Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLTransmissionChannel.hh" 39 40 namespace G4INCL { 41 42 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle) 43 : theNucleus(nucleus), theParticle(particle), 44 refraction(false), 45 pOutMag(0.), 46 kineticEnergyOutside(initializeKineticEnergyOutside()), 47 cosRefractionAngle(1.) 48 {} 49 50 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut) 51 : theNucleus(nucleus), theParticle(particle), 52 refraction(false), 53 pOutMag(0.), 54 kineticEnergyOutside(TOut), 55 cosRefractionAngle(1.) 56 {} 57 58 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR) 59 : theNucleus(nucleus), theParticle(particle), 60 refraction(true), 61 pOutMag(kOut), 62 kineticEnergyOutside(initializeKineticEnergyOutside()), 63 cosRefractionAngle(cosR) 64 {} 65 66 TransmissionChannel::~TransmissionChannel() {} 67 68 G4double TransmissionChannel::initializeKineticEnergyOutside() { 69 // The particle energy outside the nucleus. Subtract the nuclear 70 // potential from the kinetic energy when leaving the nucleus 71 G4double TOut = theParticle->getEnergy() 72 - theParticle->getPotentialEnergy() 73 - theParticle->getMass(); 74 75 // Correction for real masses 76 const G4int AParent = theNucleus->getA(); 77 const G4int ZParent = theNucleus->getZ(); 78 const G4int SParent = theNucleus->getS(); 79 const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent,SParent); 80 TOut += theQValueCorrection; 81 return TOut; 82 } 83 84 void TransmissionChannel::particleLeaves() { 85 86 // Use the table mass in the outside world 87 theParticle->setTableMass(); 88 theParticle->setPotentialEnergy(0.); 89 90 if(refraction) { 91 // Change the momentum direction 92 // The magnitude of the particle momentum outside the nucleus will be 93 // fixed by the kineticEnergyOutside variable. This is done in order to 94 // avoid numerical inaccuracies. 95 const ThreeVector &position = theParticle->getPosition(); 96 const G4double r2 = position.mag2(); 97 ThreeVector normal; 98 if(r2>0.) 99 normal = position / std::sqrt(r2); 100 101 const ThreeVector &momentum = theParticle->getMomentum(); 102 103 const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum); 104 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5); 105 106 theParticle->setMomentum(pOut); 107 } 108 // Scaling factor for the particle momentum 109 theParticle->setEnergy(kineticEnergyOutside + theParticle->getMass()); 110 theParticle->adjustMomentumFromEnergy(); 111 } 112 113 void TransmissionChannel::fillFinalState(FinalState *fs) { 114 G4double initialEnergy = 0.0; 115 initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy(); 116 // Correction for real masses 117 const G4int AParent = theNucleus->getA(); 118 const G4int ZParent = theNucleus->getZ(); 119 const G4int SParent = theNucleus->getS(); 120 initialEnergy += theParticle->getTableMass() - theParticle->getMass() 121 + theParticle->getEmissionQValueCorrection(AParent,ZParent,SParent); 122 particleLeaves(); 123 124 fs->setTotalEnergyBeforeInteraction(initialEnergy); 125 fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing 126 } 127 } 128