
196 // add Thermal motion 
197    G4double kT = k_Boltzmann*temp;
198    G4ThreeVector v ( G4RandGauss::shoot() * std::sqrt( kT*mass ) 
199                    , G4RandGauss::shoot() * std::sqrt( kT*mass ) 
200                    , G4RandGauss::shoot() * std::sqrt( kT*mass ) );
201 
202    theTarget.SetMomentum( v );
203 
204 
205      G4ThreeVector the3Neutron = theNeutron.GetMomentum();
206      G4double nEnergy = theNeutron.GetTotalEnergy();
207      G4ThreeVector the3Target = theTarget.GetMomentum();
208      G4double tEnergy = theTarget.GetTotalEnergy();
209      G4ReactionProduct theCMS;
210      G4double totE = nEnergy+tEnergy;
211      G4ThreeVector the3CMS = the3Target+the3Neutron;
212      theCMS.SetMomentum(the3CMS);
213      G4double cmsMom = std::sqrt(the3CMS*the3CMS);
214      G4double sqrts = std::sqrt((totE-cmsMom)*(totE+cmsMom));
215      theCMS.SetMass(sqrts);
216      theCMS.SetTotalEnergy(totE);
217 
218        theNeutron.Lorentz(theNeutron, theCMS);
219        theTarget.Lorentz(theTarget, theCMS);
220        G4double en = theNeutron.GetTotalMomentum(); // already in CMS.
221        G4ThreeVector cms3Mom=theNeutron.GetMomentum(); // for neutron direction in CMS
222        G4double cms_theta=cms3Mom.theta();
223        G4double cms_phi=cms3Mom.phi();
224        G4ThreeVector tempVector;
225        tempVector.setX(std::cos(theta)*std::sin(cms_theta)*std::cos(cms_phi)
226                        +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::cos(cms_phi)
227                        -std::sin(theta)*std::sin(phi)*std::sin(cms_phi)  );
228        tempVector.setY(std::cos(theta)*std::sin(cms_theta)*std::sin(cms_phi)
229                        +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::sin(cms_phi)
230                        +std::sin(theta)*std::sin(phi)*std::cos(cms_phi)  );
231        tempVector.setZ(std::cos(theta)*std::cos(cms_theta)
232                        -std::sin(theta)*std::cos(phi)*std::sin(cms_theta)  );
233        tempVector *= en;
234        theNeutron.SetMomentum(tempVector);
235        theTarget.SetMomentum(-tempVector);
236        G4double tP = theTarget.GetTotalMomentum();
237        G4double tM = theTarget.GetMass();
238        theTarget.SetTotalEnergy(std::sqrt((tP+tM)*(tP+tM)-2.*tP*tM));
239        theNeutron.Lorentz(theNeutron, -1.*theCMS);
240        theTarget.Lorentz(theTarget, -1.*theCMS);
241 
242      theResult->SetEnergyChange(theNeutron.GetKineticEnergy());
243      theResult->SetMomentumChange(theNeutron.GetMomentum().unit());
244      G4DynamicParticle* theRecoil = new G4DynamicParticle;
245 
246      theRecoil->SetDefinition( G4IonTable::GetIonTable()->GetIon( iZ , iA , iM , iZ ) );
247      theRecoil->SetMomentum( theTarget.GetMomentum() );
248 
249      theResult->AddSecondary( theRecoil );
250 
251    return theResult; 
252 
253 }
254 
255 G4HadFinalState* G4LENDModel::returnUnchanged(const G4HadProjectile& aTrack, G4HadFinalState* theResult ) {
256    if ( lend_manager->GetVerboseLevel() >= 1 ) {
257       G4String message;
258       message = "Produce unchanged final state is requested in ";
259       message += this->GetModelName();
260       message += ". Cross section and model likely have an inconsistency.";
261       G4Exception( "G4LENDModel::returnUnchanged(,)" , "LENDModel-01" , JustWarning ,
262                   message );
263    }
264    theResult->SetEnergyChange( aTrack.GetKineticEnergy() );
265    theResult->SetMomentumChange( aTrack.Get4Momentum().getV().unit() );
266    return theResult;
267 }
268 
269 G4GIDI_target* G4LENDModel::get_target_from_map( G4int nuclear_code ) {
270    G4GIDI_target* target = NULL;
271    if ( usedTarget_map.find( nuclear_code ) != usedTarget_map.end() ) {
272       target = usedTarget_map.find( nuclear_code )->second->GetTarget();
273    }
274    return target;
275 }
276 
277 void G4LENDModel::DumpLENDTargetInfo( G4bool force ) {
278 
279    if ( lend_manager->GetVerboseLevel() >= 1 || force ) {
280       if ( usedTarget_map.size() == 0 ) create_used_target_map(); 
281       G4cout << "Dumping UsedTarget of " << GetModelName() << " for " << proj->GetParticleName() << G4endl;
282       G4cout << "Requested Evaluation, Z , A -> Actual Evaluation, Z , A(0=Nat) " << G4endl;
283       for ( std::map< G4int , G4LENDUsedTarget* >::iterator 
284          it = usedTarget_map.begin() ; it != usedTarget_map.end() ; it ++ ) {
285          G4cout 
286          << " " << it->second->GetWantedEvaluation() 
287          << ", " << it->second->GetWantedZ() 
288          << ", " << it->second->GetWantedA() 
289          << " -> " << it->second->GetActualEvaluation() 
290          << ", " << it->second->GetActualZ() 
291          << ", " << it->second->GetActualA() 
292          << G4endl; 
293       } 
294    }
295 }
296