Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToNNbarpiChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLNNbarToNNbarpiChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"
 44 #include <algorithm>
 45 #include "G4INCLPhaseSpaceGenerator.hh"
 46 
 47 namespace G4INCL {
 48   
 49   NNbarToNNbarpiChannel::NNbarToNNbarpiChannel(Particle *p1, Particle *p2)
 50     : particle1(p1), particle2(p2)
 51     {}
 52   
 53   NNbarToNNbarpiChannel::~NNbarToNNbarpiChannel(){}
 54   
 55   void NNbarToNNbarpiChannel::fillFinalState(FinalState *fs) {
 56 
 57         //brief ppbar
 58         // p pbar -> p pbar pi0 (BFMM 185)
 59         // p pbar -> p nbar pi- (BFMM 188)
 60         // p pbar -> n pbar pi+ (BFMM 199)
 61         // p pbar -> n nbar pi0 (no data)
 62         //
 63         //brief npbar
 64         // n pbar -> p pbar pi- (BFMM 491)
 65         // n pbar -> p nbar pion (impossible)
 66         // n pbar -> n pbar pi0 (BFMM 495)
 67         // n pbar -> n nbar pi- (same as BFMM 188)
 68         //
 69         //brief nnbar
 70         // n nbar -> n nbar pi0 (same as BFMM 185)
 71         // n nbar -> p nbar pi- (same as BFMM 188)
 72         // n nbar -> n pbar pi+ (same as BFMM 199)
 73         // n nbar -> p pbar pi0 (no data)
 74         //
 75         //brief pnbar 
 76         // p nbar -> p pbar pi+ (same as BFMM 491)
 77         // p nbar -> n pbar pion (impossible)
 78         // p nbar -> p nbar pi0 (same as BFMM 495)
 79         // p nbar -> n nbar pi+ (same as BFMM 188)
 80 
 81     Particle *nucleon;
 82     Particle *antinucleon;
 83     
 84     if(particle1->isNucleon()){
 85       nucleon = particle1;
 86       antinucleon = particle2;
 87     }
 88     else{
 89       nucleon = particle2;
 90       antinucleon = particle1;
 91     }
 92     
 93     const G4double plab = 0.001*KinematicsUtils::momentumInLab(particle1, particle2);
 94     const G4double sqrtS = KinematicsUtils::totalEnergyInCM(nucleon, antinucleon);
 95     const G4double rdm = Random::shoot();
 96 
 97         const std::vector<G4double> BFMM185 = {-0.734, 0.841, 0.905, 3.415, -2.316, 0.775};
 98     //{22.781, -22.602, -0.752, -11.036, 1.548, 0.775};
 99         //const G4double Eth_PPbar_PPbar_pi0 = 0.775;
100         const std::vector<G4double> BFMM188 = { -0.442, 0.501, 0.002, 3.434, -1.201, 0.798};
101         //const G4double Eth_PPbar_PNbar_pim = 0.798;
102         const std::vector<G4double> BFMM199 = {-2.025, 2.055, -2.355, 6.064, -2.004, 0.798};
103         //const G4double Eth_PPbar_NPbar_pip = 0.798;
104         const std::vector<G4double> BFMM491 = {24.125, -20.669, -1.534, -19.573, 4.493, 0.787};
105         //const G4double Eth_NPbar_PPbar_pim = 0.787; 
106         const std::vector<G4double> BFMM495 = {-0.650, -0.140, -0.058, 5.166, -1.705, 0.777};
107         //const G4double Eth_NPbar_NPbar_pi0 = 0.777;
108 
109         // pnbar total is same as for npbar
110         // ppbar total is same as for nnbar
111     const G4double totalppbar = KinematicsUtils::compute_xs(std::move(BFMM199), plab) +KinematicsUtils::compute_xs(BFMM185, plab) +KinematicsUtils::compute_xs(BFMM188, plab);
112     const G4double totalpnbar = KinematicsUtils::compute_xs(BFMM491, plab) +KinematicsUtils::compute_xs(BFMM495, plab) +KinematicsUtils::compute_xs(BFMM188, plab);
113     //totalnnbar == totalppbar;
114     //totalpnbar == totalnpbar;
115     ParticleType PionType;
116     
117     //setting types of new particles
118     if(nucleon->getType()==Proton){
119       if(antinucleon->getType()==antiProton){ // ppbar case
120         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM185, plab)){ // ppbarpi0 case
121           PionType = PiZero;
122           if(rdm<0.5){
123             nucleon->setType(Proton);
124             antinucleon->setType(antiProton);
125           }
126           else{
127             nucleon->setType(antiProton);
128             antinucleon->setType(Proton);
129           }
130         }
131         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM185), plab)+KinematicsUtils::compute_xs(std::move(BFMM188), plab)){ //pnbarpi- case
132           PionType = PiMinus;
133           if(rdm<0.5){
134             nucleon->setType(Proton);
135             antinucleon->setType(antiNeutron);
136           }
137           else{
138             nucleon->setType(antiNeutron);
139             antinucleon->setType(Proton);
140           }
141         } 
142         else{ // npbarpi+ case
143           PionType = PiPlus;
144           if(rdm<0.5){
145             nucleon->setType(Neutron);
146             antinucleon->setType(antiProton);
147           }
148           else{
149             nucleon->setType(antiProton);
150             antinucleon->setType(Neutron);
151           }
152         }
153       }
154       else{ //antiNeutron (pnbar case)
155         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM491, plab)){ // ppbarpi+ case
156           PionType = PiPlus;
157           if(rdm<0.5){
158             nucleon->setType(Proton);
159             antinucleon->setType(antiProton);
160           }
161           else{
162             nucleon->setType(antiProton);
163             antinucleon->setType(Proton);
164           }
165         }
166         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM491), plab)+KinematicsUtils::compute_xs(std::move(BFMM495), plab)){ //pnbarpi0 case
167           PionType = PiZero;
168           if(rdm<0.5){
169             nucleon->setType(Proton);
170             antinucleon->setType(antiNeutron);
171           }
172           else{
173             nucleon->setType(antiNeutron);
174             antinucleon->setType(Proton);
175           }
176         } 
177         else{ // nnbarpi+ case
178           PionType = PiPlus;
179           if(rdm<0.5){
180             nucleon->setType(Neutron);
181             antinucleon->setType(antiNeutron);
182           }
183           else{
184             nucleon->setType(antiNeutron);
185             antinucleon->setType(Neutron);
186           }
187         }
188       }
189     }
190     else{ // neutron
191       if(antinucleon->getType()==antiProton){ //npbar case
192         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM491, plab)){ // ppbarpi- case
193           PionType = PiMinus;
194           if(rdm<0.5){
195             nucleon->setType(Proton);
196             antinucleon->setType(antiProton);
197           }
198           else{
199             nucleon->setType(antiProton);
200             antinucleon->setType(Proton);
201           }
202         }
203         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM491), plab)+KinematicsUtils::compute_xs(std::move(BFMM495), plab)){ //npbarpi0 case
204           PionType = PiZero;
205           if(rdm<0.5){
206             nucleon->setType(Neutron);
207             antinucleon->setType(antiProton);
208           }
209           else{
210             nucleon->setType(antiProton);
211             antinucleon->setType(Neutron);
212           }
213         } 
214         else{ // nnbarpi- case
215           PionType = PiMinus;
216           if(rdm<0.5){
217             nucleon->setType(Neutron);
218             antinucleon->setType(antiNeutron);
219           }
220           else{
221             nucleon->setType(antiNeutron);
222             antinucleon->setType(Neutron);
223           }
224         }
225       }
226       else{ //antiNeutron (nnbar case)
227         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM185, plab)){ // nnbarpi0 case
228           PionType = PiZero;
229           if(rdm<0.5){
230             nucleon->setType(Neutron);
231             antinucleon->setType(antiNeutron);
232           }
233           else{
234             nucleon->setType(antiNeutron);
235             antinucleon->setType(Neutron);
236           }
237         }
238         else if(rdm*totalpnbar < KinematicsUtils::compute_xs(std::move(BFMM185), plab)+KinematicsUtils::compute_xs(std::move(BFMM188), plab)){ //pnbarpi- case
239           PionType = PiMinus;
240           if(rdm<0.5){
241             nucleon->setType(Proton);
242             antinucleon->setType(antiNeutron);
243           }
244           else{
245             nucleon->setType(antiNeutron);
246             antinucleon->setType(Proton);
247           }
248         } 
249         else{ // npbarpi+ case
250           PionType = PiPlus;
251           if(rdm<0.5){
252             nucleon->setType(Neutron);
253             antinucleon->setType(antiProton);
254           }
255           else{
256             nucleon->setType(antiProton);
257             antinucleon->setType(Neutron);
258           }
259         }
260       }
261     }
262     
263     ParticleList list;
264     list.push_back(nucleon);
265     list.push_back(antinucleon);
266     const ThreeVector &rcol = nucleon->getPosition();
267     const ThreeVector zero;
268     Particle *pion = new Particle(PionType,zero,rcol);
269     list.push_back(pion);
270     
271     PhaseSpaceGenerator::generate(sqrtS, list);
272     
273     fs->addModifiedParticle(nucleon);
274     fs->addModifiedParticle(antinucleon);
275     fs->addCreatedParticle(pion);
276         
277   }
278 }
279