Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/utils/include/G4INCLEventInfo.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 /** \file G4INCLEventInfo.hh
 39  * \brief Simple container for output of event results.
 40  *
 41  * Contains the results of an INCL cascade.
 42  *
 43  * \date 21 January 2011
 44  * \author Davide Mancusi
 45  */
 46 
 47 #ifndef G4INCLEVENTINFO_HH_HH
 48 #define G4INCLEVENTINFO_HH_HH 1
 49 
 50 #include "G4INCLParticleType.hh"
 51 #ifdef INCL_ROOT_USE
 52 #include <Rtypes.h>
 53 #endif
 54 #include <string>
 55 #include <vector>
 56 #include <algorithm>
 57 
 58 namespace G4INCL {
 59 #ifndef INCL_ROOT_USE
 60     typedef G4int Int_t;
 61     typedef short Short_t;
 62     typedef G4float Float_t;
 63     typedef G4double Double_t;
 64     typedef G4bool Bool_t;
 65 #endif
 66 
 67     struct EventInfo {
 68       EventInfo() :
 69         nParticles(0),
 70         event(0),
 71         eventBias((Float_t)0.0),
 72         nRemnants(0),
 73         projectileType(0),
 74         At(0),
 75         Zt(0),
 76         St(0),
 77         Ap(0),
 78         Zp(0),
 79         Sp(0),
 80         Ep((Float_t)0.0),
 81         impactParameter((Float_t)0.0),
 82         nCollisions(0),
 83         stoppingTime((Float_t)0.0),
 84         EBalance((Float_t)0.0),
 85         firstEBalance((Float_t)0.0),
 86         pLongBalance((Float_t)0.0),
 87         pTransBalance((Float_t)0.0),
 88         nCascadeParticles(0),
 89         transparent(false),
 90         annihilationP(false),
 91         annihilationN(false),
 92         forcedCompoundNucleus(false),
 93         nucleonAbsorption(false),
 94         pionAbsorption(false),
 95         nDecays(0),
 96         nSrcCollisions(0),
 97         nSrcPairs(0),
 98         nBlockedCollisions(0),
 99         nBlockedDecays(0),
100         effectiveImpactParameter((Float_t)0.0),
101         deltasInside(false),
102         sigmasInside(false),
103         kaonsInside(false),
104         antikaonsInside(false),
105         lambdasInside(false),
106         forcedDeltasInside(false),
107         forcedDeltasOutside(false),
108         forcedPionResonancesOutside(false),
109         absorbedStrangeParticle(false),
110         forcedSigmaOutside(false),
111         forcedStrangeInside(false),
112         emitLambda(0),
113         emitKaon(false),
114         clusterDecay(false),
115         firstCollisionTime((Float_t)0.0),
116         firstCollisionXSec((Float_t)0.0),
117         firstCollisionSpectatorPosition((Float_t)0.0),
118         firstCollisionSpectatorMomentum((Float_t)0.0),
119         firstCollisionIsElastic(false),
120         nReflectionAvatars(0),
121         nCollisionAvatars(0),
122         nDecayAvatars(0),
123         nUnmergedSpectators(0),
124         nEnergyViolationInteraction(0)
125 
126       {
127         std::fill_n(A, maxSizeParticles, 0);
128         std::fill_n(Z, maxSizeParticles, 0);
129         std::fill_n(S, maxSizeParticles, 0);
130         std::fill_n(J, maxSizeParticles, 0);
131         std::fill_n(PDGCode, maxSizeParticles, 0);
132         std::fill_n(ParticleBias, maxSizeParticles, (Float_t)0.0);
133         std::fill_n(EKin, maxSizeParticles, (Float_t)0.0);
134         std::fill_n(px, maxSizeParticles, (Float_t)0.0);
135         std::fill_n(py, maxSizeParticles, (Float_t)0.0);
136         std::fill_n(pz, maxSizeParticles, (Float_t)0.0);
137         std::fill_n(theta, maxSizeParticles, (Float_t)0.0);
138         std::fill_n(phi, maxSizeParticles, (Float_t)0.0);
139         std::fill_n(origin, maxSizeParticles, 0);
140         std::fill_n(parentResonancePDGCode, maxSizeParticles, 0);
141         std::fill_n(parentResonanceID, maxSizeParticles, 0);
142         std::fill_n(emissionTime, maxSizeParticles, (Float_t)0.0);
143         std::fill_n(ARem, maxSizeRemnants, 0);
144         std::fill_n(ZRem, maxSizeRemnants, 0);
145         std::fill_n(SRem, maxSizeRemnants, 0);
146         std::fill_n(EStarRem, maxSizeRemnants, (Float_t)0.0);
147         std::fill_n(JRem, maxSizeRemnants, (Float_t)0.0);
148         std::fill_n(EKinRem, maxSizeRemnants, (Float_t)0.0);
149         std::fill_n(pxRem, maxSizeRemnants, (Float_t)0.0);
150         std::fill_n(pyRem, maxSizeRemnants, (Float_t)0.0);
151         std::fill_n(pzRem, maxSizeRemnants, (Float_t)0.0);
152         std::fill_n(thetaRem, maxSizeRemnants, (Float_t)0.0);
153         std::fill_n(phiRem, maxSizeRemnants, (Float_t)0.0);
154         std::fill_n(jxRem, maxSizeRemnants, (Float_t)0.0);
155         std::fill_n(jyRem, maxSizeRemnants, (Float_t)0.0);
156         std::fill_n(jzRem, maxSizeRemnants, (Float_t)0.0);
157         std::fill_n(EKinPrime, maxSizeParticles, (Float_t)0.0);
158         std::fill_n(pzPrime, maxSizeParticles, (Float_t)0.0);
159         std::fill_n(thetaPrime, maxSizeParticles, (Float_t)0.0);
160       }
161 
162       /** \brief Number of the event */
163       static G4ThreadLocal Int_t eventNumber;
164 
165       /** \brief Maximum array size for remnants */
166       static const Short_t maxSizeRemnants = 10;
167 
168       /** \brief Maximum array size for emitted particles */
169       static const Short_t maxSizeParticles = 1000;
170 
171       /** \brief Number of particles in the final state */
172       Short_t nParticles;
173       /** \brief Sequential number of the event in the event loop */
174       Int_t event;
175       /** \brief Particle mass number */
176       Short_t A[maxSizeParticles];
177       /** \brief Particle charge number */
178       Short_t Z[maxSizeParticles];
179       /** \brief Particle strangeness number */
180       Short_t S[maxSizeParticles];
181       /** \brief Particle angular momemtum */
182       Short_t J[maxSizeParticles];
183       /** \brief PDG numbering of the particles */
184       Int_t PDGCode[maxSizeParticles];
185       /** \brief Event bias */
186       Float_t eventBias;
187       /** \brief Particle weight due to the bias */
188       Float_t ParticleBias[maxSizeParticles];
189       /** \brief Particle kinetic energy [MeV] */
190       Float_t EKin[maxSizeParticles];
191       /** \brief Particle momentum, x component [MeV/c] */
192       Float_t px[maxSizeParticles];
193       /** \brief Particle momentum, y component [MeV/c] */
194       Float_t py[maxSizeParticles];
195       /** \brief Particle momentum, z component [MeV/c] */
196       Float_t pz[maxSizeParticles];
197       /** \brief Particle momentum polar angle [radians] */
198       Float_t theta[maxSizeParticles];
199       /** \brief Particle momentum azimuthal angle [radians] */
200       Float_t phi[maxSizeParticles];
201       /** \brief Origin of the particle
202        *
203        * Should be -1 for cascade particles, or the number of the remnant for
204        * de-excitation particles. */
205       Short_t origin[maxSizeParticles];
206       /** \brief Particle's parent resonance PDG code */
207       Int_t parentResonancePDGCode[maxSizeParticles];
208       /** \brief Particle's parent resonance unique ID identifier */
209       Int_t parentResonanceID[maxSizeParticles];
210       /** \brief History of the particle
211        *
212        * Condensed information about the de-excitation chain of a particle. For
213        * cascade particles, it is just an empty string. For particles arising
214        * from the de-excitation of a cascade remnant, it is a string of
215        * characters. Each character represents one or more identical steps in
216        * the de-excitation process. The currently defined possible character
217        * values and their meanings are the following:
218        *
219        * e: evaporation product
220        * E: evaporation residue
221        * m: multifragmentation
222        * a: light partner in asymmetric fission or IMF emission
223        * A: heavy partner in asymmetric fission or IMF emission
224        * f: light partner in fission
225        * F: heavy partner in fission
226        * s: saddle-to-scission emission
227        * n: non-statistical emission (decay) */
228       std::vector<std::string> history;
229       /** \brief Number of remnants */
230       Short_t nRemnants;
231       /** \brief Projectile particle type */
232       Int_t projectileType;
233       /** \brief Mass number of the target nucleus */
234       Short_t At;
235       /** \brief Charge number of the target nucleus */
236       Short_t Zt;
237       /** \brief Strangeness number of the target nucleus */
238       Short_t St;
239       /** \brief Mass number of the projectile nucleus */
240       Short_t Ap;
241       /** \brief Charge number of the projectile nucleus */
242       Short_t Zp;
243       /** \brief Strangeness number of the projectile nucleus */
244       Short_t Sp;
245       /** \brief Projectile kinetic energy given as input */
246       Float_t Ep;
247       /** \brief Impact parameter [fm] */
248       Float_t impactParameter;
249       /** \brief Number of accepted two-body collisions */
250       Int_t nCollisions;
251       /** \brief Cascade stopping time [fm/c] */
252       Float_t stoppingTime;
253       /** \brief Energy-conservation balance [MeV] */
254       Float_t EBalance;
255       /** \brief First value for the energy-conservation balance [MeV] */
256       Float_t firstEBalance;
257       /** \brief Longitudinal momentum-conservation balance [MeV/c] */
258       Float_t pLongBalance;
259       /** \brief Transverse momentum-conservation balance [MeV/c] */
260       Float_t pTransBalance;
261       /** \brief Number of cascade particles */
262       Short_t nCascadeParticles;
263       /** \brief True if the event is transparent */
264       Bool_t transparent;
265       /** \brief True if annihilation at rest on a proton */
266       Bool_t annihilationP;
267       /** \brief True if annihilation at rest on a neutron */
268       Bool_t annihilationN;
269       /** \brief True if the event is a forced CN */
270       Bool_t forcedCompoundNucleus;
271       /** \brief True if the event is a nucleon absorption */
272       Bool_t nucleonAbsorption;
273       /** \brief True if the event is a pion absorption */
274       Bool_t pionAbsorption;
275       /** \brief Number of accepted Delta decays */
276       Int_t nDecays;
277       /** \brief Number of accepted SRC collisions */
278       Int_t nSrcCollisions;
279       /** \brief Number of src pairs */
280       Int_t nSrcPairs;
281       /** \brief Number of two-body collisions blocked by Pauli or CDPP */
282       Int_t nBlockedCollisions;
283       /** \brief Number of decays blocked by Pauli or CDPP */
284       Int_t nBlockedDecays;
285       /** \brief Effective (Coulomb-distorted) impact parameter [fm] */
286       Float_t effectiveImpactParameter;
287       /** \brief Event involved deltas in the nucleus at the end of the cascade */
288       Bool_t deltasInside;
289       /** \brief Event involved sigmas in the nucleus at the end of the cascade */
290       Bool_t sigmasInside;
291       /** \brief Event involved kaons in the nucleus at the end of the cascade */
292       Bool_t kaonsInside;
293       /** \brief Event involved antikaons in the nucleus at the end of the cascade */
294       Bool_t antikaonsInside;
295       /** \brief Event involved lambdas in the nucleus at the end of the cascade */
296       Bool_t lambdasInside;
297       /** \brief Event involved forced delta decays inside the nucleus */
298       Bool_t forcedDeltasInside;
299       /** \brief Event involved forced delta decays outside the nucleus */
300       Bool_t forcedDeltasOutside;
301       /** \brief Event involved forced eta/omega decays outside the nucleus */
302       Bool_t forcedPionResonancesOutside;
303       /** \brief Event involved forced strange absorption inside the nucleus */
304       Bool_t absorbedStrangeParticle;
305       /** \brief Event involved forced Sigma Zero decays outside the nucleus */
306       Bool_t forcedSigmaOutside;
307       /** \brief Event involved forced antiKaon/Sigma absorption inside the nucleus */
308       Bool_t forcedStrangeInside;
309       /** \brief Number of forced Lambda emit out of the nucleus */
310       Int_t emitLambda;
311       /** \brief Event involved forced Kaon emission */
312       Bool_t emitKaon;
313       /** \brief Event involved cluster decay */
314       Bool_t clusterDecay;
315       /** \brief Time of the first collision [fm/c] */
316       Float_t firstCollisionTime;
317       /** \brief Cross section of the first collision (mb) */
318       Float_t firstCollisionXSec;
319       /** \brief Position of the spectator on the first collision (fm) */
320       Float_t firstCollisionSpectatorPosition;
321       /** \brief Momentum of the spectator on the first collision (fm) */
322       Float_t firstCollisionSpectatorMomentum;
323       /** \brief True if the first collision was elastic */
324       Bool_t firstCollisionIsElastic;
325       /** \brief Number of reflection avatars */
326       Int_t nReflectionAvatars;
327       /** \brief Number of collision avatars */
328       Int_t nCollisionAvatars;
329       /** \brief Number of decay avatars */
330       Int_t nDecayAvatars;
331       /** \brief Number of dynamical spectators that were merged back into the projectile remnant */
332       Int_t nUnmergedSpectators;
333       /** \brief Number of attempted collisions/decays for which the energy-conservation algorithm failed to find a solution. */
334       Int_t nEnergyViolationInteraction;
335       /** \brief Emission time [fm/c] */
336       Float_t emissionTime[maxSizeParticles];
337       /** \brief Remnant mass number */
338       Short_t ARem[maxSizeRemnants];
339       /** \brief Remnant charge number */
340       Short_t ZRem[maxSizeRemnants];
341       /** \brief Remnant strangeness number */
342       Short_t SRem[maxSizeRemnants];
343       /** \brief Remnant excitation energy [MeV] */
344       Float_t EStarRem[maxSizeRemnants];
345       /** \brief Remnant spin [\f$\hbar\f$] */
346       Float_t JRem[maxSizeRemnants];
347       /** \brief Remnant kinetic energy [MeV] */
348       Float_t EKinRem[maxSizeRemnants];
349       /** \brief Remnant momentum, x component [MeV/c] */
350       Float_t pxRem[maxSizeRemnants];
351       /** \brief Remnant momentum, y component [MeV/c] */
352       Float_t pyRem[maxSizeRemnants];
353       /** \brief Remnant momentum, z component [MeV/c] */
354       Float_t pzRem[maxSizeRemnants];
355       /** \brief Remnant momentum polar angle [radians] */
356       Float_t thetaRem[maxSizeRemnants];
357       /** \brief Remnant momentum azimuthal angle [radians] */
358       Float_t phiRem[maxSizeRemnants];
359       /** \brief Remnant angular momentum, x component [\f$\hbar\f$] */
360       Float_t jxRem[maxSizeRemnants];
361       /** \brief Remnant angular momentum, y component [\f$\hbar\f$] */
362       Float_t jyRem[maxSizeRemnants];
363       /** \brief Remnant angular momentum, z component [\f$\hbar\f$] */
364       Float_t jzRem[maxSizeRemnants];
365       /** \brief Particle kinetic energy, in inverse kinematics [MeV] */
366       Float_t EKinPrime[maxSizeParticles];
367       /** \brief Particle momentum, z component, in inverse kinematics [MeV/c] */
368       Float_t pzPrime[maxSizeParticles];
369       /** \brief Particle momentum polar angle, in inverse kinematics [radians] */
370       Float_t thetaPrime[maxSizeParticles];
371 
372       /** \brief Reset the EventInfo members */
373       void reset() {
374         nParticles = 0;
375         event = 0;
376         eventBias = (Float_t)0.0;
377         history.clear();
378         nRemnants = 0;
379         projectileType = 0;
380         At = 0;
381         Zt = 0;
382         St = 0;
383         Ap = 0;
384         Zp = 0;
385         Sp = 0;
386         Ep = (Float_t)0.0;
387         impactParameter = (Float_t)0.0;
388         nCollisions = 0;
389         stoppingTime = (Float_t)0.0;
390         EBalance = (Float_t)0.0;
391         firstEBalance = (Float_t)0.0;
392         pLongBalance = (Float_t)0.0;
393         pTransBalance = (Float_t)0.0;
394         nCascadeParticles = 0;
395         transparent = false;
396         annihilationP = false;
397         annihilationN = false;
398         forcedCompoundNucleus = false;
399         nucleonAbsorption = false;
400         pionAbsorption = false;
401         nDecays = 0;
402         nSrcCollisions = 0;
403         nSrcPairs = 0;
404         nBlockedCollisions = 0;
405         nBlockedDecays = 0;
406         effectiveImpactParameter = (Float_t)0.0;
407         deltasInside = false;
408         sigmasInside = false;
409         kaonsInside = false;
410         antikaonsInside = false;
411         lambdasInside = false;
412         forcedDeltasInside = false;
413         forcedDeltasOutside = false;
414         forcedPionResonancesOutside = false;
415         absorbedStrangeParticle = false;
416         forcedSigmaOutside = false;
417         forcedStrangeInside = false;
418         emitLambda = 0;
419         emitKaon = false;
420         clusterDecay = false;
421         firstCollisionTime = (Float_t)0.0;
422         firstCollisionXSec = (Float_t)0.0;
423         firstCollisionSpectatorPosition = (Float_t)0.0;
424         firstCollisionSpectatorMomentum = (Float_t)0.0;
425         firstCollisionIsElastic = false;
426         nReflectionAvatars = 0;
427         nCollisionAvatars = 0;
428         nDecayAvatars = 0;
429         nUnmergedSpectators = 0;
430         nEnergyViolationInteraction = 0;
431 
432       }
433 
434       /// \brief Move a remnant to the particle array
435       void remnantToParticle(const G4int remnantIndex);
436 
437       /// \brief Fill the variables describing the reaction in inverse kinematics
438       void fillInverseKinematics(const Double_t gamma);
439     };
440 }
441 
442 #endif /* G4INCLEVENTINFO_HH_HH */
443