Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLNNbarToNNbar2piChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 43 #include "G4INCLLogger.hh" 44 #include <algorithm> 45 #include "G4INCLPhaseSpaceGenerator.hh" 46 47 namespace G4INCL { 48 49 NNbarToNNbar2piChannel::NNbarToNNbar2piChannel(Particle *p1, Particle *p2) 50 : particle1(p1), particle2(p2) 51 {} 52 53 NNbarToNNbar2piChannel::~NNbarToNNbar2piChannel(){} 54 55 void NNbarToNNbar2piChannel::fillFinalState(FinalState *fs) { 56 57 //brief ppbar 58 // p pbar -> p pbar pi+ pi- (BFMM 167) 59 // p pbar -> p nbar pi- pi0 (same as BFMM 490) 60 // p pbar -> n pbar pi+ pi0 (same as BFMM 490) 61 // p pbar -> n nbar pi+ pi- (BFMM 198) 62 // 63 //brief npbar 64 // n pbar -> p pbar pi- pi0 (BFMM 490) 65 // n pbar -> p nbar pi- pi- (BFMM 492) 66 // n pbar -> n nbar pi- pi0 (same as BFMM 490) 67 // n pbar -> n pbar pi+ pi- (BFMM 494) 68 // 69 //brief nnbar 70 // n nbar -> n nbar pi+ pi- (same as BFMM 167) 71 // n nbar -> p nbar pi- pi0 (same as BFMM 490) 72 // n nbar -> n pbar pi+ pi0 (same as BFMM 490) 73 // n nbar -> p pbar pi+ pi- (same as BFMM 198) 74 // 75 //brief pnbar 76 // p nbar -> p pbar pi+ pi0 (same as BFMM 490) 77 // p nbar -> n pbar pi+ pi+ (same as BFMM 492) 78 // p nbar -> n nbar pi+ pi0 (same as BFMM 490) 79 // p nbar -> p nbar pi+ pi- (same as BFMM 494) 80 81 Particle *nucleon; 82 Particle *antinucleon; 83 84 if(particle1->isNucleon()){ 85 nucleon = particle1; 86 antinucleon = particle2; 87 } 88 else{ 89 nucleon = particle2; 90 antinucleon = particle1; 91 } 92 93 const G4double plab = 0.001*KinematicsUtils::momentumInLab(particle1, particle2); //GeV 94 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(nucleon, antinucleon); 95 const G4double rdm = Random::shoot(); 96 97 const std::vector<G4double> BFMM167 = {-6.885, 0.476, 1.206, 13.857, -5.728, 1.220}; 98 //const G4double Eth_PPbar_PPbar_pip_pim = 1.220; 99 const std::vector<G4double> BFMM198 = {1.857, -21.213, -3.448, 0.827, -0.390, 1.231}; 100 //const G4double Eth_PPbar_NNbar_pip_pim = 1.231; 101 const std::vector<G4double> BFMM490 = {-3.594, 0.811, 0.306, 5.108, -1.625, 1.201}; 102 //const G4double Eth_PNbar_PPbar_pim_pi0 = 1.201; 103 const std::vector<G4double> BFMM492 = {-5.443, 7.254, -2.936, 8.441, -2.588, 1.221}; 104 //const G4double Eth_PNbar_NPbar_pim_pim = 1.221; 105 const std::vector<G4double> BFMM494 = {21.688, -38.709, -2.062, -17.783, 3.895, 1.221}; 106 //const G4double Eth_NPbar_NPbar_pip_pim = 1.221; 107 108 // pnbar total is same as for npbar 109 // ppbar total is same as for nnbar 110 const G4double totalppbar = KinematicsUtils::compute_xs(BFMM167, plab) +KinematicsUtils::compute_xs(std::move(BFMM198), plab) +2*KinematicsUtils::compute_xs(BFMM490, plab); 111 const G4double totalpnbar = KinematicsUtils::compute_xs(BFMM492, plab) +KinematicsUtils::compute_xs(std::move(BFMM494), plab) +2*KinematicsUtils::compute_xs(BFMM490, plab); 112 //totalnnbar == totalppbar; 113 //totalpnbar == totalnpbar; 114 ParticleType Pion1; 115 ParticleType Pion2; 116 117 //setting types of new particles 118 if(nucleon->getType()==Proton){ 119 if(antinucleon->getType()==antiProton){ // ppbar case 120 if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)){ // ppbarpi-pi+ case 121 Pion1 = PiMinus; 122 Pion2 = PiPlus; 123 if(rdm<0.5){ 124 nucleon->setType(Proton); 125 antinucleon->setType(antiProton); 126 } 127 else{ 128 nucleon->setType(antiProton); 129 antinucleon->setType(Proton); 130 } 131 } 132 else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)+KinematicsUtils::compute_xs(BFMM490, plab)){ //pnbarpi-pi0 case 133 Pion1 = PiMinus; 134 Pion2 = PiZero; 135 if(rdm<0.5){ 136 nucleon->setType(Proton); 137 antinucleon->setType(antiNeutron); 138 } 139 else{ 140 nucleon->setType(antiNeutron); 141 antinucleon->setType(Proton); 142 } 143 } 144 else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM167), plab)+2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)){ //npbarpi+pi0 case 145 Pion1 = PiPlus; 146 Pion2 = PiZero; 147 if(rdm<0.5){ 148 nucleon->setType(Neutron); 149 antinucleon->setType(antiProton); 150 } 151 else{ 152 nucleon->setType(antiProton); 153 antinucleon->setType(Neutron); 154 } 155 } 156 else{ // n nbar pi+ pi- case case 157 Pion1 = PiMinus; 158 Pion2 = PiPlus; 159 if(rdm<0.5){ 160 nucleon->setType(Neutron); 161 antinucleon->setType(antiNeutron); 162 } 163 else{ 164 nucleon->setType(antiNeutron); 165 antinucleon->setType(Neutron); 166 } 167 } 168 } 169 else{ //antiNeutron (pnbar case) 170 if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM490, plab)){ // p pbar pi+ pi0 case 171 Pion1 = PiZero; 172 Pion2 = PiPlus; 173 if(rdm<0.5){ 174 nucleon->setType(Proton); 175 antinucleon->setType(antiProton); 176 } 177 else{ 178 nucleon->setType(antiProton); 179 antinucleon->setType(Proton); 180 } 181 } 182 else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM490, plab)+KinematicsUtils::compute_xs(BFMM492, plab)){ // n pbar pi+ pi+ case 183 Pion1 = PiPlus; 184 Pion2 = PiPlus; 185 if(rdm<0.5){ 186 nucleon->setType(Neutron); 187 antinucleon->setType(antiProton); 188 } 189 else{ 190 nucleon->setType(antiProton); 191 antinucleon->setType(Neutron); 192 } 193 } 194 else if(rdm*totalppbar < 2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)+KinematicsUtils::compute_xs(std::move(BFMM492), plab)){ // n nbar pi+ pi0 case 195 Pion1 = PiZero; 196 Pion2 = PiPlus; 197 if(rdm<0.5){ 198 nucleon->setType(Neutron); 199 antinucleon->setType(antiNeutron); 200 } 201 else{ 202 nucleon->setType(antiNeutron); 203 antinucleon->setType(Neutron); 204 } 205 } 206 else{ // p nbar pi+ pi- case 207 Pion1 = PiMinus; 208 Pion2 = PiPlus; 209 if(rdm<0.5){ 210 nucleon->setType(Proton); 211 antinucleon->setType(antiNeutron); 212 } 213 else{ 214 nucleon->setType(antiNeutron); 215 antinucleon->setType(Proton); 216 } 217 } 218 } 219 } 220 else{ // neutron 221 if(antinucleon->getType()==antiProton){ //npbar case 222 if(rdm*totalpnbar < KinematicsUtils::compute_xs(BFMM490, plab)){ // p pbar pi- pi0 case 223 Pion1 = PiZero; 224 Pion2 = PiMinus; 225 if(rdm<0.5){ 226 nucleon->setType(Proton); 227 antinucleon->setType(antiProton); 228 } 229 else{ 230 nucleon->setType(antiProton); 231 antinucleon->setType(Proton); 232 } 233 } 234 else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM490, plab)+KinematicsUtils::compute_xs(BFMM492, plab)){ // p nbar pi- pi- case 235 Pion1 = PiMinus; 236 Pion2 = PiMinus; 237 if(rdm<0.5){ 238 nucleon->setType(Proton); 239 antinucleon->setType(antiNeutron); 240 } 241 else{ 242 nucleon->setType(antiNeutron); 243 antinucleon->setType(Proton); 244 } 245 } 246 else if(rdm*totalppbar < 2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)+KinematicsUtils::compute_xs(std::move(BFMM492), plab)){ // n nbar pi- pi0 case 247 Pion1 = PiZero; 248 Pion2 = PiMinus; 249 if(rdm<0.5){ 250 nucleon->setType(Neutron); 251 antinucleon->setType(antiNeutron); 252 } 253 else{ 254 nucleon->setType(antiNeutron); 255 antinucleon->setType(Neutron); 256 } 257 } 258 else{ // n pbar pi+ pi- case 259 Pion1 = PiMinus; 260 Pion2 = PiPlus; 261 if(rdm<0.5){ 262 nucleon->setType(Neutron); 263 antinucleon->setType(antiProton); 264 } 265 else{ 266 nucleon->setType(antiProton); 267 antinucleon->setType(Neutron); 268 } 269 } 270 } 271 else{ //antiNeutron (nnbar case) 272 if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)){ // nnbarpi-pi+ case 273 Pion1 = PiMinus; 274 Pion2 = PiPlus; 275 if(rdm<0.5){ 276 nucleon->setType(Neutron); 277 antinucleon->setType(antiNeutron); 278 } 279 else{ 280 nucleon->setType(antiNeutron); 281 antinucleon->setType(Neutron); 282 } 283 } 284 else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM167, plab)+KinematicsUtils::compute_xs(BFMM490, plab)){ //pnbarpi-pi0 case 285 Pion1 = PiMinus; 286 Pion2 = PiZero; 287 if(rdm<0.5){ 288 nucleon->setType(Proton); 289 antinucleon->setType(antiNeutron); 290 } 291 else{ 292 nucleon->setType(antiNeutron); 293 antinucleon->setType(Proton); 294 } 295 } 296 else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM167), plab)+2*KinematicsUtils::compute_xs(std::move(BFMM490), plab)){ //npbarpi+pi0 case 297 Pion1 = PiPlus; 298 Pion2 = PiZero; 299 if(rdm<0.5){ 300 nucleon->setType(Neutron); 301 antinucleon->setType(antiProton); 302 } 303 else{ 304 nucleon->setType(antiProton); 305 antinucleon->setType(Neutron); 306 } 307 } 308 else{ // p pbar pi+ pi- case 309 Pion1 = PiMinus; 310 Pion2 = PiPlus; 311 if(rdm<0.5){ 312 nucleon->setType(Proton); 313 antinucleon->setType(antiProton); 314 } 315 else{ 316 nucleon->setType(antiProton); 317 antinucleon->setType(Proton); 318 } 319 } 320 } 321 } 322 323 ParticleList list; 324 list.push_back(nucleon); 325 list.push_back(antinucleon); 326 const ThreeVector &rcol = nucleon->getPosition(); 327 const ThreeVector zero; 328 329 Particle *pion2 = new Particle(Pion1,zero,rcol); 330 Particle *pion1 = new Particle(Pion2,zero,rcol); 331 if(rdm < 0.5){ 332 pion1->setType(Pion1); 333 pion2->setType(Pion2); 334 } 335 336 list.push_back(pion1); 337 list.push_back(pion2); 338 339 PhaseSpaceGenerator::generate(sqrtS, list); 340 341 fs->addModifiedParticle(nucleon); 342 fs->addModifiedParticle(antinucleon); 343 fs->addCreatedParticle(pion1); 344 fs->addCreatedParticle(pion2); 345 346 } 347 } 348