Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 /** \file G4INCLNuclearPotentialIsospin.cc 39 * \brief Isospin-dependent nuclear potential. 40 * 41 * Provides an isospin-dependent nuclear potential. 42 * 43 * \date 28 February 2011 44 * \author Davide Mancusi 45 */ 46 47 #include "G4INCLNuclearPotentialIsospin.hh" 48 #include "G4INCLNuclearPotentialConstant.hh" 49 #include "G4INCLParticleTable.hh" 50 #include "G4INCLGlobals.hh" 51 52 namespace G4INCL { 53 54 namespace NuclearPotential { 55 56 // Constructors 57 NuclearPotentialIsospin::NuclearPotentialIsospin(const G4int A, const G4int Z, const G4bool aPionPotential) 58 : INuclearPotential(A, Z, aPionPotential) 59 { 60 initialize(); 61 } 62 63 // Destructor 64 NuclearPotentialIsospin::~NuclearPotentialIsospin() {} 65 66 void NuclearPotentialIsospin::initialize() { 67 const G4double ZOverA = ((G4double) theZ) / ((G4double) theA); 68 69 const G4double mp = ParticleTable::getINCLMass(Proton); 70 const G4double mn = ParticleTable::getINCLMass(Neutron); 71 const G4double ml = ParticleTable::getINCLMass(Lambda); 72 73 const G4double theFermiMomentum = ParticleTable::getFermiMomentum(theA,theZ); 74 75 fermiMomentum[Proton] = theFermiMomentum * Math::pow13(2.*ZOverA); 76 const G4double theProtonFermiEnergy = std::sqrt(fermiMomentum[Proton]*fermiMomentum[Proton] + mp*mp) - mp; 77 fermiEnergy[Proton] = theProtonFermiEnergy; 78 // Use separation energies from the ParticleTable 79 const G4double theProtonSeparationEnergy = ParticleTable::getSeparationEnergy(Proton,theA,theZ); 80 separationEnergy[Proton] = theProtonSeparationEnergy; 81 vProton = theProtonFermiEnergy + theProtonSeparationEnergy; 82 83 fermiMomentum[Neutron] = theFermiMomentum * Math::pow13(2.*(1.-ZOverA)); 84 const G4double theNeutronFermiEnergy = std::sqrt(fermiMomentum[Neutron]*fermiMomentum[Neutron] + mn*mn) - mn; 85 fermiEnergy[Neutron] = theNeutronFermiEnergy; 86 // Use separation energies from the ParticleTable 87 const G4double theNeutronSeparationEnergy = ParticleTable::getSeparationEnergy(Neutron,theA,theZ); 88 separationEnergy[Neutron] = theNeutronSeparationEnergy; 89 vNeutron = theNeutronFermiEnergy + theNeutronSeparationEnergy; 90 91 const G4double separationEnergyDeltaPlusPlus = 2.*theProtonSeparationEnergy - theNeutronSeparationEnergy; 92 separationEnergy[DeltaPlusPlus] = separationEnergyDeltaPlusPlus; 93 separationEnergy[DeltaPlus] = theProtonSeparationEnergy; 94 separationEnergy[DeltaZero] = theNeutronSeparationEnergy; 95 const G4double separationEnergyDeltaMinus = 2.*theNeutronSeparationEnergy - theProtonSeparationEnergy; 96 separationEnergy[DeltaMinus] = separationEnergyDeltaMinus; 97 98 const G4double tinyMargin = 1E-7; 99 vDeltaPlus = vProton; 100 vDeltaZero = vNeutron; 101 vDeltaPlusPlus = std::max(separationEnergyDeltaPlusPlus + tinyMargin, 2.*vDeltaPlus - vDeltaZero); 102 vDeltaMinus = std::max(separationEnergyDeltaMinus + tinyMargin, 2.*vDeltaZero - vDeltaPlus); 103 104 vSigmaMinus = -16.; // Repulsive potential, from Eur. Phys.J.A. (2016) 52:21 105 vSigmaZero = -16.; // hypothesis: same potential for each sigma 106 vSigmaPlus = -16.; 107 108 vLambda = 30.; 109 vantiProton = 100.; 110 111 const G4double asy = (theA - 2.*theZ)/theA; 112 // Jose Luis Rodriguez-Sanchez et al., Rapid Communication PRC 98, 021602 (2018) 113 if (asy > 0.236) vLambda = 40.91; 114 else if (asy > 0.133) vLambda = 56.549 - 678.73*asy + 4905.35*asy*asy - 9789.1*asy*asy*asy; 115 116 const G4double theLambdaSeparationEnergy = ParticleTable::getSeparationEnergy(Lambda,theA,theZ); 117 const G4double theantiProtonSeparationEnergy = ParticleTable::getSeparationEnergy(antiProton,theA,theZ); 118 119 separationEnergy[PiPlus] = theProtonSeparationEnergy - theNeutronSeparationEnergy; 120 separationEnergy[PiZero] = 0.; 121 separationEnergy[PiMinus] = theNeutronSeparationEnergy - theProtonSeparationEnergy; 122 123 separationEnergy[Eta] = 0.; 124 separationEnergy[Omega] = 0.; 125 separationEnergy[EtaPrime] = 0.; 126 separationEnergy[Photon] = 0.; 127 128 separationEnergy[Lambda] = theLambdaSeparationEnergy; 129 separationEnergy[SigmaPlus] = theProtonSeparationEnergy + theLambdaSeparationEnergy - theNeutronSeparationEnergy; 130 separationEnergy[SigmaZero] = theLambdaSeparationEnergy; 131 separationEnergy[SigmaMinus] = theNeutronSeparationEnergy + theLambdaSeparationEnergy - theProtonSeparationEnergy; 132 133 separationEnergy[KPlus] = theProtonSeparationEnergy - theLambdaSeparationEnergy; 134 separationEnergy[KZero] = (theNeutronSeparationEnergy - theLambdaSeparationEnergy); 135 separationEnergy[KZeroBar] = (theLambdaSeparationEnergy - theNeutronSeparationEnergy); 136 separationEnergy[KMinus] = 2.*theNeutronSeparationEnergy - theProtonSeparationEnergy-theLambdaSeparationEnergy; 137 138 separationEnergy[KShort] = (theNeutronSeparationEnergy - theLambdaSeparationEnergy); 139 separationEnergy[KLong] = (theNeutronSeparationEnergy - theLambdaSeparationEnergy); 140 141 separationEnergy[antiProton] = theantiProtonSeparationEnergy; 142 143 fermiEnergy[DeltaPlusPlus] = vDeltaPlusPlus - separationEnergy[DeltaPlusPlus]; 144 fermiEnergy[DeltaPlus] = vDeltaPlus - separationEnergy[DeltaPlus]; 145 fermiEnergy[DeltaZero] = vDeltaZero - separationEnergy[DeltaZero]; 146 fermiEnergy[DeltaMinus] = vDeltaMinus - separationEnergy[DeltaMinus]; 147 148 fermiEnergy[Lambda] = vLambda - separationEnergy[Lambda]; 149 if (fermiEnergy[Lambda] <= 0.) 150 fermiMomentum[Lambda]=0.; 151 else 152 fermiMomentum[Lambda]=std::sqrt(std::pow(fermiEnergy[Lambda]+ml,2.0)-ml*ml); 153 154 fermiEnergy[SigmaPlus] = vSigmaPlus - separationEnergy[SigmaPlus]; 155 fermiEnergy[SigmaZero] = vSigmaZero - separationEnergy[SigmaZero]; 156 fermiEnergy[SigmaMinus] = vSigmaMinus - separationEnergy[SigmaMinus]; 157 158 fermiEnergy[antiProton] = vantiProton - separationEnergy[antiProton]; 159 160 INCL_DEBUG("Table of separation energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n' 161 << " proton: " << separationEnergy[Proton] << '\n' 162 << " neutron: " << separationEnergy[Neutron] << '\n' 163 << " delta++: " << separationEnergy[DeltaPlusPlus] << '\n' 164 << " delta+: " << separationEnergy[DeltaPlus] << '\n' 165 << " delta0: " << separationEnergy[DeltaZero] << '\n' 166 << " delta-: " << separationEnergy[DeltaMinus] << '\n' 167 << " pi+: " << separationEnergy[PiPlus] << '\n' 168 << " pi0: " << separationEnergy[PiZero] << '\n' 169 << " pi-: " << separationEnergy[PiMinus] << '\n' 170 << " eta: " << separationEnergy[Eta] << '\n' 171 << " omega: " << separationEnergy[Omega] << '\n' 172 << " etaprime:" << separationEnergy[EtaPrime] << '\n' 173 << " photon: " << separationEnergy[Photon] << '\n' 174 << " lambda: " << separationEnergy[Lambda] << '\n' 175 << " sigmaplus: " << separationEnergy[SigmaPlus] << '\n' 176 << " sigmazero: " << separationEnergy[SigmaZero] << '\n' 177 << " sigmaminus: " << separationEnergy[SigmaMinus] << '\n' 178 << " kplus: " << separationEnergy[KPlus] << '\n' 179 << " kzero: " << separationEnergy[KZero] << '\n' 180 << " kzerobar: " << separationEnergy[KZeroBar] << '\n' 181 << " kminus: " << separationEnergy[KMinus] << '\n' 182 << " kshort: " << separationEnergy[KShort] << '\n' 183 << " klong: " << separationEnergy[KLong] << '\n' 184 ); 185 186 INCL_DEBUG("Table of Fermi energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n' 187 << " proton: " << fermiEnergy[Proton] << '\n' 188 << " neutron: " << fermiEnergy[Neutron] << '\n' 189 << " delta++: " << fermiEnergy[DeltaPlusPlus] << '\n' 190 << " delta+: " << fermiEnergy[DeltaPlus] << '\n' 191 << " delta0: " << fermiEnergy[DeltaZero] << '\n' 192 << " delta-: " << fermiEnergy[DeltaMinus] << '\n' 193 << " lambda: " << fermiEnergy[Lambda] << '\n' 194 << " sigma+: " << fermiEnergy[SigmaPlus] << '\n' 195 << " sigma0: " << fermiEnergy[SigmaZero] << '\n' 196 << " sigma-: " << fermiEnergy[SigmaMinus] << '\n' 197 ); 198 199 INCL_DEBUG("Table of Fermi momenta [MeV/c] for A=" << theA << ", Z=" << theZ << ":" << '\n' 200 << " proton: " << fermiMomentum[Proton] << '\n' 201 << " neutron: " << fermiMomentum[Neutron] << '\n' 202 ); 203 } 204 205 G4double NuclearPotentialIsospin::computePotentialEnergy(const Particle *particle) const { 206 207 switch( particle->getType() ) 208 { 209 case Proton: 210 return vProton; 211 break; 212 case Neutron: 213 return vNeutron; 214 break; 215 216 case PiPlus: 217 case PiZero: 218 case PiMinus: 219 return computePionPotentialEnergy(particle); 220 break; 221 222 case SigmaPlus: 223 return vSigmaPlus; 224 break; 225 case SigmaZero: 226 return vSigmaZero; 227 break; 228 case Lambda: 229 return vLambda; 230 break; 231 case SigmaMinus: 232 return vSigmaMinus; 233 break; 234 235 case Eta: 236 case Omega: 237 case EtaPrime: 238 return computePionResonancePotentialEnergy(particle); 239 break; 240 241 case KPlus: 242 case KZero: 243 case KZeroBar: 244 case KMinus: 245 case KShort: 246 case KLong: 247 return computeKaonPotentialEnergy(particle); 248 break; 249 250 case Photon: 251 return 0.0; 252 break; 253 254 case antiProton: 255 return vantiProton; 256 break; 257 case antiNeutron: 258 return vantiProton; 259 break; 260 case antiLambda: 261 return 0.0; 262 break; 263 case antiSigmaMinus: 264 return 0.0; 265 break; 266 case antiSigmaPlus: 267 return 0.0; 268 break; 269 case antiSigmaZero: 270 return 0.0; 271 break; 272 case antiXiMinus: 273 return 0.0; 274 break; 275 case antiXiZero: 276 return 0.0; 277 break; 278 case XiMinus: 279 return 0.0; 280 break; 281 case XiZero: 282 return 0.0; 283 break; 284 285 case DeltaPlusPlus: 286 return vDeltaPlusPlus; 287 break; 288 case DeltaPlus: 289 return vDeltaPlus; 290 break; 291 case DeltaZero: 292 return vDeltaZero; 293 break; 294 case DeltaMinus: 295 return vDeltaMinus; 296 break; 297 case Composite: 298 INCL_ERROR("No potential computed for particle of type Cluster."); 299 return 0.0; 300 break; 301 case UnknownParticle: 302 INCL_ERROR("Trying to compute potential energy for an unknown particle."); 303 return 0.0; 304 break; 305 } 306 307 INCL_ERROR("There is no potential for this type of particle."); 308 return 0.0; 309 } 310 311 } 312 } 313 314