Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToNNbar3piChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLNNbarToNNbar3piChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"
 44 #include <algorithm>
 45 #include "G4INCLPhaseSpaceGenerator.hh"
 46 
 47 namespace G4INCL {
 48   
 49   NNbarToNNbar3piChannel::NNbarToNNbar3piChannel(Particle *p1, Particle *p2)
 50     : particle1(p1), particle2(p2)
 51     {}
 52   
 53   NNbarToNNbar3piChannel::~NNbarToNNbar3piChannel(){}
 54   
 55   void NNbarToNNbar3piChannel::fillFinalState(FinalState *fs) {
 56 
 57     //brief ppbar
 58         // p pbar -> p pbar pi+ pi- pi0 (BFMM 161)
 59         // p pbar -> p nbar 2pi- pi+ (BFMM 169)
 60         // p pbar -> n pbar 2pi+ pi- (BFMM 201)
 61         // p pbar -> n nbar pi+ pi- pi0 (BFMM 197)
 62         //
 63         //brief npbar
 64         // n pbar -> p pbar 2pi- pi+ (same as BFMM 169)
 65         // n pbar -> p nbar 2pi- pi0 (same as BFMM 197)
 66         // n pbar -> n nbar 2pi- pi+ (same as BFMM 169)
 67         // n pbar -> n pbar pi+ pi- pi0 (same as BFMM 161)
 68         //
 69         //brief nnbar
 70         // n nbar -> n nbar pi+ pi- pi0 (same as BFMM 161)
 71         // n nbar -> p nbar 2pi- pi+ (same as BFMM 169)
 72         // n nbar -> n pbar 2pi+ pi- (same as BFMM 201)
 73         // n nbar -> p pbar pi+ pi- pi0 (same as BFMM 197)
 74         //
 75         //brief pnbar
 76         // p nbar -> p pbar 2pi+ pi- (same as BFMM 169)
 77         // p nbar -> n pbar 2pi+ pi0 (same as BFMM 197)
 78         // p nbar -> n nbar 2pi+ pi- (same as BFMM 169)
 79         // p nbar -> p nbar pi+ pi- pi0 (same as BFMM 161)
 80 
 81     Particle *nucleon;
 82     Particle *antinucleon;
 83     
 84     if(particle1->isNucleon()){
 85       nucleon = particle1;
 86       antinucleon = particle2;
 87     }
 88     else{
 89       nucleon = particle2;
 90       antinucleon = particle1;
 91     }
 92     
 93     const G4double plab = 0.001*KinematicsUtils::momentumInLab(particle1, particle2);
 94     const G4double sqrtS = KinematicsUtils::totalEnergyInCM(nucleon, antinucleon);
 95     const G4double rdm = Random::shoot();
 96 
 97         const std::vector<G4double> BFMM161 = {-6.434, 1.351, -5.185, 7.754, -1.692, 1.604};
 98         //const G4double Eth_PPbar_PPbar_pip_pim_pi0 = 1.604;
 99         const std::vector<G4double> BFMM169 = {3.696, -5.356, -0.053, 1.941, -0.432, 1.624};
100         //const G4double Eth_PPbar_PNbar_2pim_pip = 1.624;
101         const std::vector<G4double> BFMM201 = {-1.070, -0.636, -0.009, 2.335, -0.499, 1.624};
102         //const G4double Eth_PPbar_NPbar_2pip_pim = 1.624;
103         const std::vector<G4double> BFMM197 = {1.857, -21.213, -3.448, 0.827, -0.390, 1.616};
104         //const G4double Eth_PPbar_NNbar_pip_pim_pi0 = 1.616;
105 
106         // pnbar total is same as for npbar
107         // ppbar total is same as for nnbar
108     const G4double totalppbar = KinematicsUtils::compute_xs(BFMM161, plab) 
109     +KinematicsUtils::compute_xs(BFMM169, plab) 
110     +KinematicsUtils::compute_xs(BFMM201, plab)
111     +KinematicsUtils::compute_xs(BFMM197, plab);
112     const G4double totalpnbar = KinematicsUtils::compute_xs(BFMM161, plab) 
113     +KinematicsUtils::compute_xs(BFMM197, plab) 
114     +2*KinematicsUtils::compute_xs(BFMM169, plab);
115 
116     //totalnnbar == totalppbar;
117     //totalpnbar == totalnpbar;
118     ParticleType Pion1;
119     ParticleType Pion2;
120     ParticleType Pion3;
121     
122     //setting types of new particles
123     if(nucleon->getType()==Proton){
124       if(antinucleon->getType()==antiProton){ // ppbar case
125         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM161, plab)){ // p pbar pi+ pi- pi0 case
126           Pion1 = PiMinus;
127           Pion2 = PiPlus;
128           Pion3 = PiZero;
129           if(rdm<0.5){
130             nucleon->setType(Proton);
131             antinucleon->setType(antiProton);
132           }
133           else{
134             nucleon->setType(antiProton);
135             antinucleon->setType(Proton);
136           }
137         }
138         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM161, plab)
139         +KinematicsUtils::compute_xs(BFMM169, plab)){ //p nbar 2pi- pi+ case
140           Pion1 = PiMinus;
141           Pion2 = PiMinus;
142           Pion3 = PiPlus;
143           if(rdm<0.5){
144             nucleon->setType(Proton);
145             antinucleon->setType(antiNeutron);
146           }
147           else{
148             nucleon->setType(antiNeutron);
149             antinucleon->setType(Proton);
150           }
151         } 
152         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM161), plab)
153         +KinematicsUtils::compute_xs(std::move(BFMM169), plab)
154         +KinematicsUtils::compute_xs(std::move(BFMM201), plab)){ //n pbar 2pi+ pi- case
155           Pion1 = PiPlus;
156           Pion2 = PiPlus;
157           Pion3 = PiMinus;
158           if(rdm<0.5){
159             nucleon->setType(Neutron);
160             antinucleon->setType(antiProton);
161           }
162           else{
163             nucleon->setType(antiProton);
164             antinucleon->setType(Neutron);
165           }
166         } 
167         else{ // n nbar pi+ pi- pi0 case
168           Pion1 = PiMinus;
169           Pion2 = PiPlus;
170           Pion3 = PiZero;
171           if(rdm<0.5){
172             nucleon->setType(Neutron);
173             antinucleon->setType(antiNeutron);
174           }
175           else{
176             nucleon->setType(antiNeutron);
177             antinucleon->setType(Neutron);
178           }
179         }
180       }
181       else{ //antiNeutron (pnbar case)
182         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM169, plab)){ // p pbar 2pi+ pi- case
183           Pion1 = PiPlus;
184           Pion2 = PiPlus;
185           Pion3 = PiMinus;
186           if(rdm<0.5){
187             nucleon->setType(Proton);
188             antinucleon->setType(antiProton);
189           }
190           else{
191             nucleon->setType(antiProton);
192             antinucleon->setType(Proton);
193           }
194         }
195         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM169, plab)
196         +KinematicsUtils::compute_xs(BFMM197, plab)){ // n pbar 2pi+ pi0 case
197           Pion1 = PiPlus;
198           Pion2 = PiPlus;
199           Pion3 = PiZero;
200           if(rdm<0.5){
201             nucleon->setType(Neutron);
202             antinucleon->setType(antiProton);
203           }
204           else{
205             nucleon->setType(antiProton);
206             antinucleon->setType(Neutron);
207           }
208         } 
209         else if(rdm*totalppbar < 2*KinematicsUtils::compute_xs(std::move(BFMM169), plab)
210         +KinematicsUtils::compute_xs(std::move(BFMM197), plab)){ // n nbar 2pi+ pi- case
211           Pion1 = PiPlus;
212           Pion2 = PiPlus;
213           Pion3 = PiMinus;
214           if(rdm<0.5){
215             nucleon->setType(Neutron);
216             antinucleon->setType(antiNeutron);
217           }
218           else{
219             nucleon->setType(antiNeutron);
220             antinucleon->setType(Neutron);
221           }
222         } 
223         else{ // p nbar pi+ pi- pi0 case
224           Pion1 = PiMinus;
225           Pion2 = PiPlus;
226           Pion3 = PiZero;
227           if(rdm<0.5){
228             nucleon->setType(Proton);
229             antinucleon->setType(antiNeutron);
230           }
231           else{
232             nucleon->setType(antiNeutron);
233             antinucleon->setType(Proton);
234           }
235         }
236       }
237     }
238     else{ // neutron
239       if(antinucleon->getType()==antiProton){ //npbar case
240         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM169, plab)){ // p pbar 2pi- pi+ case
241           Pion1 = PiPlus;
242           Pion2 = PiMinus;
243           Pion3 = PiMinus;
244           if(rdm<0.5){
245             nucleon->setType(Proton);
246             antinucleon->setType(antiProton);
247           }
248           else{
249             nucleon->setType(antiProton);
250             antinucleon->setType(Proton);
251           }
252         }
253         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM169, plab)
254         +KinematicsUtils::compute_xs(BFMM197, plab)){ // p nbar 2pi- pi0 case
255           Pion1 = PiMinus;
256           Pion2 = PiMinus;
257           Pion3 = PiZero;
258           if(rdm<0.5){
259             nucleon->setType(Proton);
260             antinucleon->setType(antiNeutron);
261           }
262           else{
263             nucleon->setType(antiNeutron);
264             antinucleon->setType(Proton);
265           }
266         } 
267         else if(rdm*totalppbar < 2*KinematicsUtils::compute_xs(std::move(BFMM169), plab)
268         +KinematicsUtils::compute_xs(std::move(BFMM197), plab)){ // n nbar 2pi- pi+ case
269           Pion1 = PiPlus;
270           Pion2 = PiMinus;
271           Pion3 = PiMinus;
272           if(rdm<0.5){
273             nucleon->setType(Neutron);
274             antinucleon->setType(antiNeutron);
275           }
276           else{
277             nucleon->setType(antiNeutron);
278             antinucleon->setType(Neutron);
279           }
280         } 
281         else{ // n pbar pi+ pi- pi0 case
282           Pion1 = PiMinus;
283           Pion2 = PiPlus;
284           Pion3 = PiZero;
285           if(rdm<0.5){
286             nucleon->setType(Neutron);
287             antinucleon->setType(antiProton);
288           }
289           else{
290             nucleon->setType(antiProton);
291             antinucleon->setType(Neutron);
292           }
293         }
294       }
295       else{ //antiNeutron (nnbar case)
296         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM161, plab)){ // n nbar pi+ pi- pi0 case
297           Pion1 = PiMinus;
298           Pion2 = PiPlus;
299           Pion3 = PiZero;
300           if(rdm<0.5){
301             nucleon->setType(Neutron);
302             antinucleon->setType(antiNeutron);
303           }
304           else{
305             nucleon->setType(antiNeutron);
306             antinucleon->setType(Neutron);
307           }
308         }
309         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM161, plab)
310         +KinematicsUtils::compute_xs(BFMM169, plab)){ //p nbar 2pi- pi+ case
311           Pion1 = PiMinus;
312           Pion2 = PiMinus;
313           Pion3 = PiPlus;
314           if(rdm<0.5){
315             nucleon->setType(Proton);
316             antinucleon->setType(antiNeutron);
317           }
318           else{
319             nucleon->setType(antiNeutron);
320             antinucleon->setType(Proton);
321           }
322         } 
323         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM161), plab)
324         +KinematicsUtils::compute_xs(std::move(BFMM169), plab)
325         +KinematicsUtils::compute_xs(std::move(BFMM201), plab)){ //n pbar 2pi+ pi- case
326           Pion1 = PiPlus;
327           Pion2 = PiPlus;
328           Pion3 = PiMinus;
329           if(rdm<0.5){
330             nucleon->setType(Neutron);
331             antinucleon->setType(antiProton);
332           }
333           else{
334             nucleon->setType(antiProton);
335             antinucleon->setType(Neutron);
336           }
337         } 
338         else{ // p pbar pi+ pi- pi0 case
339           Pion1 = PiMinus;
340           Pion2 = PiPlus;
341           Pion3 = PiZero;
342           if(rdm<0.5){
343             nucleon->setType(Proton);
344             antinucleon->setType(antiProton);
345           }
346           else{
347             nucleon->setType(antiProton);
348             antinucleon->setType(Proton);
349           }
350         }
351       }
352     }
353     
354     ParticleList list;
355     list.push_back(nucleon);
356     list.push_back(antinucleon);
357     const ThreeVector &rcol = nucleon->getPosition();
358     const ThreeVector zero;
359 
360     // Create three particle pointers
361     Particle *pion1 = nullptr;
362     Particle *pion2 = nullptr;
363     Particle *pion3 = nullptr;
364 
365     // Determine the types of particles based on the random number
366     if (rdm < 1.0 / 3.0) {
367         pion1 = new Particle(Pion1, zero, rcol);
368         pion2 = new Particle(Pion2, zero, rcol);
369         pion3 = new Particle(Pion3, zero, rcol);
370     } else if (rdm < 2.0 / 3.0) {
371         pion1 = new Particle(Pion1, zero, rcol);
372         pion2 = new Particle(Pion3, zero, rcol);
373         pion3 = new Particle(Pion2, zero, rcol);
374     } else {
375         pion1 = new Particle(Pion2, zero, rcol);
376         pion2 = new Particle(Pion1, zero, rcol);
377         pion3 = new Particle(Pion3, zero, rcol);
378     }
379 
380     list.push_back(pion1);
381     list.push_back(pion2);
382     list.push_back(pion3);
383     
384     PhaseSpaceGenerator::generate(sqrtS, list);
385     
386     fs->addModifiedParticle(nucleon);
387     fs->addModifiedParticle(antinucleon);
388     fs->addCreatedParticle(pion1);
389     fs->addCreatedParticle(pion2);
390     fs->addCreatedParticle(pion3);
391         
392   }
393 }
394