Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToNNbar2piChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLNNbarToNNbar2piChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"
 44 #include <algorithm>
 45 #include "G4INCLPhaseSpaceGenerator.hh"
 46 
 47 namespace G4INCL {
 48   
 49   NNbarToNNbar2piChannel::NNbarToNNbar2piChannel(Particle *p1, Particle *p2)
 50     : particle1(p1), particle2(p2)
 51     {}
 52   
 53   NNbarToNNbar2piChannel::~NNbarToNNbar2piChannel(){}
 54   
 55   void NNbarToNNbar2piChannel::fillFinalState(FinalState *fs) {
 56 
 57         //brief ppbar
 58         // p pbar -> p pbar pi+ pi- (BFMM 167)
 59         // p pbar -> p nbar pi- pi0 (same as BFMM 490)
 60         // p pbar -> n pbar pi+ pi0 (same as BFMM 490)
 61         // p pbar -> n nbar pi+ pi- (BFMM 198)
 62         //
 63         //brief npbar
 64         // n pbar -> p pbar pi- pi0 (BFMM 490)
 65         // n pbar -> p nbar pi- pi- (BFMM 492)
 66         // n pbar -> n nbar pi- pi0 (same as BFMM 490)
 67         // n pbar -> n pbar pi+ pi- (BFMM 494)
 68         //
 69         //brief nnbar
 70         // n nbar -> n nbar pi+ pi- (same as BFMM 167)
 71         // n nbar -> p nbar pi- pi0 (same as BFMM 490)
 72         // n nbar -> n pbar pi+ pi0 (same as BFMM 490)
 73         // n nbar -> p pbar pi+ pi- (same as BFMM 198)
 74         //
 75         //brief pnbar
 76         // p nbar -> p pbar pi+ pi0 (same as BFMM 490)
 77         // p nbar -> n pbar pi+ pi+ (same as BFMM 492)
 78         // p nbar -> n nbar pi+ pi0 (same as BFMM 490)
 79         // p nbar -> p nbar pi+ pi- (same as BFMM 494)
 80 
 81     Particle *nucleon;
 82     Particle *antinucleon;
 83     
 84     if(particle1->isNucleon()){
 85       nucleon = particle1;
 86       antinucleon = particle2;
 87     }
 88     else{
 89       nucleon = particle2;
 90       antinucleon = particle1;
 91     }
 92     
 93     const G4double plab = 0.001*KinematicsUtils::momentumInLab(particle1, particle2); //GeV
 94     const G4double sqrtS = KinematicsUtils::totalEnergyInCM(nucleon, antinucleon);
 95     const G4double rdm = Random::shoot();
 96 
 97         const std::vector<G4double> BFMM167 = {-6.885, 0.476, 1.206, 13.857, -5.728, 1.220};
 98         //const G4double Eth_PPbar_PPbar_pip_pim = 1.220;
 99         const std::vector<G4double> BFMM198 = {1.857, -21.213, -3.448, 0.827, -0.390, 1.231};
100         //const G4double Eth_PPbar_NNbar_pip_pim = 1.231;
101         const std::vector<G4double> BFMM490 = {-3.594, 0.811, 0.306, 5.108, -1.625, 1.201};
102         //const G4double Eth_PNbar_PPbar_pim_pi0 = 1.201;
103         const std::vector<G4double> BFMM492 = {-5.443, 7.254, -2.936, 8.441, -2.588, 1.221};
104         //const G4double Eth_PNbar_NPbar_pim_pim = 1.221;
105         const std::vector<G4double> BFMM494 = {21.688, -38.709, -2.062, -17.783, 3.895, 1.221};
106         //const G4double Eth_NPbar_NPbar_pip_pim = 1.221; 
107 
108         // pnbar total is same as for npbar
109         // ppbar total is same as for nnbar
110     const G4double totalppbar = KinematicsUtils::compute_xs(BFMM167, plab) +KinematicsUtils::compute_xs(std::move(BFMM198), plab) +2*KinematicsUtils::compute_xs(BFMM490, plab);
111     const G4double totalpnbar = KinematicsUtils::compute_xs(BFMM492, plab) +KinematicsUtils::compute_xs(std::move(BFMM494), plab) +2*KinematicsUtils::compute_xs(BFMM490, plab);
112     //totalnnbar == totalppbar;
113     //totalpnbar == totalnpbar;
114     ParticleType Pion1;
115     ParticleType Pion2;
116     
117     //setting types of new particles
118     if(nucleon->getType()==Proton){
119       if(antinucleon->getType()==antiProton){ // ppbar case
120         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)){ // ppbarpi-pi+ case
121           Pion1 = PiMinus;
122           Pion2 = PiPlus;
123           if(rdm<0.5){
124             nucleon->setType(Proton);
125             antinucleon->setType(antiProton);
126           }
127           else{
128             nucleon->setType(antiProton);
129             antinucleon->setType(Proton);
130           }
131         }
132         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)+KinematicsUtils::compute_xs(BFMM490, plab)){ //pnbarpi-pi0 case
133           Pion1 = PiMinus;
134           Pion2 = PiZero;
135           if(rdm<0.5){
136             nucleon->setType(Proton);
137             antinucleon->setType(antiNeutron);
138           }
139           else{
140             nucleon->setType(antiNeutron);
141             antinucleon->setType(Proton);
142           }
143         } 
144         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM167), plab)+2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)){ //npbarpi+pi0 case
145           Pion1 = PiPlus;
146           Pion2 = PiZero;
147           if(rdm<0.5){
148             nucleon->setType(Neutron);
149             antinucleon->setType(antiProton);
150           }
151           else{
152             nucleon->setType(antiProton);
153             antinucleon->setType(Neutron);
154           }
155         } 
156         else{ // n nbar pi+ pi- case case
157           Pion1 = PiMinus;
158           Pion2 = PiPlus;
159           if(rdm<0.5){
160             nucleon->setType(Neutron);
161             antinucleon->setType(antiNeutron);
162           }
163           else{
164             nucleon->setType(antiNeutron);
165             antinucleon->setType(Neutron);
166           }
167         }
168       }
169       else{ //antiNeutron (pnbar case)
170         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM490, plab)){ // p pbar pi+ pi0 case
171           Pion1 = PiZero;
172           Pion2 = PiPlus;
173           if(rdm<0.5){
174             nucleon->setType(Proton);
175             antinucleon->setType(antiProton);
176           }
177           else{
178             nucleon->setType(antiProton);
179             antinucleon->setType(Proton);
180           }
181         }
182         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM490, plab)+KinematicsUtils::compute_xs(BFMM492, plab)){ // n pbar pi+ pi+ case
183           Pion1 = PiPlus;
184           Pion2 = PiPlus;
185           if(rdm<0.5){
186             nucleon->setType(Neutron);
187             antinucleon->setType(antiProton);
188           }
189           else{
190             nucleon->setType(antiProton);
191             antinucleon->setType(Neutron);
192           }
193         } 
194         else if(rdm*totalppbar < 2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)+KinematicsUtils::compute_xs(std::move(BFMM492), plab)){ // n nbar pi+ pi0 case
195           Pion1 = PiZero;
196           Pion2 = PiPlus;
197           if(rdm<0.5){
198             nucleon->setType(Neutron);
199             antinucleon->setType(antiNeutron);
200           }
201           else{
202             nucleon->setType(antiNeutron);
203             antinucleon->setType(Neutron);
204           }
205         } 
206         else{ // p nbar pi+ pi- case
207           Pion1 = PiMinus;
208           Pion2 = PiPlus;
209           if(rdm<0.5){
210             nucleon->setType(Proton);
211             antinucleon->setType(antiNeutron);
212           }
213           else{
214             nucleon->setType(antiNeutron);
215             antinucleon->setType(Proton);
216           }
217         }
218       }
219     }
220     else{ // neutron
221       if(antinucleon->getType()==antiProton){ //npbar case
222         if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM490, plab)){ // p pbar pi- pi0 case
223           Pion1 = PiZero;
224           Pion2 = PiMinus;
225           if(rdm<0.5){
226             nucleon->setType(Proton);
227             antinucleon->setType(antiProton);
228           }
229           else{
230             nucleon->setType(antiProton);
231             antinucleon->setType(Proton);
232           }
233         }
234         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM490, plab)+KinematicsUtils::compute_xs(BFMM492, plab)){ // p nbar pi- pi- case
235           Pion1 = PiMinus;
236           Pion2 = PiMinus;
237           if(rdm<0.5){
238             nucleon->setType(Proton);
239             antinucleon->setType(antiNeutron);
240           }
241           else{
242             nucleon->setType(antiNeutron);
243             antinucleon->setType(Proton);
244           }
245         } 
246         else if(rdm*totalppbar < 2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)+KinematicsUtils::compute_xs(std::move(BFMM492), plab)){ // n nbar pi- pi0 case
247           Pion1 = PiZero;
248           Pion2 = PiMinus;
249           if(rdm<0.5){
250             nucleon->setType(Neutron);
251             antinucleon->setType(antiNeutron);
252           }
253           else{
254             nucleon->setType(antiNeutron);
255             antinucleon->setType(Neutron);
256           }
257         } 
258         else{ // n pbar pi+ pi- case
259           Pion1 = PiMinus;
260           Pion2 = PiPlus;
261           if(rdm<0.5){
262             nucleon->setType(Neutron);
263             antinucleon->setType(antiProton);
264           }
265           else{
266             nucleon->setType(antiProton);
267             antinucleon->setType(Neutron);
268           }
269         }
270       }
271       else{ //antiNeutron (nnbar case)
272         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)){ // nnbarpi-pi+ case
273           Pion1 = PiMinus;
274           Pion2 = PiPlus;
275           if(rdm<0.5){
276             nucleon->setType(Neutron);
277             antinucleon->setType(antiNeutron);
278           }
279           else{
280             nucleon->setType(antiNeutron);
281             antinucleon->setType(Neutron);
282           }
283         }
284         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)+KinematicsUtils::compute_xs(BFMM490, plab)){ //pnbarpi-pi0 case
285           Pion1 = PiMinus;
286           Pion2 = PiZero;
287           if(rdm<0.5){
288             nucleon->setType(Proton);
289             antinucleon->setType(antiNeutron);
290           }
291           else{
292             nucleon->setType(antiNeutron);
293             antinucleon->setType(Proton);
294           }
295         } 
296         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM167), plab)+2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)){ //npbarpi+pi0 case
297           Pion1 = PiPlus;
298           Pion2 = PiZero;
299           if(rdm<0.5){
300             nucleon->setType(Neutron);
301             antinucleon->setType(antiProton);
302           }
303           else{
304             nucleon->setType(antiProton);
305             antinucleon->setType(Neutron);
306           }
307         } 
308         else{ // p pbar pi+ pi- case
309           Pion1 = PiMinus;
310           Pion2 = PiPlus;
311           if(rdm<0.5){
312             nucleon->setType(Proton);
313             antinucleon->setType(antiProton);
314           }
315           else{
316             nucleon->setType(antiProton);
317             antinucleon->setType(Proton);
318           }
319         }
320       }
321     }
322     
323     ParticleList list;
324     list.push_back(nucleon);
325     list.push_back(antinucleon);
326     const ThreeVector &rcol = nucleon->getPosition();
327     const ThreeVector zero;
328 
329     Particle *pion2 = new Particle(Pion1,zero,rcol);
330     Particle *pion1 = new Particle(Pion2,zero,rcol);
331     if(rdm < 0.5){
332       pion1->setType(Pion1);
333       pion2->setType(Pion2);
334     }
335 
336     list.push_back(pion1);
337     list.push_back(pion2);
338     
339     PhaseSpaceGenerator::generate(sqrtS, list);
340     
341     fs->addModifiedParticle(nucleon);
342     fs->addModifiedParticle(antinucleon);
343     fs->addCreatedParticle(pion1);
344     fs->addCreatedParticle(pion2);
345         
346   }
347 }
348