Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLStrangeAbsorbtionChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 43 #include "G4INCLLogger.hh" 44 45 namespace G4INCL { 46 47 StrangeAbsorbtionChannel::StrangeAbsorbtionChannel(Particle *p1, Particle *p2) 48 : particle1(p1), particle2(p2) 49 { 50 51 } 52 53 StrangeAbsorbtionChannel::~StrangeAbsorbtionChannel(){} 54 55 void StrangeAbsorbtionChannel::sampleAngles(G4double *ctet_par, G4double *stet_par, G4double *phi_par) { 56 (*ctet_par) = -1.0 + 2.0*Random::shoot(); 57 if(std::abs(*ctet_par) > 1.0) (*ctet_par) = Math::sign(*ctet_par); // needed? 58 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*ctet_par)); 59 (*phi_par) = Math::twoPi * Random::shoot(); 60 } 61 62 void StrangeAbsorbtionChannel::fillFinalState(FinalState *fs) { 63 Particle * nucleon; 64 Particle * strange; 65 66 ThreeVector const incidentDirection = particle1->getMomentum() + particle2->getMomentum(); 67 68 if(particle1->isNucleon()) { 69 nucleon = particle1; 70 strange = particle2; 71 } else { 72 nucleon = particle2; 73 strange = particle1; 74 } 75 // assert(strange->isSigma() || strange->isAntiKaon()); 76 77 ParticleType finalType = Neutron; 78 if(ParticleConfig::isPair(nucleon, strange, Neutron, KZeroBar)) { 79 finalType = PiZero; 80 } else if(ParticleConfig::isPair(nucleon, strange, Proton, KZeroBar)) { 81 finalType = PiPlus; 82 } else if(ParticleConfig::isPair(nucleon, strange, Neutron, KMinus)) { 83 finalType = PiMinus; 84 } else if(ParticleConfig::isPair(nucleon, strange, Proton, KMinus)) { 85 finalType = PiZero; 86 } else if(ParticleConfig::isPair(nucleon, strange, Proton, SigmaMinus)) { 87 finalType = Neutron; 88 } else if(ParticleConfig::isPair(nucleon, strange, Neutron, SigmaZero)) { 89 finalType = Neutron; 90 } else if(ParticleConfig::isPair(nucleon, strange, Proton, SigmaZero)) { 91 finalType = Proton; 92 } else if(ParticleConfig::isPair(nucleon, strange, Neutron, SigmaPlus)) { 93 finalType = Proton; 94 } else { 95 INCL_ERROR("Unknown particle pair in Strange-N absorption: " << nucleon << '\t' << strange << '\n'); 96 return; 97 } 98 99 G4double energycm = KinematicsUtils::totalEnergyInCM(nucleon, strange); 100 101 G4double finalTypemass = ParticleTable::getINCLMass(finalType); 102 nucleon->setType(Lambda); // nucleon becomes the lambda 103 G4double lambdamass = nucleon->getMass(); 104 105 G4double fi, ctet, stet; 106 sampleAngles(&ctet, &stet, &fi); 107 108 G4double cfi = std::cos(fi); 109 G4double sfi = std::sin(fi); 110 G4double beta = incidentDirection.mag(); 111 112 G4double q1, q2, q3; 113 G4double sal=0.0; 114 if (beta >= 1.0e-10) 115 sal = incidentDirection.perp()/beta; 116 if (sal >= 1.0e-6) { 117 G4double b1 = incidentDirection.getX(); 118 G4double b2 = incidentDirection.getY(); 119 G4double b3 = incidentDirection.getZ(); 120 G4double cal = b3/beta; 121 G4double t1 = ctet+cal*stet*sfi/sal; 122 G4double t2 = stet/sal; 123 q1=(b1*t1+b2*t2*cfi)/beta; 124 q2=(b2*t1-b1*t2*cfi)/beta; 125 q3=(b3*t1/beta-t2*sfi); 126 } else { 127 q1 = stet*cfi; 128 q2 = stet*sfi; 129 q3 = ctet; 130 } 131 132 G4double xq = KinematicsUtils::momentumInCM(energycm, 133 lambdamass, 134 finalTypemass); 135 136 q1 *= xq; 137 q2 *= xq; 138 q3 *= xq; 139 140 ThreeVector finalMomentum(q1, q2, q3); 141 142 strange->setType(finalType); 143 strange->setMomentum(finalMomentum); 144 strange->adjustEnergyFromMomentum(); 145 nucleon->setMomentum(-finalMomentum); 146 nucleon->adjustEnergyFromMomentum(); 147 148 fs->addModifiedParticle(nucleon); // nucleon became a lambda 149 fs->addModifiedParticle(strange); // the strange particle became an unstange particle 150 } 151 152 } 153